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QUARTER-FRACTION FACTORIAL DESIGNS CONSTRUCTED
VIA QUATERNARY CODES1
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The research of developing a general methodology for the construction
of good nonregular designs has been very active in the last decade. Recent
research by Xu and Wong [Statist. Sinica 17 (2007) 1191–1213] suggested
a new class of nonregular designs constructed from quaternary codes. This
paper explores the properties and uses of quaternary codes toward the con-
struction of quarter-fraction nonregular designs. Some theoretical results are
obtained regarding the aliasing structure of such designs. Optimal designs are
constructed under the maximum resolution, minimum aberration and maxi-
mum projectivity criteria. These designs often have larger generalized resolu-
tion and larger projectivity than regular designs of the same size. It is further
shown that some of these designs have generalized minimum aberration and
maximum projectivity among all possible designs.

1. Introduction. In many scientific researches and investigations, the inter-
ests lie in the study of effects of many factors simultaneously. Fractional factorial
designs, especially two-level fractional factorial designs, are the most commonly
used experimental plans for this type of investigations. Designs that can be con-
structed through defining relations among factors are called regular designs. Any
two factorial effects in a regular design are either mutually orthogonal or fully
aliased with each other. All other designs that do not possess this kind of defining
relationship are called nonregular designs.

Regular designs are commonly chosen by the maximum resolution criterion [1]
and its refinement, the minimum aberration criterion [13]. The reader is referred
to the books by Wu and Hamada [25] and Mukerjee and Wu [18] for rich results
and extensive references.

The concepts of resolution and aberration have recently been extended to non-
regular designs (see [10, 23] and [31]). Tang and Deng [23] showed that gener-
alized minimum aberration designs tend to minimize the contamination of non-
negligible two-factor and higher-order interactions on the estimation of the main
effects. Tang [21] provided a projection justification of the generalized minimum
aberration criterion, and Cheng, Deng and Tang [7] showed that the generalized
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minimum aberration criterion is connected with some traditional model-dependent
efficiency criteria. For extensions to multi-level nonregular designs, see [9, 17, 26]
and [30].

An important and challenging issue is the construction of good nonregular de-
signs. Two simple reasons are: (i) nonregular designs do not have a unified math-
ematical description, and (ii) there are many more nonregular designs than regular
designs. Deng and Tang [11] constructed small generalized minimum aberration
designs from Hadamard matrices of order 16, 20 and 24. Tang and Deng [24] con-
structed generalized resolution designs for 3, 4 and 5 factors and any run size.
Li, Deng and Tang [16] searched generalized minimum aberration designs with
20, 24, 28, 32 and 36 runs and up to 6 factors. Xu and Deng [28] searched mo-
ment aberration projection designs with 16, 20 and 27 runs. Sun, Li and Ye [20]
proposed a sequential algorithm and completely enumerated all 16 and 20-run or-
thogonal arrays of strength 2. Fang, Zhang and Li [12] proposed an optimization
algorithm for construction of generalized minimum aberration designs. Bulutoglu
and Margot [3] completely classified some orthogonal arrays of strength 3 up to
56 runs and strength 4 up to 144 runs. All of these algorithmic constructions are
limited to small run sizes (≤32) or small number of factors due to the existence of
a large number of designs.

Butler [4] and [5] developed some theoretical results and showed that some ex-
isting designs have generalized minimum aberration among all possible designs.
Xu [27] constructed several nonregular designs with 32, 64, 128 and 256 runs
and 7–16 factors from the Nordstrom and Robinson code, a well-known nonlinear
code in coding theory. Tang [22] studied the existence and construction of orthog-
onal arrays that are robust to nonnegligible two-factor interactions. Stufken and
Tang [19] completely classified all two-level orthogonal arrays with t + 2 con-
straints and strength t .

