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Odor Removal Study (Yang, Tong, and Mandal, 2017)

A 22 factorial experiment with two factors:
X1: types of algae (−, +); X2: synthetic resins (−, +).

Three categories of the response Y :
serious odor (Y = 1), medium odor (Y = 2) and no odor (Y = 3).

Group X1 X2 Responses # of replicates Model
yi1 yi2 yi3

i = 1 + + 2 6 2 n1 =
∑

y1j = 10 logit(γ1j) = θj − β1 − β2

i = 2 + − 7 2 1 n2 =
∑

y2j = 10 logit(γ2j) = θj − β1 + β2

i = 3 − + 0 0 10 n3 =
∑

y3j = 10 logit(γ3j) = θj + β1 − β2

i = 4 − − 0 2 8 n4 =
∑

y4j = 10 logit(γ4j) = θj + β1 + β2

where γij = P(Y ≤ j | xi ) is a cumulative probability. The model

logit(γij) = θj − βTxi , j = 1, 2

is known as a proportional odds model (McCullagh, 1980) or
cumulative logit model for ordinal response.
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Emergence of House Flies (Zocchi and Atkinson, 1999)

Hierarchical responses: Numbers of unopened pupae (y1), flies died
before emergence (y2), and flies completed emergence (y3)

Dose of radiation Response categories Total number
(Gy) x y1 y2 y3 of pupae

80 62 5 433 500
100 94 24 382 500
120 179 60 261 500
140 335 80 85 500
160 432 46 22 500
180 487 11 2 500
200 498 2 0 500

A continuation-ratio logit model with non-proportional odds:

log

(
πi1

πi2 + πi3

)
= β11 + β12xi + β13x

2
i

log

(
πi2

πi3

)
= β21 + β22xi
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Multinomial Logistic Models in the Literature

Four kinds of logit models used for multinomial responses:

baseline-category logit model for nominal responses
(Agresti, 2013; Zocchi and Atkinson, 1999)

cumulative logit model for ordinal responses
(McCullagh, 1980; Christensen, 2015)

adjacent-categories logit model for ordinal responses
(Liu and Agresti, 2005; Agresti, 2013)

continuation-ratio logit model for hierarchical responses
(Agresti, 2013; Zocchi and Atkinson, 1999)

In practice, three types of additional assumptions were made

proportional odds (po): the parameters for different levels of
logits are the same, widely assumed for ordinal responses

non-proportional odds (npo): the parameters for different
levels of logits are differet, usually used for nominal responses

partial proportional odds (ppo): incorporating both po and
npo components, proposed by Peterson and Harrell (1990)
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Four Logit Models with Three Types of Odds

In terms of ppo, the four logit models can be expressed as

log

(
πij
πiJ

)
= hTj (xi )βj + hTc (xi )ζ , baseline

log

(
πi1 + · · ·+ πij
πi ,j+1 + · · ·+ πiJ

)
= hTj (xi )βj + hTc (xi )ζ , cumulative

log

(
πij
πi ,j+1

)
= hTj (xi )βj + hTc (xi )ζ , adjacent

log

(
πij

πi ,j+1 + · · ·+ πiJ

)
= hTj (xi )βj + hTc (xi )ζ , continuation

where πij = P(Y = j | xi ),
xi = (xi1, . . . , xid)T is the ith experimental setting,
hTj (xi ) ≡ 1 leads to proportional odds (po) models,
ζ = 0 leads to non-proportional odds (npo) models.
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Unified Form for All Four Logit Models with Different Odds

Following Glonek and McCullagh (1995) and Zocchi and Atkinson
(1999), we rewrite these four logit models into a unified form

CT log(Lπi ) = ηi = Xiθ, i = 1, · · · ,m (1)

where πi = (πi1, . . . , πiJ)T , ηi = (ηi1, . . . , ηiJ)T ,

CT =


1 −1 0

1 −1 0
. . .

. . .
...

