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Introduction

Computer Experiments

e Computer experiments refer to the study of real systems using
complex mathematical models

@ They have been widely used as alternatives to physical experiments,
which sometimes are unethical, impossible, inconvenient or too
expensive.

@ They are nearly deterministic in the sense that a particular input will
produce almost the same output.

@ Therefore, it is desirable to build an interpolator for computer

experiment outputs and use it as an emulator for the actual computer
experiment.



Introduction

Gaussian Process Model for Computer Experiments

o Consider a computer experiment which has n inputs x € R and
produces univariate output y(x). To analyze the experiments, y(x) is
assumed to be a realization from a stochastic process model:

Y (x) = n(x) + Z(x),

e mean function: u(x) =x"3

@ Z(x) : stationary Gaussian process with mean 0 and covariance
function o2

@ covariance function:
Cov{Z(x;), Z(xj)} = o°¥(x; — x;; 6)

where 6 is a vector of correlation parameter for the correlation
function.



Introduction

Gaussian Process Model (Estimation)

@ Given n observed realizations X, and Y ,, the log-likelihood function,
ignoring a constant, can be written as

XY 8) = =5 (10 = XaB) T Ry H(O)(y, — XofB) — 5 g |R(0)] — 5 log(o?)
where R,(0) = [¢(x; — x;);0),i,j =1,...,n] is an n X n correlation
matrix.

@ The MLE can be obtained by

B,=(XIRA0)X,)*XTR,1(0)y,,

&% (yn— Xan)TRrTl(g)(Yn - Xmén)/”v

6, = argmin{nlog(62) + log |R.(0)|}.
(4
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Introduction

Gaussian Process Model (Prediction)

@ Based on the MLEs, we are interested in predicting y,+1 at an untried
new input x,y1 and quantifying the uncertainty. To achieve this, the
conventional plug-in method predicts y,.1 by a distribution
g(xnt1 | Xn, Y,,,gZA),,) which is normally distributed with mean

w(Xny1 | X, ¥n, an) = XI—&-an + 7n(9n)TR;l(én)(Yn - Xan)
and variance

02(Xni1 | X ¥ &) = 82{1 = 7(0,) "R (0n)vn(01)}

A

where v,(80,) is the correlation between the new observation and the
existing data, i.e. v,(0,) = [w(x; — Xp41;0n),i =1,..., n}.



Introduction

Gaussian Process Model
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Figure: Example of Gaussian Process model in 1-D
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Challenge and Motivation

o Computational issue that hinders GP from broader application

o Modelling and making inference involves manipulations of a n x n
correlation matrix R,(0), such as the calculation of R, 1(8) and
|R,(0)|. The computational order is O(n3).

@ The underestimation of GP predictor uncertainty

o The resulting plug-in predictors tend to underestimate the uncertainty
because variance is obtained by substituting the true parameters with
their estimators.



LHD-Based Block Bootstrap

LHD Example
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Figure: Example of Latin Hypercube Design in 2-D
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LHD-Based Block Bootstrap

Example of LHD-Based Block Bootstrap
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Figure: d =2, 1 =24, b=4, m=6, |B,(i)
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LHD-Based Block Bootstrap

Example of LHD-Based Block Bootstrap

AllData (Zn )

Figure: d =2, 1 =24, b=4, m=6, |B,(i)| =6, N =36, n =216
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Consistency of the Bootstrap Estimators

Consistency of the Bootstrap Estimators: Converge in
Probability

Theorem 1

Assume regularity conditions are satisfied. If m = o(n*/9) and m — oo,
then

qAbT\, — (75,, — 0 prob— Py, prob — P.

Note: 7A',’{‘, — 0 prob— Py, prob — P if for any € > 0 and any ¢ > 0,
limn_so0 P{Py (I T} > €| > 0)} =0.

* Yibo Zhao, Yasuo Amemiya and Ying Hung  Efficient Gaussian Process
Modelling Using Experimental Design-based Subagging Statistica Sinaca
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Bootstrap Predictive Distribution

Objectives of Research

Objective of this research is to construct a predictive distribution that is
@ 1) easy to compute (due to the subsampling);

@ 2) allow a better quantification of predictive uncertainty
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Construction Methods

Definition 1 (Direct density prediction)

Given the realization {X,,y,}, let {X},yx} be a bootstrap sample, a
bootstrap predictive distribution is defined by

(o1 | X yp) = / (Xns1 | Xy ¥ig: D) AP (XY | X y0).

