

Optimal model-based design, dose ranging, and population PK measures

> Sergei Leonov (ICON Innovation Center)

> > October 14, 2017

Outline

- Dose ranging studies
- Motivation: earlier study, model-based population optimal designs
- Population PK measures/metrics
- Parametric (model-based) vs empirical (nonparametric) approaches
- Splitting sampling grids

Introduction

Dose-ranging study

- A clinical trial where different doses of a drug are tested to establish which dose works best and/or is least harmful
- Usually a phase I or early phase II clinical trial
- Typically includes a placebo group of subjects, and a few groups that receive different doses of the test drug
- Main goal: estimate the response vs. dose given (analyze the efficacy and safety of the drug)
- Pharmacokinetic/pharmacodynamic (PK/PD) analysis is critical

Introduction (cont.)

- Pharmacokinetics (PK): how a body affects a drug
 - Modelling how drug amount /concentration changes over time (compartmental vs noncompartmental analyses)
- Pharmacodynamics (PD): how the drug affects the body
 - Concentration response models
 - Effect of drug concentration on clinically relevant endpoint (blood pressure, number of exacerbations)
- Early phases: dense sampling (plasma drug concentration), small number of subjects
- Later phases: population PK/PD analysis, often sparse sampling with large number of subjects

Motivation

Better sampling scheme \rightarrow better precision of parameter estimates

Models, information matrix

 $\mu(\mathbf{x}, \boldsymbol{\vartheta})$ - information matrix for observations \mathbf{Y} at sequence $\mathbf{x},$

- $\mathbf{x} = (t_1, t_2, \dots, t_k)$ sampling times, $\mathbf{Y} = [y(t_1), \dots, y(t_k)]^T$
- If n_i patients on sequence \mathbf{x}_i , $\sum_i n_i = N \implies \mathbf{M}_N(\boldsymbol{\vartheta}) = \sum_i n_i \, \boldsymbol{\mu}(\mathbf{x}_i, \boldsymbol{\vartheta}).$
- 1. <u>Standard normalization</u>: N *available resource*, ξ normalized design:

$$\mathbf{M}(\xi, \boldsymbol{\vartheta}) = \frac{\mathbf{M}_N(\boldsymbol{\vartheta})}{N} = \sum_{i=1}^n p_i \ \boldsymbol{\mu}(\mathbf{x}_i, \boldsymbol{\vartheta}), \quad \xi = \{(\mathbf{x}_i, p_i), \ p_i = \frac{n_i}{N}, \}$$

D-criterion: $|\mathbf{M}^{-1}(\xi, \boldsymbol{\vartheta})| \to \min_{\xi}, \ \mathbf{x}_{i} \in \mathcal{X}$ (design region)

Key: derive $\mu(\mathbf{x}, \boldsymbol{\vartheta})$ for population compartmental models

Models, information matrix, costs

2. Measurements at x_i associated with cost $c(x_i) = c_p + kc_s$]

$$\sum_{i} n_{i} c(\mathbf{x}_{i}) \leq \mathcal{C} \implies \mathbf{M}_{C}(\boldsymbol{\vartheta}) = \sum_{i=1}^{n} \frac{n_{i}}{\mathcal{C}} \boldsymbol{\mu}(\mathbf{x}_{i}, \boldsymbol{\vartheta}) = \sum_{i} \tilde{p}_{i} \; \tilde{\boldsymbol{\mu}}(\mathbf{x}_{i}, \boldsymbol{\vartheta}),$$

Information matrix normalized by <u>total cost C</u>,

$$\tilde{p}_i = n_i c(\mathbf{x_i}) / \mathcal{C}; \quad \tilde{\mu}(\mathbf{x_i}, \vartheta) = \mu(\mathbf{x_i}, \vartheta) / c(\mathbf{x_i}) \implies \text{same framework},$$

standard numerical algorithms

Costs/constraints in design problems: Elfving (1952); Cook, Wong (1994); Cook, Fedorov (1995, general setting)

PK/PD: Mentré et al. (1997); Fedorov et al. (2002); Fedorov, Leonov (2013, Ch. 4, 7)

Motivation (cont.)

