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Introduction

Computer Experiments

Computer experiments refer to the study of real systems using
complex mathematical models
They have been widely used as alternatives to physical experiments,
which sometimes are unethical, impossible, inconvenient or too
expensive.
They are nearly deterministic in the sense that a particular input will
produce almost the same output.
Therefore, it is desirable to build an interpolator for computer
experiment outputs and use it as an emulator for the actual computer
experiment.
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Introduction

Gaussian Process Model for Computer Experiments

Consider a computer experiment which has n inputs x ∈ Rd and
produces univariate output y(x). To analyze the experiments, y(x) is
assumed to be a realization from a stochastic process model:

Y (x) = µ(x) + Z (x),

mean function: µ(x) = xTβ

Z (x) : stationary Gaussian process with mean 0 and covariance
function σ2ψ

covariance function:

Cov{Z (x i ),Z (x j)} = σ2ψ(x i − x j ;θ)

where θ is a vector of correlation parameter for the correlation
function.
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Introduction

Gaussian Process Model (Estimation)

Given n observed realizations X n and Y n, the log-likelihood function,
ignoring a constant, can be written as

`(X n, yn,φ) = −
1

2σ2 (yn − X nβ)
TR−1

n (θ)(yn − X nβ)−
1
2

log |Rn(θ)| −
n

2
log(σ2),

where Rn(θ) = [ψ(x i − x j);θ), i , j = 1, . . . , n] is an n × n correlation
matrix.
The MLE can be obtained by

β̂n = (XT
n R
−1
n (θ)X n)

−1XTR−1
n (θ)yn,

σ̂2
n = (yn − X nβ̂n)

TR−1
n (θ)(yn − X nβ̂n)/n,

θ̂n = arg min
θ
{n log(σ̂2

n) + log |Rn(θ)|}.
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Introduction

Gaussian Process Model (Prediction)

Based on the MLEs, we are interested in predicting yn+1 at an untried
new input xn+1 and quantifying the uncertainty. To achieve this, the
conventional plug-in method predicts yn+1 by a distribution
g(xn+1 | X n,Y n, φ̂n) which is normally distributed with mean

µ(xn+1 | X n, yn, φ̂n) = xT
n+1β̂n + γn(θ̂n)

TR−1
n (θ̂n)(yn − X nβ̂n)

and variance

σ2(xn+1 | X n, yn, φ̂n) = σ̂2
n{1− γn(θ̂n)

TR−1
n (θ̂n)γn(θ̂n)}

where γn(θ̂n) is the correlation between the new observation and the
existing data, i.e. γn(θ̂n) =

[
ψ(x i − xn+1; θ̂n), i = 1, . . . , n

]
.

6 / 23



Introduction

Gaussian Process Model

Figure: Example of Gaussian Process model in 1-D
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Introduction

Challenge and Motivation

Computational issue that hinders GP from broader application

Modelling and making inference involves manipulations of a n × n
correlation matrix Rn(θ), such as the calculation of R−1

n (θ) and
|Rn(θ)|. The computational order is O(n3).

The underestimation of GP predictor uncertainty

The resulting plug-in predictors tend to underestimate the uncertainty
because variance is obtained by substituting the true parameters with
their estimators.
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LHD-Based Block Bootstrap

LHD Example

Figure: Example of Latin Hypercube Design in 2-D
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LHD-Based Block Bootstrap

Example of LHD-Based Block Bootstrap
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Figure: d = 2, l = 24, b = 4, m = 6, |Bn(i )| = 6, N = 36, n = 216
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LHD-Based Block Bootstrap

Example of LHD-Based Block Bootstrap

Figure: d = 2, l = 24, b = 4, m = 6, |Bn(i )| = 6, N = 36, n = 216
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Consistency of the Bootstrap Estimators

Consistency of the Bootstrap Estimators: Converge in
Probability

Theorem 1

Assume regularity conditions are satisfied. If m = o(n1/d) and m→∞,
then

φ̂
∗
N − φ̂n → 0 prob − P∗N,ω, prob − P.

Note: T̂ ∗N → 0 prob − P∗N,ω, prob − P if for any ε > 0 and any δ > 0,
limn→∞ P{P∗N,ω(|T̂ ∗N > ε| > δ)} = 0.

∗ Yibo Zhao, Yasuo Amemiya and Ying Hung Efficient Gaussian Process
Modelling Using Experimental Design-based Subagging Statistica Sinaca
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Bootstrap Predictive Distribution

Objectives of Research

Objective of this research is to construct a predictive distribution that is

1) easy to compute (due to the subsampling);

2) allow a better quantification of predictive uncertainty
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Bootstrap Predictive Distribution

Construction Methods

Definition 1 (Direct density prediction)

Given the realization {X n, yn}, let {X ∗N , y∗N} be a bootstrap sample, a
bootstrap predictive distribution is defined by

g∗(xn+1 | X n, yn) =

∫
g(xn+1 | X ∗N , y∗N , φ̂

∗
N)dP

∗(X ∗N , y
∗
N | X n, yn),

Based on the subsamples obtained from LHD-based bootstrap, a Monte
Carlo estimate of the bootstrap predictive distribution can be obtained by

g̃∗(xn+1 | X n, yn) = U−1
U∑

u=1

g(xn+1 | X ∗N(u),Y
∗
N(u), φ̂

∗
N(u)),

When U →∞, g̃∗(xn+1 | X n, yn) converges to g∗(xn+1 | X n, yn).

