DAE 2017 | CON,

A Symbol of Excellence

Optimal model-based design,
dose ranging, and
population PK measures

Sergei Leonov
(ICON Innovation Center)

October 14, 2017




Outline

e Dose ranging studies

 Motivation: earlier study, model-based population
optimal designs

e Population PK measures/metrics

e Parametric (model-based) vs empirical (nonparametric)
approaches

e Splitting sampling grids



Introduction

Dose-ranging study

A clinical trial where different doses of a drug are tested to establish
which dose works best and/or is least harmful

Usually a phase | or early phase Il clinical trial

Typically includes a placebo group of subjects, and a few groups
that receive different doses of the test drug

Main goal: estimate the response vs. dose given (analyze the
efficacy and safety of the drug)

Pharmacokinetic/pharmacodynamic (PK/PD) analysis is critical
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Pharmacokinetics (PK): how a body affects a drug

O Modelling how drug amount /concentration changes over time
(compartmental vs noncompartmental analyses)

Pharmacodynamics (PD): how the drug affects the body

O Concentration — response models

O Effect of drug concentration on clinically relevant endpoint
(blood pressure, number of exacerbations )

Early phases: dense sampling (plasma drug concentration),
small number of subjects

Later phases: population PK/PD analysis, often sparse
sampling with large number of subjects
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Motivation

{ qi(z,y) = (hi’?‘l‘hl{] qi(z,v) + Koiga(x,7),
go(z,v) = Kpq(z,7) — Kojga(z, 7).
Loading dose 0.45, repeated 0.10 mg'kg, every 24 hours
4000 . . ; .
Sampling times from the study — 16 points: Gagr.]on’ Leon.OV (2005)

=00y 5,15, 30, 45min; 1, 2, 3, 4,5, 6,12, 24, 3, 48, 72, 1440 1 ® Rich sampling
e | | Questions

' 2—compartment model with multiple i.v. bolus and loading dose

e How many samples to
= 2500} .

\ take?
ool \ '"‘\ \ \ | ¢ At which times?

NN \ \

1500
1000 f(x.8) — sum of exponential functions i H'“"H-.____ _
500 ——t ' ' ' ' '

6 12 24 36 48 72 144

Time

Better sampling scheme - better precision of parameter estimates



Models, information matrix e

[1(xX, ) - information matrix for observations Y at sequence X,

X = (t1,t9,....t;) - sampling times, Y = [y(t1), ..., y(tp)]"
If n; patients on sequence x;, > . n, =N = Mn(9) =D . n; u(x;, ).

1. Standard normalization: N - available resource, & - normalized design:

h“']:"n,, n; .
MI(E, 19 i 1 v : - 12 Hi)s Hi — 373
(€, Zp (xi,9), €={(xi.p). Pi=% }
D-criterion: |I\/I_1(£? J)| — Hl(ill, xX; € X (design region)

|

Key: derive ju(x, ) for population compartmental models
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Models, information matrix, costs

2. Measurements at x; associated with cost c(x;)  [e(xi) = ¢, + ke

TL; - -
D _mexi) < C = Mc(d) =) & puxi.9) =) pifxi9),

i i=1

Information matrix normalized by total cost C,

pi = ne(x;)/C; p(x3,9) = p(x3,9)/c(x;) = same framework,

standard numerical algorithms

Costs/constraints in design problems: Elfving (1952); Cook, Wong (1994);
Cook, Fedorov (1995, general setting)

PK/PD: Mentré et al. (1997); Fedorov et al. (2002);
Fedorov, Leonov (2013, Ch. 4, 7)
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3000

2000

1000

500

Loading dose 0.45, repeated 0.10 mg'kg. every 24 hours

I \ \ \
4N \\ N

0.76 — triple (0.083.36, 144)

|:| i

0.023 12 24 36 48 72

No costs: the more samples, the

better

e # of samples can be reduced
(small loss of precision)

Costs introduced

e Sequences with smaller number
of samples may become optimal

e Optimal design: combination of

sequences (distinct sampling
schemes for different cohorts)

* OD, up to 5-point sequences:

3-point and 4-point sequences
selected
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Yi = flz;,0;) + €5, i=1,...,k;;, j=1,...,N,
xj;: i-th sampling time for patient j, z;; € [a,}],
y;i: measurement at time x;; for patient j;
f(x,8): response function which depends on time x and parameters 6,
0,: parameters of patient j, 8, ~ N(8",U) (population distribution)
N: no. of enrolled patients;  kj: no. of sampling times for patient 7,

£ji: measurement errors ~ N(0, 02).