No costs: the more samples, the better

 # of samples can be reduced (small loss of precision)

Costs introduced

- Sequences with smaller number of samples may become optimal
- Optimal design: combination of sequences (distinct sampling schemes for different cohorts)
- OD, up to 5-point sequences: **3-point** and **4-point** sequences selected

$$y_{ji} = f(x_{ji}, \theta_j) + \varepsilon_{ji}, \quad i = 1, \dots, k_j, \quad j = 1, \dots, N,$$

 x_{ji} : *i*-th sampling time for patient *j*, $x_{ji} \in [a, b]$,

 y_{ji} : measurement at time x_{ji} for patient j;

 $f(x, \theta)$: response function which depends on time x and parameters θ ,

 θ_j : parameters of patient j, $\theta_j \sim \mathcal{N}(\theta^0, \mathbf{U})$ (population distribution)

N: no. of enrolled patients; k_j : no. of sampling times for patient j,

 ε_{ji} : measurement errors $\sim \mathcal{N}(0, \sigma^2)$.

Simplest case: same sampling times for all patients: $x_{ji} \equiv x_i$, $n_j \equiv 2n$.

$$f(x, \theta) = \frac{K_a}{V(K_a - K_{el})} \left(e^{-K_{el}x} - e^{-K_ax} \right), \quad \theta = (K_a, K_{el}, V)^T,$$

Practical considerations

- Often interested in PK measures, not parameters:
 - Area under the curve (time-concentration), AUC
 - Maximal concentration, C_{max}
 - Time to maximal concentration, T_{max}
- Optimal design for PK measures: Atkinson et al. (1993)
- Regulatory agencies require non-compartmental analysis
- We compare two approaches (MSE as a metric):
 - Model-based (compartmental) as a benchmark
 - Nonparametric (non-compartmental, empirical)

$$f(x, \theta) = \frac{K_a}{V(K_a - K_{el})} (e^{-K_{el}x} - e^{-K_ax}), \quad \theta = (K_a, K_{el}, V)^T,$$

 K_a , K_{el} - absorption and elimination rate constants; V - volume of distribution; $x \in [0, 1]$ (normalized time scale),

$$AUC = \int_0^1 f(x, \theta^0) dx, \quad T_{max} = \frac{\ln(K_a/K_{el})}{K_a - K_{el}}, \quad C_{max} = \frac{1}{V} \left(\frac{K_a}{K_{el}}\right)^{-K_{el}/(K_a - K_{el})}$$

Mean vector $\boldsymbol{\theta}^0 = (46, 6, 0.1)$ (mimics data from an earlier clinical study)

Variance parameters: $\sigma = 0.5$, $\mathbf{U} = Var(\boldsymbol{\theta}) = \operatorname{diag}(s_i^2)$ with $s_i = 0.3 \ \theta_i$.

Motivation (cont.)

Hypothetical example, several options for a PK study

- Option 1: 20 patients, sequences of 6 samples for each
- Option 2: 24 patients, sequences of 5 samples for each,
- •
- 120 samples per option: which option to choose?

Key factors

- Sources of variability (population/observational)
- Costs
- μ(x, θ) individual information matrix of a k-dimensional predictor X (sequence of sampling times): how to compute it?

PODE workshops (Population Optimum Design of Experiments, 2006-2017)

Software developed/compared: Nyberg et al. (2015, Brit. J. Clin. Pharm.)

