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Introduction

•A motivating example is the odor removal study conducted by textile engineers at the UGA.

• Scientists are interested in removing odor causing volatiles from bio-plastics.

Factor types and levels for the bio-plastics odor removal experiment

Type Factor Levels− +

Discrete

Algae Catfish algae Solix Microalgae

Scavenger Activated Carbon Zeolite

Resin Polyethylene Polypropylene

Compatibilizer Absent Present

Continuous Temperature Temperature from 5◦C to 35◦C

• The response Y is binary, denoting whether the odor is successfully removed from the bio-plastic.

•We model µ, the mean response of Y , as

logit(µ) = β0 + β1Algae + β2Scavenger + β3Resin + β4Compatibilizer + β5Temp

but we also allow generalizations of this model to various link functions, more mixed factors, inclu-

ding interaction terms.

Optimal Designs for Generalized Linear Models

•Unlike linear models, the information matrix for GLMs depend on the unknown parameters. This

makes the problem of identifying optimal designs for GLMs challenging, especially when there are

both continuous and discrete (i.e. mixed) factors and there number of factors is large.

•Our goal is to construct locally optimal designs (Chernoff, 1953) and Bayesian optimal designs

(Chaloner & Verninelli, 1995) for mixed models with many factors. Bayesian optimal designs in-

corporate a prior distribution on the unknown parameters, whereas local optimal design permits

only a degenerate distribution.

Quantum Particle Swarm Optimization

• d-QPSO is a variant of Quantum-Behaved Particle Swarm Optimization (QPSO) (Sun et. al, 2004).

Unlike PSO, in QPSO the particles do not have velocities.

• In QPSO a collection of particles, known as a swarm, searches for the optimal solution to the

problem of interest.

• The worth of a particle is measured by its fitness: the value of the objective function at its current

position.

• Each member of the swarm has its own idea of where the best solution is based on the solutions

that particle has seen. This position is known as the personal best or pbest.

•Additionally, each member of the swarm knows where the overall best solution any particle has

seen is, a position known as the global best or gbest.

•At each iteration the particle positions are updated via random draws, with positions that are

near to known good solutions (high pbest, gbest) being more likely to be drawn (Sun et. al,

2006). This applies to both discrete and continuous factor positions, allowing us to optimize both

simultaneously.

• For design problems, each particle corresponds to a candidate experimental design, and a particle’s

fitness is the log determinant of the Fisher information matrix for that experimental design.

• By searching the settings for the discrete

and continuous factors, d-QPSO can find

designs with an arbitrary number of sup-

port points.

•We allow multiple swarms to search at once,

which can randomly share their knowledge

about the best design with each other via

an elitist breeding mutator.

ξi =

X1 X2 P

xi,11 xi,12 pi,1
xi,21 xi,22 pi,2
xi,31 xi,32 pi,3
xi,41 xi,42 pi,4

vectorize−−−−−→




xi,11
xi,12
pi,1
xi,21

...
pi,4




=




ψi,1

ψi,2

ψi,3

ψi,4
...

ψi,4(2+1)=12




= ψi.

Figure 1: Illustration of converting a design ξi to a particle ψi.
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Figure 2: Steps in the Elitist Breeding mutator. At the swarm level the

possible breeding particles are the particles within the same swarm,

whereas at the habitat level the possible breeding partners are the

other particles within the same swarm or from another randomly

selected swarm.
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Figure 3: Steps in the QPSO update for generating locally D-optimal

approximate designs. The swarm update is applied to each swarm

individually, and the habitat update is performed on all swarms.