1 −1 0
0 0 · · · 0 0 0 · · · 0 1


J×(2J−1)

L takes different forms for the four models, and the J × p matrix
Xi and p × 1 parameter vector θ depend on po, npo, or ppo.
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Relevant literature in optimal design theory

Two categories (J = 2): a generalized linear model for binary
data (McCullagh and Nelder, 1989).
A growing body of design literature: Khuri, Mukherjee, Sinha,
and Ghosh (2006); Atkinson, Donev, and Tobias (2007);
Stufken and Yang (2012), and references therein.

Three or more categories (J ≥ 3): a special case of the
multivariate generalized linear model (Glonek and McCullagh,
1995).
Limited design results: Zocchi and Atkinson (1999);
Perevozskaya, Rosenberger, and Haines (2003); Yang, Tong,
and Mandal (2017).
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Two types of optimal design problems

Optimal design with quantitative or continuous factors:
Identify design points x1, . . . , xm (m is not fixed) from a
continuous region, and the corresponding weights p1, . . . , pm.
See, for example, Atkinson, Donev, and Tobias (2007);
Stufken and Yang (2012).

Optimal design with pre-determined design points x1, . . . , xm
(m is fixed): Find the optimal weights p1, . . . , pm. See Yang,
Mandal, and Majumdar (2012, 2016); Yang and Mandal
(2015); Tong, Volkmer, and Yang (2014).

One connection between the two types is through grid points of
continuous region.
Tong, Volkmer, and Yang (2014) also bridged the gap in a way
that the results involving discrete factors can be applied to the
cases with continuous factors as well.
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Fisher Information Matrix, First Form

Theorem 1 (Glonek and McCullagh, 1995)

Consider the multinomial logistic model (1) with independent
observations. The Fisher information matrix

F =
m∑
i=1

niFi

where

Fi = (
∂πi

∂θT
)Tdiag(πi )

−1 ∂πi

∂θT

with ∂πi/∂θ
T = (CTD−1

i L)−1Xi and Di = diag(Lπi ).

Theorem 1 provides an explicit way of calculating the Fisher
information matrix. It is actually valid for a more general
framework for multiple categorical responses.
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Fisher Information Matrix, Second Form

In order to simplify the determinant of F, we need

Theorem 2 (Bu, Majumdar, and Yang, 2017)

The Fisher information matrix of the multinomial logistic model
(1) is

F = nGTWG (2)

where W = diag{w1diag(π1)−1, . . . ,wmdiag(πm)−1} is an
mJ ×mJ matrix with wi = ni/n, G is an mJ × p matrix which
takes the forms of


c11h

T
1 (x1) · · · c1,J−1h

T
J−1(x1)

∑J−1
j=1 c1j · hTc (x1)

c21h
T
1 (x2) · · · c2,J−1h

T
J−1(x2)

∑J−1
j=1 c2j · hTc (x2)

· · · · · · · · · · · ·
cm1h

T
1 (xm) · · · cm,J−1h

T
J−1(xm)

∑J−1
j=1 cmj · hTc (xm)

 ,


c11h

T
1 (x1) · · · c1,J−1h

T
J−1(x1)

c21h
T
1 (x2) · · · c2,J−1h

T
J−1(x2)

· · · · · · · · ·
cm1h

T
1 (xm) · · · cm,J−1h

T
J−1(xm)

 ,


c11 · · · c1,J−1

∑J−1
j=1 c1j · hTc (x1)

c21 · · · c2,J−1
∑J−1

j=1 c2j · hTc (x2)

· · · · · · · · · · · ·
cm1 · · · cm,J−1

∑J−1
j=1 cmj · hTc (xm)


for ppo, npo, po models, respectively.
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Determinant of Fisher Information Matrix

Theorem 3 (Bu, Majumdar, and Yang, 2017)