Numerics

- Optimization: in general, a difficult step
- Design region
 - o $t \in [0,T]$, continuous variable ?
 - X = { $x_1, x_2, ..., x_s$ } set of preselected times
 - $\mathcal{X} = \{\mathbf{x} = [\text{sequences of } k \text{ times from } X] \} \text{finite set}$
 - $\mu(\mathbf{x}, \theta)$ can be precomputed
 - Optimization step is easy (e.g., 1st order/Fedorov-Wynn)
- Designs with n < m support points may be non-singular
 - By design, $\mu(\mathbf{x}, \theta)$ will have rank >= 1
 - Var(ε_{ji}) may depend on $\theta \rightarrow \mu(\mathbf{x}, \theta)$ is the sum of two terms \rightarrow its rank >= 1

Technical details , OD for population PK/PD models (NLME): Fedorov, Leonov (2013, Chapter 7)

− **p**₁

p₂

Motivation (cont.)

Earlier work, candidate sequences: all possible k-point sequences from the set of 16 study sampling times $X = \{x_1, x_2, \dots, x_{16}\}$.

New example: use *s*-order splits of *X*, $N = \sum_{s} n_{s}$

- n₁ patients on x₁: use all n sampling times
- n_2 patients on \mathbf{x}_2 : times $\mathbf{x}_{21} = \{x_1, x_3, x_5, ...\}$ for $n_2/2$ patients,

 $\mathbf{x}_{22} = \{x_2, x_4, x_6, \ldots\}$ for remaining "half"

• n_3 patients on \mathbf{x}_3 : times $\mathbf{x}_{31} = \{x_1, x_4, x_7, ...\}$, first $n_3/3$ patients,

$$\mathbf{x}_{32} = \{x_2, x_5, x_8, ...\}$$
, second subgroup $(n_3/3) \leftarrow p_3$
 $\mathbf{x}_{33} = \{x_3, x_6, x_9, ...\}$, third subgroup etc.

Information matrix for s-order split: $\mu(\mathbf{x}_s, \boldsymbol{\theta}) = \sum_{k=1}^s \mu(\mathbf{x}_{sk}, \boldsymbol{\theta})/s$ 14

D-optimal designs, cost-based

Cost function
$$c(\mathbf{x}_S) = c_p + c_s n/S$$
, $c_p = 5$

Model-based/compartmental, Type I

Model-based methods start with individual parameter estimates $\hat{m{ heta}}_j$

Type I, Method M1: averaging measures

• Estimate individual measures:

$$\widehat{AUC}_j = \int_a^b f(x, \hat{\theta}_j) dx, \quad \widehat{C}_{max,j} = \max_x f(x, \hat{\theta}_j), \quad \widehat{T}_{max,j} = \arg\max_x f(x, \hat{\theta}_j).$$

• Individual measures are averaged across population:

$$\widehat{AUC}_{M1} = \sum_{j=1}^{N} w_j \ \widehat{AUC}_j, \ w_j = \frac{1}{N}, \text{ same for } \widehat{T}_{max,M1} \text{ and } \widehat{C}_{max,M1}.$$

• Metrics of interest:

$$AUC_1 = E_{\theta} \left[\int_a^b f(x, \theta) dx \right], \ T_1 = E_{\theta} \left[\arg \max_x f(x, \theta) \right], \ C_1 = E_{\theta} \left[\max_x f(x, \theta) \right].$$

Model-based/compartmental, Type II

Type II, Method M2: averaging responses

- Get "average" PK curve, $\widehat{f}_N(x) = \sum_j f(x, \hat{\theta}_j)/N$,
- Estimate PK measures for the "average" curve:

$$\widehat{AUC}_{M2} = \int_a^b \widehat{f}_N(x) dx, \ \widehat{T}_{M2} = \arg\max_x \widehat{f}_N(x), \ \widehat{C}_{M2} = \max_x \widehat{f}_N(x),$$

• Metrics of interest:

$$AUC_2 = \int_a^b \bar{f}(x)dx, \ T_2 = \arg\max_x \bar{f}(x), \ C_2 = \max_x \bar{f}(x), \ \text{with } \bar{f}(x) = E_\theta \left[f(x, \theta) \right]$$

Note that $\widehat{AUC}_{M1} = \widehat{AUC}_{M2}$, $AUC_1 = AUC_2$, but

$$\widehat{C}_{M1} \neq \widehat{C}_{M2}, \quad \widehat{T}_{M1} \neq \widehat{T}_{M2}$$