Simplest case: same sampling times for all patients: z;; = z;, n; = 2n.

K,

1.9 = v/ ko

(E_Hfff’r — E_HHI) 5 0 = (I{m Kﬁi’t V)T
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Practical considerations

Often interested in PK measures, not parameters:
— Area under the curve (time-concentration), AUC
— Maximal concentration, C

— Time to maximal concentration, 7,
Optimal design for PK measures: Atkinson et al. (1993)
Regulatory agencies require non-compartmental analysis
We compare two approaches (MSE as a metric):

— Model-based (compartmental) as a benchmark

— Nonparametric (non-compartmental, empirical)

10
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Example: one-compartment model

Kq —K —K - g T
r.0) = TRt _emRet) 9 = (K, K. V).
/. 6) V(K, — Ke) S E ) o)

K., K, - absorption and elimination rate constants;

V' - volume of distribution; = € [0, 1] (normalized time scale),

IH(KFR/KCE) c _ i ( K"ﬂ ) —Ko/(Ka—Ka)
maxr K,_EE

1
AUC = BNdr, T, = , i
ﬁ f(z,8)dz, oy -

Mean vector 8° = (46._ 6. Ul) (mimics data from an earlier clinical study)

Variance parameters: 0 = 0.5, U = Var(0) = diag(s?) with s; = 0.3 6;.

11
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Motivation (cont.)

Hypothetical example, several options for a PK study
e Option 1: 20 patients, sequences of 6 samples for each
e Option 2: 24 patients, sequences of 5 samples for each,

e 120 samples per option: which option to choose?

Key factors

e Sources of variability (population/observational)

* Costs

e u(x,0)—individual information matrix of a k-dimensional predictor X
(sequence of sampling times): how to compute it?

PODE workshops (Population Optimum Design of Experiments, 2006-2017)

Software developed/compared: Nyberg et al. (2015, Brit. J. Clin. Pharm.)

12
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Numerics

e Optimization: in general, a difficult step
* Design region
O t € [O,T], continuous variable - ?
0 X ={Xy, X,, ..., X} — set of preselected times
= X ={x=[sequences of k times from X] } — finite set

" u(x,0) can be precomputed
= Optimization step is easy (e.g., 1°t order/Fedorov-Wynn)

e Designs with n < m support points may be non-singular
0 By design, u(x,0) will have rank >=1
O Var(e;;) may depend on @ — p(x,0) is the sum of two terms —
itsrank >=1

Technical details , OD for population PK/PD models (NLME):
Fedorov, Leonov (2013, Chapter 7)

13
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Motivation (cont.)

Earlier work, candidate sequences: all possible k-point sequences from the

set of 16 study sampling times X = {z1,x9,..., 715}
New example: use s-order splits of X, N =) _n;

e 1q patients on x1: use all n sampling times <~—p

e 715 patients on Xo: times Xo; = {1, x3, T3, ...} for ng/2 patients, o,

X99 = {9, T4, Xg, ...} for remaining " half"

e 13 patients on x3: times X3, = {x1, x4, 27, ...}, first ng/3 patients,
X39 = {9, T35, T3, ...}, second subgroup (n3/3) < p,

X33 = {3, T, To, ...}, third subgroup etc.

Information matrix for s-order split: p(xs,0) = >, p(Xsk,0)/s 14



D-optimal designs, cost-based
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Cost function ¢(xg) = ¢, +en/S . ¢, =5

Response  f(x.8)

Mean response and candidate sampling times

Optimal designs

A 02 AL AALBLLAAL A & B 4

15
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Model-based/compartmental, Type |

Model-based methods start with individual parameter estimates 6

Type |, Method M1: averaging measures

e Estimate individual measures:

b
AUC,; = / f(a:,fjj)d;r, Crazj = ma:x:f(m 62) Taz,j = arg max f(z, 6?})

e Individual measures are averaged across population:

N

e —— i 1 . e

AUC )y = E w; AUC, wj = N same for Tharar1t and Chazart.
j=1 )

e Metrics of interest:

AUC, = E, [ I f(x, H)d:c] . Ty = E, [arg max, f(z,0)], C; = By [max, f(z,8)].

