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• Standard Steps for Optimal Design

• Review of Enrollment, randomization and clinical trials with time to event 

endpoints

• Model, information matrix, 

• Optimization problems

• Examples

Overview
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Additionally to observational uncertainties generated by 

randomness of treatment outcomes, observational errors or by 

variability between units/subjects that are typical in the traditional 

clinical trials we face uncertainties caused by enrollment process 

that often can be viewed as a stochastic processes. The latter 

makes the amount of information that can be gained during 

experimentation uncertain at the design stage. To address the 

problem we modify the concept of “optimal design” and develop 

methods that guarantee that the information metrics either will be 

greater than a predefined levels with the smallest probability or the 

average information will be maximized. We illustrate the approach 

using proportional hazard models with censored observations and 

enrollment described by the Poisson process.

Abstract
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• Model:                                                              ,

• Elemental IM:

• IM of a single observation:

• Information matrix:

Standard steps in optimal design
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• Design and controls:                                 ,

• Normalized IM:    

• Criteria of optimality:      Convex, homogeneous, monotonous functional

• Optimization problem:

• Sample size evaluation: 

• Missing:                               Quantitative analysis of operational costs

Standard steps in optimal design II



5

Enrollment, randomization and design of clinical 

studies with “time-to-event” end points 
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Setting the clinical trial design problem

When a study is completed we know:

• Number of subjects    assigned to dose    and all times  these values are completely defined by 

and enrollment process and randomization rule.

• The outcomes                      , where 

in ix ijt
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Typical enrollment curves
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Enrollment

   

   

We assume that enrollment follows a Poisson process

 with intensity . Total enrollment is Poisson 

distributed with parameter   

•On arrival subjects are randomized across 

 doses with p{ } ri
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•Enrollment stops :

      At the pre-fixed time

      Required number of subjects are enrolled

      Needed number of events have occurred

      Hybr
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• Distribution function:

• Survival function:

• Hazard function:

• Integrated hazard:      

Notations 
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• Outcomes at xi - s:

,

• Model:

• Log-likelihood: 

Observations and Model

   
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,
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ij ij ijy  

1 if  and 
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  


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• Elemental FIM:

or

• FIM of a single observation:

• Total FIM:

Only known after enrollment completion

Fisher Information Matrix
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Elemental information matrices



13

• Derivation of normalized FIM:    

• Selection of criteria of optimality (convex, homogeneous, monotonous 

functional):

• Solution of the optimization problem:

where                                    and 

• Sample size evaluation: 

Standard steps in optimal design 
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• Coloring Theorem

• Campbell’s Theorem (sums over Poisson processes)

and

Two useful results

Kingman, J.F.C. (1993). Poisson Processes, Oxford Science Publications, New York. 



15

Let and pi be randomization 

rates , then

and

where                                                                                            and 

Expected FIM of a single observation 
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• Expected FIM:

• Normalized expected FIM:

• Design problem given              (almost nothing new): 

• Next step (challenging even for homogeneous enrollment, λ(t)=const):

Design optimization
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• Model:

• Elemental FIM:

• For homogeneous Poisson enrollment process:

• If                        , i.e.                               ,  then

,  ,  

Proportional hazard family
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Most of cases are similar to classical Optimal Design

• Elemental FIM for a constant hazard /exponential model

• Stopping by n● (constant cumulative enrollment rate):  

1 2

1 2

6 months

12 months

left: 0, 0.33

right: 0, 2.15,

which corresponds to 

HR=0.1

e
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 

 





  

  
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Case Studies: distributions vs expectations

Left Scenario Right Scenario

Enrollment 240 subjects in 6 months 300 subjects in 6 months

Minimum Follow-up 10 months 6 months

Randomization 1:1, and patient enrollment follows Poisson Process

𝜃1 (median survival time for 

Placebo)

0 (8.3 months)

𝜃2 (ℎ𝑎𝑧𝑎𝑟𝑑 𝑟𝑎𝑡𝑖𝑜) -1/3 (0.7165)

𝑆𝑡𝐷 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝜃2 = 0 0.168

Probability to have Std≤
0.168

>97.5% <50%
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Case studies (Cost)

RED Scenario GREEN Scenario

Enrollment (Expected) 540 subjects in 18 months 432 subjects in 14.5 months

Minimum Follow-up 12 months 31 months

Randomization 1:1, and patient enrollment follows Poisson Process

𝜃1 (median survival time for 

Placebo)

-0.367 (12 months)

𝜃2 log(0.732)

     0 1 2 3 4 5 2
ˆ, , var *e e f i s ij si j i

C T T T c c n c T c c T c I s          
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initiation cost

c cost of enrolling a single subject

c general trial maintanance

c daily expense for a patient in trial

c potential loss of revenue due to delay

c penalty not able to meet

 the crite

c 











0ria to reject H

10,000  simulation runs
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• N&S condition for       to be optimal is that

Standard steps in optimal design III
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Thanks you.


