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Introduction

• The design of a DCE is critical because it determines which attributes’ and
their interactions are identifiable

• We present an approach for constructing a DCE using blocked fractional
factorial designs (BFFDs)

• We consider the minimum aberration (MA) criteria for selecting BFFDs

– Maximize the number of models with estimable two-factor interactions
by minimizing the confounding or aliasing of two-factor interactions

3



Discrete Choice Experiments

• Method for understanding subjects preferences and their decision-making
process

– Present subjects with various choice sets of two or more options

– Options consist of several attributes at one or more levels

– Subjects are shown each choice set in turn and asked which option they
prefer

– The option chosen in each choice set is the most beneficial (utility)
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Example DCE: Snack Nutritional Ingredients
• Prevalence of snack consumers in U.S. has progressively increased from

71% to 97% between 1977 and 2006.

• College students are challenged with the freedom to decide what they eat
and how much they eat.

• Goal: Which nutritional ingredients influence college students decision
making process
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Previous DCE Studies

• The design of a DCE is a critical aspect

• A review of papers in health economics from 2009-2012 noted:

– 54% of the designs focused on estimating main effects only

– Only 13% considered main effects plus two-factor interactions

• Interactive effect between two attributes is key to gaining insight into
subjects preferences

• Snack ingredients: may not be able to decide on a snack without considering
both its sugar and calorie content
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Fractional Factorial Design (FFD)

• A FFD with k two-level attributes: 2k−p

– Treatment defining contrast subgroup: p defining words and their
products

• Resolution: length of the shortest word in the treatment defining contrast
subgroup

• Let Ai,0 be the number of words of length i (i = 1, . . . ,k) in the treatment
defining contrast subgroup

• Consider designs with resolution III or higher: A1,0 = A2,0 = 0

• Treatment wordlength pattern: Wt = (A3,0, . . . ,Ak,0)

7



Block Fractional Factorial Design (BFFD)

• Two-level BFFD: 2k−p FFD in 2q blocks with blocks of size 2k−p−q

– Two defining contrast subgroups: the treatment defining contrast
subgroup and the block defining contrast subgroup

• Let Ai,1 be the number of treatment words of length i that are confounded
with a block effect (A1,1 = 0)

• Block wordlength pattern: Wb = (A2,1, . . . ,Ak,1)

• A main effect or a two-factor interaction is clear in a BFFD if it is not
aliased with any other main effects or two-factor interactions, or confounded
with any block effects
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Two-level BFFDs for DCEs with Symmetric
Attributes

• We propose the use of BFFDs for constructing DCEs

• Advantage of BFFDs for DCEs is entire aliasing structure of a BFFD is
known in advance

– Hence, know which effects are estimable in the DCE

• Consider a 2k−p FFD in 2q blocks

– The number of choice sets in a DCE is 2q (number of blocks in the
BFFD)

– The number of options in each choice set is 2k−p−q (size of the block)

• Consider designs of at least resolution IV - ensure clear estimation of main
effects as well as possible two-factor interactions
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Simulation

• MNL model common model for modeling responses and analyzing data
from a DCE

• We construct a locally optimal design assuming nominal values for the
parameters are available from pilot studies or experts’ opinion

Example: Consider a DCE with 5 two-level attributes

• Assume true model with 5 main effects plus 3 two-factor interactions
µ = 0.5xA−0.5xB +0.5xC−0.5xD +0.5xE +0.25xAxC−0.25xAxD +0.25xBxE

• Consider three 25−1 FFDs in 22 blocks and for each we fit two models:

1. Main effects only

2. All main effects and all clear two-factor interactions plus one two-factor
interaction from each aliased set not confounded with block
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Three BFFDs used in the simulation study

Design Treatment defining words Block defining words Wt Wb

S1 I = ABCDE b1 = AB,b2 = AC,b3 = BC (0,0,1) (3,3,0,0)

S2 I = ABCE b1 = ACD,b2 = BCD,b3 = AB (0,1,0) (2,4,0,0)

S3 I = ABE b1 = AC,b2 = ABCD,b3 = BD (1,0,0) (2,3,1,0)

Note: Wt = (A3,0,A4,0,A5,0) and Wb = (A2,1,A3,1,A4,1,A5,1)
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Main Effects Only Models