Type III, Method M3: averaging parameters

- Get average parameter values, $\hat{\theta} = \sum_{j} \hat{\theta}_{j} / N$,
- Get PK measures for $\widehat{\theta}$:

$$\widehat{AUC}_{M3} = \int_{a}^{b} f(x,\widehat{\theta}) \, dx, \ \widehat{T}_{M3} = \arg\max_{x} f(x,\widehat{\theta}), \ \widehat{C}_{M3} = \max_{x} f(x,\widehat{\theta}),$$

• Metrics of interest:

$$AUC_3 = \int_a^b f(x, E\theta) dx, \ T_3 = \arg\max_x f(x, E\theta), \ C_3 = \max_x f(x, E\theta).$$

Empirical/non-compartmental, Type I

Type I, Method E1: averaging measures

• For each patient, get empirical $\widehat{T}_{max,j}$, $\widehat{C}_{max,j}$ and \widehat{AUC}_j (numerical integration),

$$\widehat{AUC}_{j} = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} g(x, \mathbf{a}_{i}) dx \quad (g - \text{interpolant passing through } y_{j,i-1} \text{ and } y_{j,i})$$

• Average individual measures as for M1:

$$\widehat{AUC}_{E1} = \frac{1}{N} \sum_{j=1}^{N} \widehat{AUC}_{j}, \text{ same for } \widehat{T}_{max,E1} \text{ and } \widehat{C}_{max,E1}.$$

- Metrics: AUC_1 , T_1 , C_1 (for dense grids $\{x_i\}$ and large N)
- Sparse sampling: problems with method E1

Empirical/non-compartmental, Type II

Type II, Method E2: averaging responses

• Get average curve

$$\hat{f}_i = \hat{f}_{iN} = \frac{1}{N} \sum_{j=1}^N y_{ji}, \quad i = 0, \dots, n.$$

• Get empirical estimates \widehat{T}_{E2} , \widehat{C}_{E2} for "population curve" $\{\widehat{f}_i\}$, use numerical integration to estimate AUC:

$$\widehat{AUC}_{E2} = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} g(x, \mathbf{a}_i) dx \quad (g - \text{interpolant passing through } \hat{f}_{i-1} \text{ and } \hat{f}_i)$$

- Metrics: AUC_2, T_2, C_2
- Sparse sampling: E2 method of choice

Approaches: model-based vs. nonparametric

MSE as a metric

Numerical integration

(1) Trapezoidal rule:
$$I_i = \int_{x_{i-1}}^{x_i} g(x, \mathbf{a}_i) dx = \Delta x_i \frac{\hat{f}_{i-1} + \hat{f}_i}{2}$$

(2) Log-trapezoidal rule :
$$I_i = \Delta x_i \frac{\hat{f}_i - \hat{f}_{i-1}}{\log(\hat{f}_i/\hat{f}_{i-1})}$$
 (exact for exponential)

(3) Hybrid method: use (1) before T_{max} and (2) - after T_{max}

(4) Cubic splines: piecewise cubic polynomial

Comparison of population curves

Type III curve $f(x, \theta^0)$ and Type II curves $\overline{f}(x) = E_{\theta}[f(x, \theta)]$

Sampling schemes

PK studies

- Dense sampling at the left end (after administering the drug),
- Sparse sampling after T_{max}

Alternative schemes

- Take a uniform grid on the Y-axis with respect to values of response and project points on the response curve to the X-axis
- Take a uniform grid on the *Y*-axis with respect to values of *AUC*
- López-Fidalgo, Wong (2002): "inverse linear" designs

Splitting grids

- Let $\{x_i, i = 1, ..., 2n\}$ be a single grid with 2n sampling points,
- Take samples at $\{x_{2i-1}, i = 1, \dots, n\}$ for N/2 subjects
- Take samples at $\{x_{2i}, i = 1, \dots, n\}$ for the rest half
- Empirical estimate of AUC, method E2: average responses in two series (half-cohorts) separately, then combine two series and get AUC_{E2}.

