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Outline of Presentation

Link-Tracing Hard-to-Reach Population Sampling
Respondent-Driven Sampling (RDS)

Inference for Respondent-Driven Sampling Data
Random Walk Approximation

Successive Sampling Approximation

Discussion
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Standard Survey Sampling

Stylized description

e Choose a population of interest and a population characteristic of interest u

e Determine the sampling frame: ¢+ = 1, ..., N sample units.
e Choose variables to measure on them:
outcome z;,©+ = 1, ..., N, control variables x;,i = 1, ..., N,

e Choose a sampling design:
e.g., simple random sampling, stratified sampling on x, stratified sampling on z

e Choose a sample of units < = 1, ..., n and collect data on the sampled units
e Estimate the population characteristics of interest based on the sample
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Measuring Certainty of Estimates from Standard Survey Sampling

The level of certainty of the estimate for . is determined by

e the true population from which the sample is drawn
e the chosen sampling design (e.g., sample size, seeds)
e Sampling Variability: the random or chance choice of sampled units
e Representation of the population by the sample:
— the relationship between the defacto sampling frame and the population
— the mechanism of non-observation
— randomness in each sample
e Measurement of the variables of interest:
— within the population
— within the sample
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Total Survey Error

Measurement Representation
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Figure 3. Total Survey Error Components Linked to Steps in the
Measurement and Representational Inference Process (Groves et al. 2004).
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Estimation

e (oal: Estimate the population mean of z:

1 N
M:N;%

where
s { 1 4 has the characteristic
=

0O 7 does not have the characteristic.

e Sample indicators

g _ 1 7 sampled
| 0 <inotsampled

e Inclusion probabilities
e.g. simple random sampling

WZ:n/N ’izl,...,N
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Point Estimates from Design-Based Inference:

e Goal: Estimate proportion “infected” :

1 N
M:N;Zi

where

I 1 ¢ infected
o 0 ¢ uninfected.

e Horvitz-Thompson Estimator:

N = LN Sig
— N4 wizz
where
| 1 <¢sampled o o
Si = { 0 ¢ notsampled mi = P(S; = 1).
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Point Estimates from Design-Based Inference

e Goal: Estimate proportion “infected” :

1 N
M:ﬁ;%

where

I 1 ¢ infected
o 0 ¢ uninfected.

e Hajek Estimator:

S.
— -
2 iTs
where
| 1 <¢sampled L L
Si = { 0 i notsampled ™= P(Si=1).
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Hajek Estimator

The Hajek is useful when the population size N is not known
The Hajek is better when z is weakly or negatively correlated with ;.
The key point: Each estimator requires m; = P(S; = 1) Vi: S; =1

We often need to model the sampling process to estimate these inclusion
probabilities
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Volz-Heckathorn Estimator

e Approximate ; by d; based on a repeated-sampling model for RDS
e Assume 7 is proportional to degree, d;

e \olz-Heckathorn (RDS-Il) Estimator:

_Z

d’L

B

. 2
HVH = > 5

1
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Gile’s Sequential Sampling Estimator

e Approximate 7; by 7; based on a successive-sampling model for RDS
e Gile’s Sequential Sampling (SS) Estimator:
S.

Zi W—Zzz

HUSS = >

:]>|s({) )

1
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Standard Error Estimation in Standard Surveys

Hajek Estimator:

— L
2 i
where
| 1 <¢sampled o o
Si = { 0 4notsampled m = P(Si=1).

e The only random thing is the S;.

e If we knew the (joint) distribution of S;,S5,...,S, we could compute the
distribution of [

e We can compute the standard error as the standard deviation of this distribution.

e For many standard survey designs, the S; are independent, so w; = P(S; = 1) is
enough.

e For standard errors have been worked out for many standard designs
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More realistic designs

We need to know the (joint) distribution of S, So, ..., Su:

e Clustered or multi-stage sampling designs
— For these the clustering means the S; are dependent
— In practice, software uses a simple first-stage-only approximation
— Most large surveys do not release enough information on the design to improve
on this
e Usually the formula is complicated to compute