Effect Design S1 Design S2 Design S3

A 0.604 (0.032) 0.772 (0.033) 0.889 (0.041)

B -0.455 (0.032) -0.391 (0.033) -0.567 (0.040)

C 0.509 (0.032) 0.609 (0.029) 0.471 (0.032)

D -0.557 (0.027) -0.502 (0.026) -0.606 (0.028)

E 0.387 (0.026) 0.341 (0.029) 0.512 (0.037)

True Model: µ = 0.5xA−0.5xB +0.5xC−0.5xD +0.5xE +0.25xAxC−0.25xAxD +0.25xBxE
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Main Effects Plus Two-Factor Interactions Models
Effect Design S1 Design S2 Design S3

A 0.506 (0.048) 0.555 (0.044) 0.792 (0.051)

B -0.524 (0.048) -0.503 (0.045) -0.533 (0.051)

C 0.549 (0.048) 0.464 (0.044) 0.497 (0.051)

D -0.484 (0.048) -0.435 (0.046) -0.456 (0.041)

E 0.454 (0.048) 0.482 (0.045) 0.502 (0.051)

AB – – –

AC – 0.467 (0.045) –

AD -0.246 (0.048) -0.28 (0.038) -0.262 (0.039)

AE 0.028 (0.048) -0.025 (0.041) –

BC – – 0.029 (0.050)

BD 0.038 (0.048) 0.039 (0.045) –

BE 0.239 (0.048) – –

CD -0.005 (0.048) -0.015 (0.038) 0.011 (0.029)

CE 0.012 (0.048) – -0.053 (0.051)

DE -0.017 (0.048) -0.041 (0.045) -0.057 (0.041)

True Model: µ = 0.5xA−0.5xB +0.5xC−0.5xD +0.5xE +0.25xAxC−0.25xAxD +0.25xBxE
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Simulation Results

• Illustrate consequences of confounding and aliasing

• Misspecified model can lead to biased and misleading estimates even if
effects are clear

– Main effects only model - estimates of main effects are biased by the
significant two-factor interactions, even if main effects are clear

– Importance of including all significant effects in model - particularly
significant two-factor interactions
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Advantages of BFFDs for DCEs

1. Effects confounded with block effects are not estimable, but do not bias
estimate of other effects

2. Aliasing causes bias, but aliased effects are estimable if all aliases are
negligible

3. Aliasing or missing a significant two-factor interaction can bias estimation
of main effects even if all main effects and two-factor interactions are clear

Hence, it is essential at the design stage to know the aliasing and confounding
structure of the design in order to construct a DCE.
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BFFDs for DCEs

• Choice of BFFD depends on:

– Number of attributes k

– Desired size of the choice set (i.e., the number of options)

– Effects to be identified as clear (number of clear two-factor interactions
in a BFFD depends on design generators and block generators)

• Note: The number of options is a power of the attribute levels

• Previously, focused on choice of BFFDs to maximize number of clear main
effects and two-factor interactions

– However, this approach assumes it is known in advance which
two-factor interactions are significant

– Problematic as significant interactions are often unknown in practice
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Minimum Aberration Criteria

• We propose the use of MA criteria for selecting BFFDs to construct DCEs
assuming the Multinomial logit (MNL) model

• For any two 2k−p designs d1 and d2, let r be the smallest integer such that
Ar(d1) 6= Ar(d2). Then d1 is said to have less aberration than d2 if
Ar(d1)< Ar(d2). If there is no design with less aberration than d1, then d1

has minimum aberration (Wu and Hamada, 2009)
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Combined Wordlength Patterns

Various approaches for applying MA criteria to select a BFFD

• Two defining contrast subgroups:

1. Treatment effects

2. Block effects

• Choice of MA criteria to construct a DCE depends on the goals of the study

• Various combined wordlength patterns in the literature:

– Wsc f = (A3,0,A2,1,A4,0,A3,1,A5,0,A4,1, . . .)

– Wcc = (3A3,0 +A2,1,A4,0,10A5,0 +A3,1,A6,0 . . .)

– W1 = (A3,0,A4,0,A2,1,A5,0,A6,0,A3,1, . . .)