Up to the constant np, the determinant of Fisher information
matrix is

|GTWG| =
∑

α1≥0,...,αm≥0 :
∑m

i=1 αi=p

cα1,...,αm · w
α1
1 · · ·w

αm
m (3)

with cα1,...,αm =∑
(i1,...,ip)∈Λ(α1,...,αm)

|G[i1, . . . , ip]|2
∏

k:αk>0

∏
l :(k−1)J<il6kJ

π−1
k,il−(k−1)J ≥ 0

(4)
where α1, . . . , αm are nonnegative integers, Λ(α1, . . . , αm) = {(i1,
. . . , ip) | 1 ≤ i1 < · · · < ip ≤ mJ; #{l : (k − 1)J < il 6 kJ} =
αk , k = 1, . . . ,m}, and G[i1, . . . , ip] is the submatrix consisting of
the i1th, . . . , ipth rows of G.
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Simplification of |F|

Theorem 4 (Bu, Majumdar, and Yang, 2017)

The coefficient cα1,...,αm = 0 if

(1) max1≤i≤m αi ≥ J; or

(2) #{i | αi > 0} ≤ kmin − 1, where

kmin =


max{p1, . . . , pJ−1} for npo models;
pc + 1 for po models;
max{p1, . . . , pJ−1, pc + pH} for ppo models;
pc + p1 for ppo with same Hj .

Here kmin is actually the minimal number of experimental settings
to keep |F| > 0. Recall that the number of parameters is
p = p1 + · · ·+ pJ−1 + pc .
Note that npo models imply pc = 0 and pH ≤ min{p1, . . . , pJ−1},
po models imply p1 = · · · = pJ−1 = pH = 1.
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Locally D-optimal designs maximizing f (n1, . . . , nm) = |F |
The D-optimal exact design problem is to solve

max f (n1, n2, . . . , nm)

subject to ni ∈ {0, 1, . . . , n}, i = 1, . . . ,m

n1 + n2 + · · ·+ nm = n

Denote pi = ni/n, i = 1, . . . ,m.

f (n1, . . . , nm) =

∣∣∣∣∣
m∑
i=1

niAi

∣∣∣∣∣ =

∣∣∣∣∣n
m∑
i=1

piAi

∣∣∣∣∣ = nd+J−1f (p1, . . . , pm)

The D-optimal approximate design problem is to solve

max f (p1, p2, . . . , pm)

subject to 0 ≤ pi ≤ 1, i = 1, . . . ,m

p1 + p2 + · · ·+ pm = 1



Multinomial Logistic Models Fisher Information Matrix and D-optimal Designs Minimally Supported Designs

Theorems for D-optimality

Karush-Kuhn-Tucker type (Karush, 1939; Kuhn and Tucker, 1951):

Theorem 5

p = (p∗1 , . . . , p
∗
m)T is D-optimal if and only if there exists a λ ∈ R

such that for i = 1, . . . ,m, either ∂f (p)/∂pi = λ if p∗i > 0 or
∂f (p)/∂pi ≤ λ if p∗i = 0.

General-equivalence-theorem type (Kiefer, 1974; Pukelsheim, 1993;
Atkinson et al., 2007; Stufken and Yang, 2012; Fedorov and
Leonov, 2014; Yang, Mandal and Majumdar, 2016):

Theorem 6

p = (p∗1 , . . . , p
∗
m)T is D-optimal if and only if for each

i = 1, . . . ,m, fi (z), 0 ≤ z ≤ 1 attains it maximum at z = p∗i ,

where fi (z) = f
(

1−z
1−pi p1, . . . ,

1−z
1−pi pi−1, z ,

1−z
1−pi pi+1, . . . ,

1−z
1−pi pm

)
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Emergence of house flies revisited (Bu, Majumdar, and
Yang, 2017)

Consider a followup experiment with 3500 pupae again. Using our
numerical algorithms, we obtain various D-optimal designs.