Based on the subsamples obtained from LHD-based bootstrap, a Monte
Carlo estimate of the bootstrap predictive distribution can be obtained by

v
B (Xne1 | Xny¥n) = U™ D g(Xn1 | Xy Y vuy P

u=1

When U — 00, 8*(Xnt1 | X, yn) converges to g*(xns1 | X, y,)-
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Bootstrap Predictive Distribution

Direct Density Prediction

A Bootstrap Sample {Xn:¥nt )
i C MLE D)

Repeat [ Paremeter Estimation D J
$ ( Plug In )

[ Predictive Distribution  g(Xp+1 | X, ¥ n- (ff);,) J

‘i ( Take U Times )
u

[ Bootstrap Predictive Distribution U g(Xnr1 | Xy Y i) Sug) ]

u=1
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Construction Methods

Definition 2 (Normal approximation)

Utilizing LHD-based bootstrap approach, the Monte Carlo estimate of the
predictive mean and variance are:

[L*(anrl ‘ xrhyn) = Ut ijj 1M(Xf7+1 | XN(u)vyN(u)’q,[;T\/(u))
5’2*(X,-,+1 ‘ Xn7yn) - - Z =10 (X,-,+1 ‘ Xn (u)s Y N(v) ¢N )

When U — oo, fi*(xpt1 | Xn,y,) converges to

1 (s | X yn) = / H(Xnes | Xy ¥ S3) 0P (X | X y)

and 5%*(xpy1 | Xn,y,) converges to

0'2*(X,7+1 | Xnﬂyn) = /0’2(X,~,+1 | XT\I?.YT\I?(%TV)C/P*( >’;\I?.y#;\l | Xnayn)'

16723



Bootstrap Predictive Distribution

Normal Approximation Prediction

Repeat

A Bootstrap Sample {X}‘;,, y’“N}
i ( MLE
. . *
Paremeter Estimation a’N
‘i ( Plug In
Predictive Mean 1(Xnsa | Xivs Yius du):

Predictive Variance o2(x,.1 | Xjy, ¥ ®n)

¢ ( Take U Times

NCUTS L X or1 | Xy Yngons Shuen), U300 02(Xnsn | xN[LI)‘yN(u)~é;7v(u)) )

Bootstrap Predictive Distribution
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Bootstrap Predictive Distribution

Theoretical Comparison

Theorem 2
Let °; be the summation of all m? blocks and > ry...m, be the
summation of independent permutation over {0,1,...,m—1}. Under

assumption (A.3), we have

@ Direct density and normal approximation both have unbiased
predictive mean. i.e.,

E(M(Xn—H' | Xn’y”’ én) o /j{) = E(M(Xn-‘rl | Xnaynvén) - /.L;)
n1d——1 1 ~ R A i
- E(W > i) TR (8n)(y; — XiB,) + O(N~?))

=0
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Simulation Setting

e Y(x)=pu(x)+ Z(x)

o u(x)=x"p

o Y(x1 — x2) = exp(— 7, [xai — xail /6))
Br=F=0=6=02=1

Generate n=400, 2500 realizations on regular grid [0, 1]?

For each choice of sample size, a total of 100 data sets are simulated

20 LHD-based block bootstrap samples are collected
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Numerical Studies

Simulation studies

Table: Comparisons of prediction in three untried settings with 100 replications
(standard deviation in parenthesis).

Method Summary statistics Xpi1 Xpi2 Xni3
n = 400
Plug-in Mean 0.50 (0.9965) 1.05 (1.0447) 1.10 (1.0558)
Variance 0.01 (0.0030) 0.03 (0.0061) 0.02 (0.0040)
Density m = 4 Mean 0.63 (0.8666) 1.05 (0.9383) 1.09 (0.9533)
Variance 0.22 (0.0559) 0.15 (0.0298) 0.14 (0.0291)
Density m = 6 Mean 0.62 (0.8416) 1.08 (0.9604) 1.12 (0.9683)
Variance 0.25 (0.0741) 0.15 (0.0388) 0.13 (0.0380)
Normal m = 4 Mean 0.63 (0.8666) 1.05 (0.9383) 1.09 (0.9533)
Variance 0.17 (0.0287) 0.11 (0.0173) 0.09 (0.0150)
Normal m = 6 Mean 0.62 (0.8416) 1.08 (0.9604) 1.12 (0.9683)
Variance 0.14 (0.0249) 0.11 (0.0165) 0.10 (0.0148)
n = 2500

Plug-in Mean 0.67 (0.9785) 1.10 (1.1682) 1.14 (1.1731)
Variance 0.02 (0.0017) 0.02 (0.0016) 0.01 (0.0013)
Density m = 4 Mean 0.66 (0.9183) 1.12 (1.0952) 1.14 (1.0899)
Variance 0.21 (0.0517) 0.11 (0.0272) 0.10 (0.0254)
Density m = 6 Mean 0.62 (0.8931) 1.10 (1.0751) 1.13 (1.0710)
Variance 0.19 (0.0401) 0.11 (0.0204) 0.1 (0.0216)
Normal m = 4 Mean 0.66 (0.9183) 1.12(1.0952) 1.14 (1.0899)
Variance 0.15 (0.0120) 007 (0.0057) 0.06 (0.0050)
Normal m = 6 Mean 0.62 (0.8931) 1.10 (1.0751) 1.13 (1.0710)
Variance 0.13 (0.0115) 0.08 (0.0065) 0.08 (0.0061)
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Ongoing Work

@ Compare the predictive variance of direct density prediction and
normal approximation with the case when full data is used.

@ Quantify the gain in predictive variance of LHD-based block bootstrap
with SRS block bootstrap.
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Summary

@ LHD-based block bootstrap borrows the strength of space-filling
designs to provide an efficient subsampling plan and reduce
computational complexity.

@ Two methods are proposed to construct bootstrap predictive
distributions.

@ We show the unbiasedness of the predictive mean under both direct
density prediction and normal approximation prediction.



Thank youl
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