– W2 = (A3,0,A2,1,A4,0,A5,0,A3,1,A6,0, . . .)

Proposed by Sitter et al. (1997), Chen and Cheng (1999), and Cheng and
Wu (2002).
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Tables of MA BFFDs based on the W -criteria

• Sitter et al. (1997): provide MA BFFDs based on the Wsc f criterion for all 8
and 16 run designs; for 32 run designs up to 15 attributes, and for 64 and
128 run designs up to 9 attributes

• Chen and Cheng (1999): provide MA BFFDs based on the Wcc criterion for
8, 16, and 32 runs up to 19 attributes

• Cheng and Wu (2002): provide MA BFFDs based on the W1 and W2 criteria
for all 27 run designs, and for 81 run designs up to 10 attributes

• Xu and Lau (2006) and Xu (2006): provide MA BFFDs based on the
Wsc f ,W1, W2, and Wcc criteria for all 32 run designs, for all 81 run designs,
and for 64 runs up to 32 attributes

• Xu and Mee (2010): provide MA BFFDs based on the W1 criterion for 128
runs and up to 64 attributes
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Comparing W1 and W2 Criteria for selecting BFFDs
to construct DCEs

• Several authors compared advantages and disadvantages of four sequences

• W1 and W2 are appropriate sequences because allow for large number of
two-factor interactions to be estimated (Cheng and Wu, 2002)

• We focus on choice between W1 and W2 - depending on whether aliased
effects or confounded effects are viewed as less desirable

– Resolution III and IV FFDs: choice between W1 and W2 depends on:

∗ whether A4,0 or A2,1 is less desirable, since both A4,0 and A2,1 pertain
to either aliasing or confounding of two- factor interactions

– Resolution V and VI FFDs: choice between W1 and W2 depends on:

∗ whether A6,0 or A3,1 is less desirable, since both A6,0 and A3,1 pertain
to either aliasing or confounding of three- factor interactions.
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Comparing W1 and W2 Criteria for selecting BFFDs
to construct DCEs.

W1 = (A3,0,A4,0,A2,1,A5,0,A6,0, . . .) vs W2 = (A3,0,A2,1,A4,0,A5,0,A3,1, . . .)

• A3,0 captures number of two-factor interactions aliased with main effects

• A2,1 captures number of two-factor interactions confounded with block
effects

• Hence, minimizing A3,0 and A2,1 maximizes number of estimable two-factor
interactions besides estimation of main effects

• Minimizing aliasing and confounding of two-factor interactions, we
maximize number of estimable two-factor interactions
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Example: Comparing W1 and W2

• DCE with eight two-level attributes

– 28−3 FFD in 23 (8 choice sets) blocks of size 28−3−3 (4 options)

– Xu and Lau (2006) two possible MA BFFDs

• Design D1: 8-3.1/B3(W1)

– Wt = (0,3,4,0,0,0) and Wb = (8,16,11, . . .)

– 8 main effects and 8 two-factor interactions are clear

• Design D2: 8-3.2/B3(W2Wsc f )

– Wt = (0,5,0,2,0,0) and Wb = (7,18,10, . . .)

– 8 main effects and 4 two-factor interactions are clear
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Comparison of two 28−3 designs in 23 blocks
Column Design D1 Design D2
1 A A
2 B B
3 AB = EG AB =CG = DH = BLOCK
4 C C
5 AC = EH AC = BG
6 BC = GH BC = AG
7 DF = BLOCK G
8 D D
9 AD = BLOCK AD = BH
10 BD BD = AH
11 CF H
12 CD CD = GH
13 BF = BLOCK
14 AF = BLOCK = BLOCK
15 F EF = DG =CH
16 E E
17 AE = BG =CH = BLOCK AE
18 BE = AG BE
19 G
20 CE = AH CE = FH = BLOCK
21 H
22 = BLOCK
23 CG = BH DF = EG = BLOCK
24 DE = BLOCK DE = FG
25 = BLOCK
26 FH = BLOCK
27 DG CF = EH
28 FG
29 DH BF
30 AF
31 EF = BLOCK F
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Example: Comparing W1 and W2

W1 = (A3,0,A4,0,A2,1,A5,0,A6,0, . . .) vs W2 = (A3,0,A2,1,A4,0,A5,0,A3,1, . . .)