In this paper, we consider the construction of two-level nonregular designs via
quaternary codes. A quaternary code is a linear space over Z4 = {0,1,2,3}, which
is the ring of integers modulo 4. Quaternary codes have been successfully used
to construct good binary codes in coding theory (see [14]). Xu and Wong [29]
first used quaternary codes to construct two-level nonregular designs. They de-
scribed a systematic procedure for constructing 22n × (22n − 2n) designs and
22n+1 × (22n+1 − 2n+1) designs with resolution 3.5 for any n, whereas regular
designs of the same size have maximum resolution 3 only. They also presented
a collection of nonregular designs with 16, 32, 64, 128 and 256 runs and up to
64 factors. Two obvious advantages of using quaternary codes to construct non-
regular designs are relatively straightforward construction procedure and simple
design presentation. Since the designs are constructed via linear codes over Z4,
one can use column indexes to describe these designs. More importantly, many
nonregular designs constructed via quaternary codes have better statistical prop-
erties than regular designs of the same size in terms of resolution, aberration and
projectivity.
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The linear structure of a quaternary code makes it possible to analytically study
the properties of nonregular designs derived from it. In Section 2, we study the
properties of quarter-fraction designs, which can be defined by a generator matrix
that consists of an identity matrix and an additional column. It turns out that res-
olution, wordlength and projectivity can be calculated in terms of the frequency
that the numbers 1, 2 and 3 appear in the additional column. Applying these re-
sults in Section 3, we construct optimal quarter-fraction designs via quaternary
codes under the maximum resolution, minimum aberration and maximum projec-
tivity criteria. These designs are often better than regular designs of the same size
in terms of the corresponding criterion. It is well known that a regular minimum
aberration design has maximum resolution and maximum projectivity among all
regular designs. However, different criteria can lead to different nonregular de-
signs. It turns out that we can often, but not always, find a minimum aberration
design that has maximum resolution among all possible quaternary code designs.
A minimum aberration design has the same aberration as, and often larger reso-
lution and projectivity than, a regular minimum aberration design. A maximum
projectivity design, which often differs from a minimum aberration or maximum
resolution design, can have much larger projectivity than a regular minimum aber-
ration design. It is further shown that some of these designs have generalized mini-
mum aberration and maximum projectivity among all possible designs. We present
all proofs in Section 4.

The rest of this section introduces notation and definitions. A two-level de-
sign D, of N runs and m factors, is represented by an N × m matrix where each
row corresponds to a run and each column to a factor, which takes on only two
symbols, say −1 and +1. For s = {c1, c2, . . . , ck}, a subset of k columns of D,
define

jk(s;D) =
N∑

i=1

ci1 × · · · × cik,(1)

where cij is the ith entry of column cj . The jk(s;D) values are called the J -char-
acteristics of design D [10, 21]. It is evident that |jk(s;D)| ≤ N .

Following Cheng, Li and Ye [8], we define the aliasing index as ρk(s) =
ρk(s;D) = |jk(s;D)|/N , which measures the amount of aliasing among the
columns in s. It is obvious that 0 ≤ ρk(s) ≤ 1. When ρk(s) = 1, the columns in
s are fully aliased with each other and form a complete word of length k. When
0 < ρk(s) < 1, the columns in s are partially aliased with each other and form
a partial word of length k with aliasing index ρk(s). A partial word with aliasing
index 1 is a complete word. When ρk(s) = 0, the columns in s do not form a word.

Suppose that r is the smallest integer such that max|s|=r ρr(s;D) > 0, where
the maximization is over all subsets of r columns of D. The generalized resolu-
tion [10] of D is defined as

R(D) = r + 1 − max|s|=r
ρr(s;D).(2)



2564 F. K. H. PHOA AND H. XU

For k = 1, . . . ,m, define

Ak(D) = ∑
|s|=k

(ρk(s;D))2.(3)

The vector (A1(D), A2(D), . . . ,Am(D)) is called the generalized wordlength pat-
tern. The generalized minimum aberration criterion [30], also called minimum
G2-aberration [23], sequentially minimizes the components in the generalized
wordlength pattern A1(D), A2(D), . . . ,Am(D). This means that, if two designs
have Ak(D) as the first nonequal component in the generalized wordlength pat-
tern, then a design with smaller Ak(D) is preferred.

