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• Dose ranging studies 
• Motivation: earlier study, model-based population 

optimal designs 
• Population PK measures/metrics 
• Parametric (model-based) vs empirical (nonparametric) 

approaches 
• Splitting sampling grids  
 

Outline 



3 

Dose-ranging study  
• A clinical trial where different doses of a drug are tested to establish 

which dose works best and/or is least harmful 
• Usually a phase I or early phase II clinical trial  
• Typically includes a placebo group of subjects, and a few groups 

that receive different doses of the test drug 
• Main goal: estimate the response vs. dose given (analyze the 

efficacy and safety of the drug) 
• Pharmacokinetic/pharmacodynamic (PK/PD) analysis is critical  

Introduction 
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• Pharmacokinetics (PK): how a body affects a drug 
o Modelling how drug amount /concentration changes over time 

(compartmental vs noncompartmental analyses) 
• Pharmacodynamics (PD): how the drug affects the body   

o Concentration – response models 
o Effect of drug concentration on clinically relevant endpoint 

(blood pressure, number of exacerbations ) 
• Early phases:  dense sampling (plasma drug concentration), 

small number of subjects 
• Later phases: population PK/PD analysis, often sparse 

sampling with large number of subjects 

Introduction  (cont.) 
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Motivation 

Gagnon, Leonov (2005)  
• Rich sampling 
 
Questions 
• How many samples to 

take? 
• At which times? 
 

Better sampling scheme  →  better precision of parameter estimates 
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Models, information matrix 
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Models, information matrix, costs 

Costs/constraints in design problems: Elfving (1952); Cook, Wong (1994); 
 Cook, Fedorov (1995, general setting)  
 
PK/PD:  Mentré et al. (1997); Fedorov et al. (2002); 
 Fedorov, Leonov (2013, Ch. 4, 7)  
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Motivation (cont.) 

No costs: the more samples, the 
better 
• # of samples can be reduced 

(small loss of precision) 
Costs introduced 
• Sequences with smaller number 

of samples may become optimal 
• Optimal design: combination of 

sequences (distinct sampling 
schemes for different cohorts) 

• OD, up to 5-point sequences:   
3-point and 4-point sequences 
selected 
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Background: population model 
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• Often interested in PK measures, not parameters: 
– Area under the curve (time-concentration), AUC 

– Maximal concentration, Cmax 

– Time to maximal concentration, Tmax 

• Optimal design for PK measures: Atkinson et al. (1993) 

• Regulatory agencies require non-compartmental analysis 

• We compare two approaches (MSE as a metric): 
– Model-based (compartmental) as a benchmark 

– Nonparametric  (non-compartmental, empirical) 
 

 

Practical considerations 
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Example: one-compartment model 
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Motivation (cont.) 

Hypothetical example, several  options for a PK study 
• Option 1: 20 patients, sequences of 6 samples for each 
• Option 2: 24 patients, sequences of 5 samples for each,  
• ………… 
• 120 samples per option: which option to choose? 
 
Key factors 
• Sources of variability (population/observational) 
• Costs 
• µ(x,θ) – individual information matrix of a k-dimensional predictor  x  

(sequence of sampling times): how to compute it? 
 

PODE workshops (Population Optimum Design of Experiments, 2006-2017) 
 
Software developed/compared: Nyberg et al. (2015, Brit. J. Clin. Pharm.) 
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Numerics 

• Optimization: in general, a difficult step 
• Design region 

o t      [0,T], continuous variable - ?  
o X   = {x1, x2, …, xs} – set of preselected times 
      = { x = [sequences of k  times from  X] } – finite set 
 µ(x,θ) can be precomputed  
 Optimization step is easy (e.g., 1st order/Fedorov-Wynn) 

 
• Designs with n < m support points may be non-singular  

o By design, µ(x,θ) will have rank >= 1 
o Var(εji ) may depend on θ  → µ(x,θ) is the sum of two terms  →         

its rank >= 1 
 

Technical details , OD for population PK/PD models (NLME):  
 Fedorov, Leonov (2013, Chapter 7) 
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Motivation (cont.) 

p1 

p2 

p3 
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D-optimal designs, cost-based 
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Model-based/compartmental, Type I 
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Model-based/compartmental, Type II 
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Model-based/compartmental, Type III 
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Empirical/non-compartmental, Type I 
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Empirical/non-compartmental, Type II 
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Approaches: model-based vs. nonparametric 

MSE as a metric 
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Numerical integration 
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Comparison of population curves 
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PK studies 
• Dense sampling at the left end (after administering the drug), 
• Sparse sampling  after Tmax 

Alternative schemes 
• Take a uniform grid on the Y-axis with respect to values of response 

and project points on the response curve to the X-axis 
• Take a uniform grid on the Y-axis with respect to values of  AUC 
• López-Fidalgo, Wong (2002): “inverse linear” designs 

 
  
 

 

Sampling schemes 
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Sampling schemes  (cont.) 
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Splitting grids 
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Type II measure: AUC 
Start with averaging responses at each xi 

Single grid Split grid 
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Type II measures: Cmax 

Single grid Split grid 
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AUC2:  closed-form solution for MSE 
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Cost-based designs 
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MSE as function of N (left) or n (right) 



32 

Concluding remarks 

• Population PK measures, model-based vs nonparametric:              
more precise estimation  with model-based  (often not by much) 

• No. of samples can be reduced without significant loss of efficiency 
– Design optimality criteria for parameter estimation 
– MSE for nonparametric approach 

• Cost-based designs: sampling schemes with smaller number of 
samples may become optimal 

• Alternative types of split grids: 
– Cohort 1: more samples immediately after administering the drug, 

Cohort 2: more samples in the elimination phase (may reduce study costs) 
• Population vs. measurement components of variability 
• Software tools available to compare designs and find OD 
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