16
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Model-based/compartmental, Type I

Type lI, Method M2: averaging responses

e Get “average” PK curve, fw,(:t,) = f(r. éj)/N,
e Estimate PK measures for the “average’ curve:
b
AUC g = / fx(x)dr, Tyry = argmax fy(z), Cyrz = max fy(z),

e Metrics of interest:

AUC, = /b f(z)dz, Ty = arg max f(z), Cy = max f(x), with f(z) = Ep[f(x,0)]

Note that ;ﬁ@ﬂﬂ — Aﬁ?ﬂggt AUCT = AU(C%, but

Cat # Cuz, T # T

17
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Model-based/compartmental, Type Il

Type lll, Method M3: averaging parameters
o Get average parameter values, 6 = D %/N,

e Get PK measures for 6

b
AUC ya = / f(x,0) dx, Tys = argmax f(x,0), Cys = ma}{f(.rﬂ)

e Metrics of interest:

b
AUCy = f f(x, E@)dzx, T3 = arg maxf(scEﬂ) ('3 = max f(z, EO).

18
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Empirical/non-compartmental, Type |

Type |, Method E1: averaging measures

P

e For each patient, get empirical T},02 5. Chazj and AUC; (numerical

integration),
n T,
AUC; = Z/ gz, a;)d:t: (g — interpolant passing through ¥ji—1 and ¥;)
- T; 1

e Average individual measures as for M1:

N
]_ e . .
AUC = TZAUCT same for Tyaw 1 and Chuas 1.

e Metrics: AUCY, Ty, C (for dense grids {x;} and large V)

e Sparse sampling: problems with method E1 9
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Empirical/non-compartmental, Type Il

Type ll, Method E2:  averaging responses

o Get average curve

N
.t £ 1 .
fi = fin = N ; Yji, 1 =0,...,n.

e Get empirical estimates 1o, Cpo for “population curve” { f;},

use numerical integration to estimate AUC"

n ;
AUC gy = Z/ g(x,a;)dr (g — interpolant passing through f; 1 and f;)
i=1 v i1

o Metrics: AUCs. 15, Cy

e Sparse sampling: E2 - method of choice
20
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Approaches: model-based vs. nonparametric

MSE as a metric

Parametric Nonparametric
approach, M2 approach, E2
l !

Background model

Known f{m_'.f'ij 81‘} = f{ﬁ, Hj- 0 ~ N{ﬁ'ﬂ, U}l == Unknown f{.’.lfjia_ 8«;)
4 4

P o — |
a1 =i
4 4

{yﬁ} {yjt'}

4 4
~ Estimates _ Estimates

fﬂr(ﬁ?), = [ﬂ,b] fiv, 2=0,1,...,n

4 J
AUC 0 = I fﬂw.{.r}d.r AUCpy =% w,;fi-{:,r — ¥ w;Ey[f(x;, 0)]
N—o0

| |

converges as N — oo converges as max; Ar; — ()

N\ /

[AUC, = AUC, = ' By [f(,0)dx] | -
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Numerical integration

(1) Trapezoidal rule: I; :/ .' g, a;)da = Ax; fi-1+ [
Ti—1

(2) Log-trapezoidal rule: I, = Ax; /i _ fi—l
log(f;/ fi-1)

(exact for exponential)

(3) Hybrid method: use (1) before 7,4, and (2) - after T},4s

(4) Cubic splines: piecewise cubic polynomial

22



Comparison of population curves
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Type Ill curve f(z,0") and Type Il curves f(z) = Ey[f(z, 8)]

Population curves

f(x.8%)
E[f(x.0)], CV=15%

E,[f(x,8)], CV=30%

E [f(x,0)], CV=50% |

23
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Sampling schemes

PK studies
e Dense sampling at the left end (after administering the drug),

* Sparse sampling after 7,

Alternative schemes

e Take a uniform grid on the Y-axis with respect to values of response
and project points on the response curve to the X-axis

e Take a uniform grid on the Y-axis with respect to values of AUC

e Lodpez-Fidalgo, Wong (2002): “inverse linear” designs

24
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Sampling schemes (cont.)