When restricted to regular designs, generalized resolution, generalized word-
length pattern and generalized minimum aberration reduce to the traditional res-
olution, wordlength pattern and minimum aberration, respectively. For simplicity,
we use resolution, wordlength pattern and minimum aberration for both regular
and nonregular designs.

A two-level design D is said to have projectivity p [2] if every p-factor projec-
tion contains a complete 2p factorial design, possibly with some points replicated.
It is evident that a regular design of resolution R = r has projectivity p = r − 1.
Deng and Tang [10] showed that a design with resolution R > r has projectivity
p ≥ r .

2. Properties of quarter-fraction designs via quaternary codes.

2.1. Quaternary codes and binary images. A quaternary code takes on values
from Z4 = {0,1,2,3} (mod. 4). Let G be an n × k generator matrix over Z4. All
possible linear combinations of the rows in G over Z4 form a quaternary linear
code, denoted by C. The so called Gray map, which replaces each element in Z4
with a pair of two symbols, transforms C into a binary code D = φ(C), which
is called the binary image of C. For convenience, we use 1 and −1 for the two
symbols, instead of the 0 and 1 convention for binary codes. Then the Gray map is
defined as

φ : 0 → (1,1), 1 → (1,−1), 2 → (−1,−1), 3 → (−1,1).

Note that C is a 22n × k matrix over Z4 and D is a binary 22n × 2k matrix or
a two-level design with 22n runs and 2k factors.

2.2. Designs with 22n runs. To construct quarter-fraction designs, consider an
n × (n + 1) generator matrix G = (v, In), where v is an n × 1 column vector
over Z4 and In is an n × n identity matrix. Let D be the 22n × (2n + 2) two-level
design generated by G. It is easy to verify that the identity matrix In generates
a full 22n × 2n design; therefore, the properties of D depend on the column v only.
Throughout the paper, for i = 0,1,2,3, let fi be the number of times that the num-
ber i appears in column v. Theorem 1 characterizes, in terms of the frequency fi ,
the number of words of D, their lengths and aliasing indexes.
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THEOREM 1. Consider an n × (n + 1) generator matrix G = (v, In). Define
k1 = f1 + 2f2 + f3 + 1, k2 = 2f1 + 2f3 + 2 and ρ = 2−�(f1+f3)/2�, where �x� is
the integer value of x. Then, the two-level 22n × (2n+2) design D generated by G

has 1 complete word of length k2 and 2/ρ2 partial words of length k1 with aliasing
index ρ.

EXAMPLE 1. Consider a generator matrix

G = ( v I3 ) =
⎛
⎝ 1 1 0 0

1 0 1 0
2 0 0 1

⎞
⎠ .

All linear combinations of the three rows of G form a 64×4 linear code C over Z4.
Applying the Gray map, a 64×8 binary image D = φ(C) is obtained; see Table 1.

TABLE 1
A quaternary code C and its binary image D

Code C Design D

Run 1 2 3 4 Run 1 2 3 4 5 6 7 8

1 0 0 0 0 1 1 1 1 1 1 1 1 1
2 1 1 0 0 2 1 −1 1 −1 1 1 1 1
3 2 2 0 0 3 −1 −1 −1 −1 1 1 1 1
4 3 3 0 0 4 −1 1 −1 1 1 1 1 1
5 1 0 1 0 5 1 −1 1 1 1 −1 1 1
6 2 1 1 0 6 −1 −1 1 −1 1 −1 1 1
7 3 2 1 0 7 −1 1 −1 −1 1 −1 1 1
8 0 3 1 0 8 1 1 −1 1 1 −1 1 1
9 2 0 2 0 9 −1 −1 1 1 −1 −1 1 1