— They contain constants they themselves need to be estimated

— Most software uses Taylor series expansion formulas to approximate the
standard errors
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An alternative: The Bootstrap

|dea: If we can simulate from the sampling process we can approximate the standard
error from the simulations

Algorithm:

e Simulate M = 10000 sample (from the same process that generated the one we
have)

e Foreachsample m =1, ..., M, compute the estimate i, (e.g., VH)

e Use the empirical standard deviation of {/,,}»_, as an estimate of the standard
error

M
s.e.(ft) = |77 > (o — i)’
m=1
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Bootstrap: Real world

Problem: We don’t know the true population and the actual sampling process, and so
approximate them from the sample

Real Algorithm:

e Approximate the population its variables (e.g., z;, d;) from the sample
e Approximate the sampling process as best we can from what we know

e Simulate M = 10000 samples from approximate population using the
approximate process
e Foreachsample m = 1,..., M, compute the estimate i, (e.g., VH)

e Use the empirical standard deviation of {ﬂm}ﬁf:l as an estimate of the standard
error
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Application to RDS Error Estimation:

e Arithmetic mean

— We can use the standard formula (assumes SRS)
— More realistic to use the Gile bootstrap

e Salganik-Heckathorn (RDS-I)
— Use a bootstrap where you divide the sample into recruiter-recruitee dyads:

x Randomly select seeds (i.e., wave 0)

x Randomly select a dyad where the recruiter has the same value of z; as the
current wave. The next wave has the same value of z; as the recruitee in the
dyad.

+x Repeat until the sample size is achieved

— This is the bootstrapped sample. Repeat M times.

e Volz-Heckathorn (RDS-I1)

— Approximate the RDS by with-replacement sampling
— Use the Taylor Series expansion for that
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Application to RDS Error Estimation:

e Gile’'s Sequential Sampling (SS)
e Use a much more realistic bootstrap
— Simulate Population
x Estimate z by d distribution
x Estimate infection mixing matrix by z
— Simulate sequential without-replacement sampling
x Choose recruit z according to mixing matrix
x Choose recruit d by successive sampling
+x Update available population and mixing matrix
— Compute SS Estimates
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Performance of Gile’s Bootstrap

Table 1: Observed (simulation) standard errors of estimates, and average bootstrap
standard error estimates, along with coverage rates of nominal 95% and 90% con-
fidence intervals for procedure given in Section 1 for varying sample proportion
and activity ratio w, and for initial sample selected either independent of infec-
tion (“No” bias) or all from within the infected subgroup (“Yes” bias). Observed
standard errors are based on 1000 samples. Bootstrap standard errors are the av-
erage bootstrap standard error estimates over the same 1000 samples. Nominal
confidence intervals are based on quantiles of the Gaussian distribution.

%  homoph. initial sample | SE SE | coverage coverage
sample R w bias observed bootstrap | 95% 90%

50% D 1 No 00212 0.0218 | 943%  89.8%
70% D 1.8 No 0.0087  0.0090 | 959%  90.6%
50% 5 1 Yes 00211  0.0224 | 759%  63.7%
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Performance of Gile’s Bootstrap

e Performs well across differential activity (w) and sample fraction
e Performs well with homophily
e Unreliable when seeds biased.
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Comparison of Variance Estimators:

Rules-of-thumb: How well do the estimators measure the actual sampling uncertainty?

e The analytic formulas tend to underestimate

e The Salganik bootstrap tends to underestimate if the sampling has not reach
equilibrum

e The Gile bootstrap tends to underestimate if the homophily is large.
e In general the Gile bootstrap is the most credible and is preferred.
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Other sources of uncertainty:

In measuring the total survey error we can discuss many possibities:

e Sampling Variability: covered above
e Representation of the population by the sample

e Measurement of the variables of interest:
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