14 / 23



Bootstrap Predictive Distribution

Direct Density Prediction

                A Bootstrap Sample                 

               
               Paremeter Estimation 

                
               Predictive Distribution 

              Take U Times

MLE

Plug In

       Bootstrap Predictive Distribution

    Repeat
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Bootstrap Predictive Distribution

Construction Methods

Definition 2 (Normal approximation)

Utilizing LHD-based bootstrap approach, the Monte Carlo estimate of the
predictive mean and variance are:

µ̃∗(xn+1 | X n, yn) = U−1∑U
u=1 µ(xn+1 | XN(u), yN(u), φ̂

∗
N(u))

σ̃2∗(xn+1 | X n, yn) = U−1∑U
u=1 σ

2(xn+1 | XN(u), yN(u), φ̂
∗
N(u)).

When U →∞, µ̃∗(xn+1 | X n, yn) converges to

µ∗(xn+1 | X n, yn) =

∫
µ(xn+1 | X ∗N , y∗N , φ̂

∗
N)dP

∗(X ∗N , y
∗
N | X n, yn)

and σ̃2∗(xn+1 | X n, yn) converges to

σ2∗(xn+1 | X n, yn) =

∫
σ2(xn+1 | X ∗N , y∗N , φ̂

∗
N)dP

∗(X ∗N , y
∗
N | X n, yn).
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Bootstrap Predictive Distribution

Normal Approximation Prediction

Bootstrap Predictive Distribution   

N(                                                                                  ,                                                                                  ) 

                A Bootstrap Sample                 

               
               Paremeter Estimation 

               Predictive Mean 
             Predictive Variance 

              Take U Times

MLE

Plug In

    Repeat
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Bootstrap Predictive Distribution

Theoretical Comparison

Theorem 2

Let
∑

i be the summation of all md blocks and
∑

π1,...,πd
be the

summation of independent permutation over {0, 1, . . . ,m − 1}. Under
assumption (A.3), we have

Direct density and normal approximation both have unbiased
predictive mean. i.e.,

E (µ(xn+1 | X n, yn, φ̂n)− µ∗1) = E (µ(xn+1 | X n, yn, φ̂n)− µ∗2)

= E (
md−1 − 1
md−1

∑
i

γi (θ̂n)
TR−1

i ,i (θ̂n)(y i − X i β̂n) + O(N−1/2))

= 0
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Numerical Studies

Simulation Setting

Y (x) = µ(x) + Z (x)
µ(x) = xTβ

ψ(x1 − x2) = exp(−
∑2

i=1 |x1i − x2i |/θi )
β1 = β2 = θ1 = θ2 = σ2 = 1
Generate n=400, 2500 realizations on regular grid [0, 1]2

For each choice of sample size, a total of 100 data sets are simulated
20 LHD-based block bootstrap samples are collected
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Numerical Studies

Simulation studies

Table: Comparisons of prediction in three untried settings with 100 replications
(standard deviation in parenthesis).

Method Summary statistics xn+1 xn+2 xn+3

n = 400
Plug-in Mean 0.59 (0.9965) 1.05 (1.0447) 1.10 (1.0558)

Variance 0.01 (0.0030) 0.03 (0.0061) 0.02 (0.0040)
Density m = 4 Mean 0.63 (0.8666) 1.05 (0.9383) 1.09 (0.9533)

Variance 0.22 (0.0559) 0.15 (0.0298) 0.14 (0.0291)
Density m = 6 Mean 0.62 (0.8416) 1.08 (0.9604) 1.12 (0.9683)

Variance 0.25 (0.0741) 0.15 (0.0388) 0.13 (0.0380)
Normal m = 4 Mean 0.63 (0.8666) 1.05 (0.9383) 1.09 (0.9533)

Variance 0.17 (0.0287) 0.11 (0.0173) 0.09 (0.0150)
Normal m = 6 Mean 0.62 (0.8416) 1.08 (0.9604) 1.12 (0.9683)

Variance 0.14 (0.0249) 0.11 (0.0165) 0.10 (0.0148)
n = 2500

Plug-in Mean 0.67 (0.9785) 1.10 (1.1682) 1.14 (1.1731)
Variance 0.02 (0.0017) 0.02 (0.0016) 0.01 (0.0013)

Density m = 4 Mean 0.66 (0.9183) 1.12 (1.0952) 1.14 (1.0899)
Variance 0.21 (0.0517) 0.11 (0.0272) 0.10 (0.0254)

Density m = 6 Mean 0.62 (0.8931) 1.10 (1.0751) 1.13 (1.0710)
Variance 0.19 (0.0401) 0.11 (0.0204) 0.11 (0.0216)

Normal m = 4 Mean 0.66 (0.9183) 1.12 (1.0952) 1.14 (1.0899)
Variance 0.15 (0.0129) 0.07 (0.0057) 0.06 (0.0050)

Normal m = 6 Mean 0.62 (0.8931) 1.10 (1.0751) 1.13 (1.0710)
Variance 0.13 (0.0115) 0.08 (0.0065) 0.08 (0.0061)
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Future Work

Ongoing Work

Compare the predictive variance of direct density prediction and
normal approximation with the case when full data is used.

Quantify the gain in predictive variance of LHD-based block bootstrap
with SRS block bootstrap.
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Summary

Summary

LHD-based block bootstrap borrows the strength of space-filling
designs to provide an efficient subsampling plan and reduce
computational complexity.

Two methods are proposed to construct bootstrap predictive
distributions.

We show the unbiasedness of the predictive mean under both direct
density prediction and normal approximation prediction.

22 / 23



Summary

Thank you!
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