• Design D1:

– W1 = (0,3,8,4, . . .) and W2 = (0,8,3,4, . . .)

– W1 criterion favors D1 smaller A4,0 (3 vs. 5)

• Design D2:

– W1 = (0,5,7,0, . . .) and W2 = (0,7,5,0, . . .)

– W2 favors D2 because it only confounds seven two-factor interactions
with blocks, A2,1 = 7 (vs. 8)

Hence, Design D1 under the MA W1 criterion may be preferred.
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Estimation Capacity

• MA criteria justified by the concept of estimation capacity

• MA criterion is a good substitute for some model-robustness criteria for
unblocked FFDs (Cheng, Steinberg and Sun, 1999)

– We extend this justification for blocked FFDs
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Estimation Capacity

• Let Ei(D) be the number of models containing all main effects and i
two-factor interactions which can be estimated by design D

(
i = 1, . . . ,

(k
2

))
– Goal: Ei(D) as large as possible

• Maximum estimation capacity if it maximizes Ei(D) for all i (Chen and
Cheng, 1999; Cheng and Mukerjee, 2001)

• 2k−p design in 2q blocks

– k main effects and 2q−1 block effects

– Estimate at most f = 2k−p− k−2q two-factor interactions so that
Ei(D) = 0 for i > f and we only consider (E1, . . . ,E f )
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Estimation Capacity: Designs S1 and S2

Design E1 E2 E3 E4 E5 E6 E7

S1 7 21 35 35 21 7 1

S2 8 26 44 41 20 4 0

• Design S1: Estimate all main effects and up to 7 two-factor interactions (as E7 = 1)

• Design S2: Estimate all main effects and at most 6 two-factor interactions (as
E7 = 0).

• S1 can estimate more models than S2 if more than 4 two-factor interactions are
important

• Whereas, S2 can estimate more models containing all main effects and up to 4
two-factor interactions than S1
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Estimation Capacity

• This shows the W1 criterion would be a better choice if the number of
possible two-factor interactions is large, while the W2 criterion would be a
better choice if that number is thought to be smaller.
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Example DCE: Snack Nutritional Ingredients

• An application was constructed using the aforementioned design to
investigate the nutritional ingredients that most influence college students
snack selection.

– An electronic survey was administered to 792 undergraduate students at
CSU Fullerton

– Each student was presented 8 choice sets with 4 options

– Six out of the 12 two-factor interactions between attributes had
significant impacts on snack choices

∗ Three interactions with sugar and three interactions with salt

– Our results provide insight into factors that influence college students
snack choices and suggest that healthiness and low sugar are the most
important factors.
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Summary

• Used ideas from BFFDs to construct various DCEs so that it is known in
advance which attribute effects and their interactions can be identified

• Further extension to MA criteria for selecting BFFDs for constructing DCEs

– Maximize number of estimable models involving two-factor interactions
by minimizing confounding or aliasing of two-factor interactions

– MA criteria choice depends on goals of the study

– Demonstrate MA designs have large estimation capacity

• Generally, our proposed designs are easy to construct and for many practical
scenarios are already available from the literature
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Discussion

• Methodology can be extended for constructing DCEs with

– Three-level symmetric attributes

– Asymmetric attributes for identification of main effects

• Potential for future work considering various models other than MNL model

• Our designs are optimal for estimating parameters in the MNL model under
the assumption that all options are equally attractive (Bush, 2014)

– Locally optimal (or D-optimal) designs

– A potential problem with this approach is that if the nominal values are
misspecified, the locally optimal design may be potentially inefficient

• Alternative design approaches: Bayesian approach, maximin approach, or
sequential approach
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Discussion

• Question: Are our locally optimal designs robust to model
misspecifications?

– Kessels et al. (2011) conducted simulations to compare 9 Bayesian
optimal designs to a locally optimal design

∗ Concluded Bayesian optimal designs appear to be more robust than
locally optimal designs
∗ However, construction of Bayesian optimal designs is computationally

intensive and becomes a very challenging task when the numbers of
attributes and choice sets are large
∗ Whereas, BFFDs are readily available and our method provides an

attractive option for practitioners to implement DCEs to ensure
identification
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Thank you for your time.
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