Dose of radiation (Gy) 80 100 120 140 160 180 200

Original allocation 500 500 500 500 500 500 500
D-optimal exact 1091 0 1021 374 1014 0 0

Original proportion .1429 .1429 .1429 .1429 .1429 .1429 .1429
D-optimal approximate .3116 0 .2917 .1071 .2896 0 0
Bayesian D-optimal .3159 .0000 .2692 .1160 .2990 .0000 .0000
EW D-optimal .3120 0 .2911 .1087 .2882 0 0

Compared with the D-optimal approximate design, the efficiency of
the original uniform allocation is
(|Foriginal |/|FD−opt |)1/5 = (585317/1480378)1/5 = 83.1%.
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Minimally supported designs

A minimally supported design is a design with the minimal number
of support/design points while keeping |F | > 0.

J = 2: It is actually binomial with d + 1 parameters,
θ1, β1, . . . , βd .
It is known that the minimal number is d + 1; and
the uniform allocation is D-optimal on a minimally supported
design.

J ≥ 3: There are d + J − 1 parameters,
θ1, . . . , θJ−1, β1, . . . , βd .
According to Yang, Tong, and Mandal (2017), the minimal
number is still d + 1; and
the uniform allocation is NOT D-optimal in general.
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Odor removal study revisited (Yang, Tong, and Mandal,
2017)

Suppose we want to conduct a followup experiment with n runs.
Using some numerical algorithms we proposed, we obtain the
D-optimal exact designs, as well as the D-optimal approximate
design po .

n n1 n2 n3 n4 n−4|F | # iterations Time(sec.)

3 1 1 0 1 0.0002872 2 < 0.01
10 4 3 0 3 0.0003093 3 0.01
40 18 11 0 11 0.0003137 2 0.03
100 44 29 0 27 0.0003141 2 0.08
1000 445 287 0 268 0.0003141 4 0.33
10000 4456 2869 0 2675 0.0003141 6 3.21

po 0.4455 0.2867 0 0.2678 0.0003141 3 0.05

Compared with the D-optimal exact design no = (18, 11, 0, 11)T at
n = 40, the relative efficiency of the uniform exact design
nu = (10, 10, 10, 10)T is (f (nu)/f (no))1/4 = 79.7% .
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Fisher information matrix for multinomial logistic models,
Third Form

Theorem 7 (Bu, Majumdar, and Yang, 2017)

The Fisher information matrix F = HUHT , where H is
H1

. . .

HJ−1

Hc · · · Hc

 ,

 H1

. . .

HJ−1

 or


1T

. . .

1T

Hc · · · Hc


for ppo, npo, and po models respectively,
Hj = (hj(x1), · · · ,hj(xm)), j = 1, . . . , J − 1,
Hc = (hc(x1), · · · ,hc(xm)), and

U =

 U11 · · · U1,J−1

...
. . .

...
UJ−1,1 · · · UJ−1,J−1


with block matrices Ust = diag{n1ust(π1), . . . , nmust(πm)}.
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Positive Definiteness of Fisher Information Matrix

Towards the positive definiteness of F = HUHT , we have

Theorem 8 (Bu, Majumdar, and Yang, 2017)

Assume πij > 0, ni > 0 for i = 1, . . . ,m and j = 1, . . . , J. Then
(i) U is positive definite;
(ii) F is positive definite if and only if H is of full row rank.

Remark: In general, we may denote k := #{i : ni > 0} ≤ m,
U∗st = diag{niust(πi ) : ni > 0}, U∗ = (U∗st)s,t=1,...,J−1, and
remove all columns of H associated with ni = 0 and denote the
leftover as H∗. Then

HUHT = (H∗) (U∗) (H∗)T
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Some Key Findings for Multinomial Logistic Models

The minimal number of experimental settings is

kmin =


max{p1, . . . , pJ−1} for npo models;
pc + 1 for po models;
max{p1, . . . , pJ−1, pc + pH} for ppo models;
pc + p1 for ppo with same Hj .

which is less than the number of parameters
p1 + · · ·+ pJ−1 + pc .

With J ≥ 3, the uniform allocation for a minimally supported
design is NOT D-optimal in general.

For “regular” npo models (that is, p1 = · · · = pJ−1), a
uniform allocation is still D-optimal if restricted on a
minimally supported design even with J ≥ 3.
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