Point Estimation

WHAT Y'ALL CAME HERE FOR

RDS-I

Description

Models sampling as a mixing of a Markov Chain.

- Only available for categorical variables.
- Comes in two versions.
 - Regular: Doesn't use chain reversibility
 - o Data Smoothed (DS): Assumes that the chain is reversible

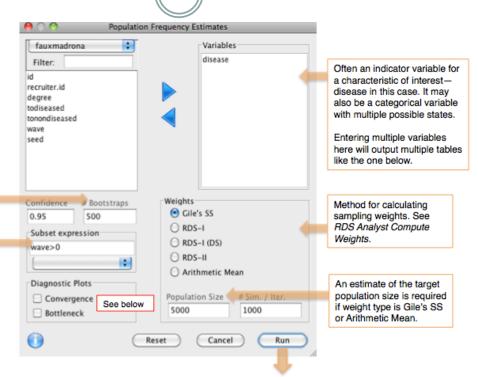
RDS-II

Description

Weights cases based on the inverse of their network size.

Assumes that either:

- The Markov chain has reached convergence.
- Network connections are completely random (Configuration graph), and sampling is done with replacement.


Gile's Sequential Sampler

Description

Adjusts RDS-II for sampling without replacement.

- Best when sample size is a significant fraction of population size.
- Requires the following information:
 - o Population Size: An estimate of the population size
 - # Sim. \ Iter: An algorithmic parameter controlling the number of sampling simulations per iteration. Defaults to 1000.

The Dialog: Categorical Variables

Gile's SS Estimate for disease

Number of bootstrap samples for estimating the uncertainty of the

Restrict the data used

Here we remove the

initial sampling wave.

Note: Diagnostic plots

are not enabled if a

subset expression Is

for calculating.

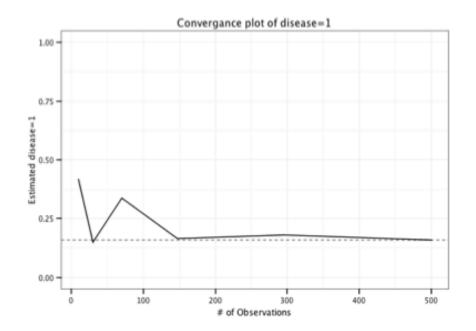
estimator.

used.

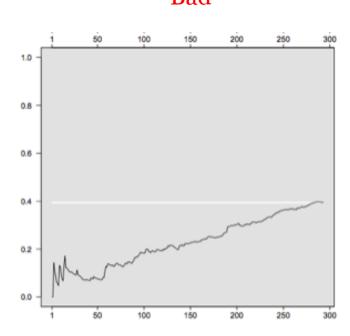
	Point Estimate	95% Lower Bound	95% Upper Bound	Estimated Design Effect	Standard Error	Sample Size
0	0.8302	0.7900	0.8704	1.62	0.0205	363
1	0.1698	0.1296	0.2100	1.62	0.0205	127
				1	Total	490

Sample size excludes 10 respondents from wave 0 due to the subset in the dialog.

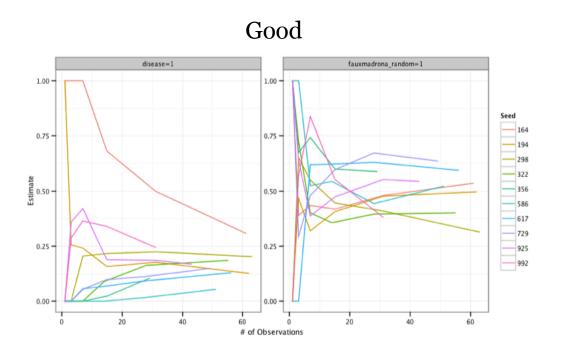
Design effect is the necessary sample size relative to a simple random sample. For example, if the value is two you would have to recruit twice as many subjects as with a simple random sample in order to get the same power.

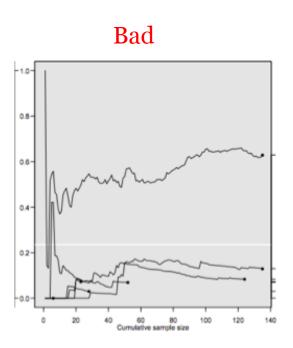

Diagnostics: The convergence plot

 Measures the systematic trending of the estimate as sampling progresses


Can indicate that seed bias has not been overcome.

Diagnostics: The Convergence PLot


Bad



Diagnostics: Bottleneck plot


- Measures the trend in the estimate as the sampling process proceeds, broken down by initial seed.
- Suggests if some seeds located in qualitatively different populations.
- Can indicate that the population is actually composed of several disconnected sub-populations.

Diagnostics: Bottleneck Plot

The Dialog: Continuous Variables

Continuous Variables: Output

\$`strata: all cases `

Mean St. Deviation

Age 43.12510 12.0209063

X 40.00003 0.9503788

Warning message:

21 of 264 network sizes were missing or zero. The estimator will presume these are 850