Total number of samples is reduced by half

Type II measure: AUC

Start with averaging responses at each x_i

Type II measures: C_{max}

AUC₂: closed-form solution for MSE

- Response 2nd order polynomial: $f(x, \theta) = \theta_0 + \theta_1 x + \theta_2 x^2$,
- Population variability: intercept only, $Var(\theta_{0j}) = s^2$,

No costs: - single grid (2n samples/patient) will always be "better" - how much "better": depends on values of f'', σ^2 and s^2

Cost-based designs

- c_s cost of analyzing a sample, c_p cost of patient enrollment,
- C_{total} budget (resource)
- Overall cost, single grid: $2n N c_s + N c_p \leq C_{total}$, (C1)
- Overall cost, split grid: $n N c_s + N c_p \leq C_{total}$. (C2)

Thus, values of n and N are not independent! Given C_{total} ,

- for a given N, find maximal $n = n(N, C_{total})$ satisfying (C1) or (C2),
- fix n, then find maximal $N = N(n, C_{total})$ satisfying (C1) or (C2)

MSE as function of N (left) or n (right)

Parameters: $c_s = 100, c_p = 500, C_{total} = 50000, s = 2.4, \sigma = 9, f'' = 100$

Concluding remarks

- Population PK measures, model-based vs nonparametric: more precise estimation with model-based (*often not by much*)
- No. of samples can be reduced without significant loss of efficiency
 - Design optimality criteria for parameter estimation
 - MSE for nonparametric approach
- Cost-based designs: sampling schemes with smaller number of samples may become optimal
- Alternative types of split grids:
 - Cohort 1: more samples immediately after administering the drug,
 Cohort 2: more samples in the elimination phase (may reduce study costs)
- Population vs. measurement components of variability
- Software tools available to compare designs and find OD

References

- Atkinson. A.C., Chaloner, K., Herzberg, A.M., Juritz, J. (1993). Optimal experimental designs for properties of a compartmental model, *Biometrics*, **49**, 325-337.
- Cook, R.D., Fedorov, V.V. (1995). Constrained optimization of experimental design, *Statistics*, **26**, 129-178.
- Cook, R.D., Wong, W.K. (1994). On the equivalence of constrained and compound optimal designs. *J. Am. Stat. Assoc.*, **89**(426), 687–692.
- Elfving, G. (1952). Optimum allocation in linear regression theory. *Ann. Math. Stat.*, **23**, 255-262.
- Fedorov, V., Gagnon, R., Leonov, S. (2002). Design of experiments with unknown parameters in variance. *Appl. Stoch. Mod. Bus. Ind.*, **18** (3), 207-218.
- Fedorov, V.V., Hackl, P. (1997). *Model-Oriented Design of Experiments*. Springer, New York.
- Fedorov, V.V, Leonov, S.L. (2013). *Optimal Design for Nonlinear Response Models*. Chapman & Hall/CRC Biostatistics Series, Boca Raton, FL.
- Gagnon, R., Leonov, S. (2005). Optimal population designs for PK models with serial sampling. J. Biopharm. Stat., **15** (1), 143-163.
- López-Fidalgo, J., Wong, W.K. (2002). Design issues for Michaelis-Menten model. *J. Theor. Biol.*, **215**, 1-11.
- Mentré, F., Mallet, A., Baccar, D. (1997). Optimal design in random-effects regression models, *Biometrika*, **84** (2), 429-442.
- Nyberg, J., Bazzoli, C., Ogungbenro, K., Aliev, A., Leonov, S., Duffull, S., Hooker, A., Mentré, F. (2015). Methods and software tools for design evaluation in population pharmacokineticspharmacodynamics. *Brit. J.Clin. Pharm.*, **79** (1), 6-17.

Questions: Sergei.Leonov@iconplc.com