Locally D-optimal Approximate Designs

d-QPSO algorithm-generated locally D-optimal design for the odor removal experiment − Nominal

value:s β = (−1, 2, 0.5,−1,−0.25, 0.13)T

Support

point
Alg. Sca. Res. Com. Temp. pi(%)

1 −1 −1 −1 −1 9.040 3.70

2 −1 −1 −1 −1 25.788 4.30

3 −1 −1 −1 1 29.710 10.17

4 −1 −1 1 −1 35.000 4.73

5 −1 −1 1 1 29.579 11.59

6 −1 1 −1 −1 5.000 9.80

7 −1 1 −1 1 5.206 7.86

Support

point
Alg. Sca. Res. Com. Temp. pi(%)

8 −1 1 1 −1 16.894 2.20

9 −1 1 1 −1 33.366 8.80

10 −1 1 1 1 35.000 6.10

11 1 −1 −1 1 5.000 5.11

12 1 −1 1 −1 5.000 10.75

13 1 −1 1 1 5.000 5.23

14 1 1 1 1 5.000 9.71

Bayesian D-optimal Designs

Bayesian design for the odor removal experiment using independent uniform priors for all parame-

ters. We took β0 ∼ U(−2, 0), β1 ∼ U(0, 4), β2 ∼ U(0, 1), β3 ∼ U(−2, 0), β4 ∼ (−.5, 0), and

β5 ∼ U(0, 0.26).

Support

point
Alg. Sca. Res. Com. Temp. pi(%)

1 −1 −1 −1 −1 5.000 8.50

2 −1 −1 −1 −1 34.911 3.87

3 −1 −1 −1 1 28.818 6.60

4 −1 −1 1 −1 31.261 10.10

5 −1 1 −1 −1 5.000 7.60

6 −1 1 −1 −1 21.550 3.15

7 −1 1 −1 1 5.000 8.18

Support

point
Alg. Sca. Res. Com. Temp. pi(%)

8 −1 1 1 1 14.674 5.00

9 −1 1 1 1 34.980 9.49

10 1 −1 −1 1 5.000 9.80

11 1 −1 1 −1 5.000 4.70

12 1 −1 1 1 5.000 9.92

13 1 1 1 −1 5.000 10.79

14 1 1 1 1 5.000 2.30

Designs when Theoretical Results Are Not Available

•Yang et al. (2011) developed a complete class approach to finding optimal designs under GLMs that

can be applied when all factors are continuous. A disadvantage of this approach is that it requires

one factor to be unbounded, while in practice all factors are bounded due to physical constraints.

• Consider the design problem given in Stufken and Yang (2012), where all three factors are con-

tinuous with x1 ∈ [−2, 2], x2 ∈ [−1, 1], and x3 ∈ (−∞,∞). We consider the nominal values:

β = (1,−0.5, 0.5, 1)T and main-effects logit model.

Design by Yang et al. (2011) - unrestricted design space

X1 X2 X3 pi
−2 −1 −0.456 0.125

−2 −1 −2.544 0.125

−2 1 −1.456 0.125

−2 1 −3.544 0.125

X1 X2 X3 pi
2 −1 1.544 0.125

2 −1 −0.544 0.125

2 1 0.544 0.125

2 1 −1.544 0.125

d-QPSO algorithm-generated locally

D-optimal design with a sufficiently

large design space

X1 X2 X3 pi
−2 −1 −2.544 0.25

−2 1 −1.457 0.25

2 −1 1.544 0.25

2 1 −1.544 0.25

Design found by the d-QPSO algorithm when the third

factor was constrained further to [−2, 2]

X1 X2 X3 pi
−2 −1 −2.000 0.212

−2 1 −1.727 0.208

2 −1 −0.743 0.076

2 −1 1.757 0.215

2 1 −1.750 0.214

2 1 0.71 0.075

Conclusions

• In this work we proposed a novel and flexible d-QPSO algorithm to find several types of D-optimal

designs for GLMs with both discrete and continuous factors and a binary response.

•We applied the d-QPSO algorithm to find a locally D-optimal design for an additive model, for an

experiment with as many as ten factors. The resulting design has 12 support points.

• The d-QPSO algorithm can generate locally D-optimal designs with the same or fewer or more

support points than many other algorithms. Having fewer support points can be desirable due to

cost issues. Having more support points can be an advantage to perform a lack of fit test.

• These particle swarm type algorithms are applicable to a wide range of problems; we have had

success applying them to design of experiments with ordered categorical, Poisson, and gamma

responses.
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