Uniform grid wrt AUC

Response
- = —AUCx42
0.3

0.6

ﬂul ...................................
.,,.#._, ||||||||||||||||||||||||||||||||||| !
g..l.f
.#.,..D.. -M
< —g
1.?1&.......?1.. -
P _ “ H% w_[%%l_*lrﬂ
(o} ™ - (=)

1] L =+
Ny pajeas pue U asuodsay

Time

25
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Splitting grids

o Let {z;, i=1,...,2n} be a single grid with 2n sampling points,
e Take samples at {z9; 1, i=1,...,n} for N/2 subjects
e Take samples at {x9;, i =1,...,n} for the rest half

e Empirical estimate of AUC', method E2: average responses in two series

(half-cohorts) separately, then combine two series and get AUCp».

Total number of samples is reduced by half

26
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Type Il measure: AUC

Start with averaging responses at each Xx;

Snge gid UG rodet, s 0001, i 021, SqHNSE) 0210 Spitgid AUCZ) ode s D02 i 021, ytSE) 0212

1% T T T T T T T 10

12 14 15 18 2 a U 25

Myt

1%

Single grid Split grid 2!



| CON

A Symbol of Excellence

Type Il measures: C,_ .

Single rd le[Eias 0017, std 0512, sqrfMSE) 052 Spt gi r:m[z] bias -0.004, td 0511, sqrMSE) 0511

B 1 %
13 LS
55 E E.E_ . i i5 ] g5 ‘I'“ : Elé i £5 i 15 ] Elé i
Eiﬁb]’niéar E@g_q :p} st 0514, sqrMSE) 0515 jh’p’[n‘i:a@td 0607, sar{MSE) 0.715

E L i L) L
( Spines i 0.054 5 0515, sqtNSE) 0518

B

B 1 %
T 1 T
| E |
ik ! i h5
Cmay Cmax

0 0

Single grid Split grid 28
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AUC,: closed-form solution for MSE

e Response - 2nd order polynomial: f(z,8) = 6y + 6,z + 6,22,

e Population variability: intercept only, Var(ty;) = s2,
Single grid: Biasy) Var 1)
i)
(&0 177 o2 s
MSFE,, = = —
. [ 12 4n? Nn w’

~

1 | /

C[f@e) 1) o2 &
MSE, = [ _ t W i,

No costs: - single grid (2n samples/patient) will always be “better”

- how much “better”: depends on values of f”, o2 and s?
29
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Cost-based designs

e ¢, - cost of analyzing a sample, ¢, - cost of patient enrollment,
e (.01 - budget (resource)
e Overall cost, single grid:  2n N ¢ + N¢, < Cipar, (C1)

e Overall cost, split grid: nNc + Ne, < Cia. (C2)

Thus, values of n and N are not independent! Given C} a1,
e for a given IV, find maximal n = n(N, C},.1) satisfying (C1) or (C2),

e fix n, then find maximal N = N(n, Cj,.) satisfying (C1) or (C2)

30



MSE as function of N (left) or n (right)
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MSE vs patients MSE vs no. of samples

T T T T T T
Single grid
— — — Split grid
045+ . 045+ _
<
!
i
4
i
/
| ]
w)
= 043 ;" .
£
Fi
+
-+
gt
041 : : 1 041} -
25 a0 35 40 4 6 a 10 12 14

Patients (N) No. of samples (n)

Parameters: ¢, = 100, cp = 500, Ciotar = 50000, s =24, 0 =9, f" =100

31



Concluding remarks

e Population PK measures, model-based vs nonparametric:
more precise estimation with model-based (often not by much)

 No. of samples can be reduced without significant loss of efficiency
— Design optimality criteria for parameter estimation
— MSE for nonparametric approach

e Cost-based designs: sampling schemes with smaller number of
samples may become optimal

e Alternative types of split grids:

— Cohort 1: more samples immediately after administering the drug,
Cohort 2: more samples in the elimination phase (may reduce study costs)

e Population vs. measurement components of variability
e Software tools available to compare designs and find OD

32
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Questions:
Sergei.Leonov@iconplc.com
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