10 3 1 2 0 10 −1 1 1 −1 −1 −1 1 1
11 0 2 2 0 11 1 1 −1 −1 −1 −1 1 1
12 1 3 2 0 12 1 −1 −1 1 −1 −1 1 1
13 3 0 3 0 13 −1 1 1 1 −1 1 1 1
14 0 1 3 0 14 1 1 1 −1 −1 1 1 1
15 1 2 3 0 15 1 −1 −1 −1 −1 1 1 1
16 2 3 3 0 16 −1 −1 −1 1 −1 1 1 1
17 2 0 0 1 17 −1 −1 1 1 1 1 1 −1
18 3 1 0 1 18 −1 1 1 −1 1 1 1 −1
19 0 2 0 1 19 1 1 −1 −1 1 1 1 −1
20 1 3 0 1 20 1 −1 −1 1 1 1 1 −1
21 3 0 1 1 21 −1 1 1 1 1 −1 1 −1
22 0 1 1 1 22 1 1 1 −1 1 −1 1 −1
23 1 2 1 1 23 1 −1 −1 −1 1 −1 1 −1
24 2 3 1 1 24 −1 −1 −1 1 1 −1 1 −1
25 0 0 2 1 25 1 1 1 1 −1 −1 1 −1
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TABLE 1
(Continued)

Code C Design D

Run 1 2 3 4 Run 1 2 3 4 5 6 7 8

26 1 1 2 1 26 1 −1 1 −1 −1 −1 1 −1
27 2 2 2 1 27 −1 −1 −1 −1 −1 −1 1 −1
28 3 3 2 1 28 −1 1 −1 1 −1 −1 1 −1
29 1 0 3 1 29 1 −1 1 1 −1 1 1 −1
30 2 1 3 1 30 −1 −1 1 −1 −1 1 1 −1
31 3 2 3 1 31 −1 1 −1 −1 −1 1 1 −1
32 0 3 3 1 32 1 1 −1 1 −1 1 1 −1
33 0 0 0 2 33 1 1 1 1 1 1 −1 −1
34 1 1 0 2 34 1 −1 1 −1 1 1 −1 −1
35 2 2 0 2 35 −1 −1 −1 −1 1 1 −1 −1
36 3 3 0 2 36 −1 1 −1 1 1 1 −1 −1
37 1 0 1 2 37 1 −1 1 1 1 −1 −1 −1
38 2 1 1 2 38 −1 −1 1 −1 1 −1 −1 −1
39 3 2 1 2 39 −1 1 −1 −1 1 −1 −1 −1
40 0 3 1 2 40 1 1 −1 1 1 −1 −1 −1
41 2 0 2 2 41 −1 −1 1 1 −1 −1 −1 −1
42 3 1 2 2 42 −1 1 1 −1 −1 −1 −1 −1
43 0 2 2 2 43 1 1 −1 −1 −1 −1 −1 −1
44 1 3 2 2 44 1 −1 −1 1 −1 −1 −1 −1
45 3 0 3 2 45 −1 1 1 1 −1 1 −1 −1
46 0 1 3 2 46 1 1 1 −1 −1 1 −1 −1
47 1 2 3 2 47 1 −1 −1 −1 −1 1 −1 −1
48 2 3 3 2 48 −1 −1 −1 1 −1 1 −1 −1
49 2 0 0 3 49 −1 −1 1 1 1 1 −1 1
50 3 1 0 3 50 −1 1 1 −1 1 1 −1 1
51 0 2 0 3 51 1 1 −1 −1 1 1 −1 1
52 1 3 0 3 52 1 −1 −1 1 1 1 −1 1
53 3 0 1 3 53 −1 1 1 1 1 −1 −1 1
54 0 1 1 3 54 1 1 1 −1 1 −1 −1 1
55 1 2 1 3 55 1 −1 −1 −1 1 −1 −1 1
56 2 3 1 3 56 −1 −1 −1 1 1 −1 −1 1
57 0 0 2 3 57 1 1 1 1 −1 −1 −1 1
58 1 1 2 3 58 1 −1 1 −1 −1 −1 −1 1
59 2 2 2 3 59 −1 −1 −1 −1 −1 −1 −1 1
60 3 3 2 3 60 −1 1 −1 1 −1 −1 −1 1
61 1 0 3 3 61 1 −1 1 1 −1 1 −1 1
62 2 1 3 3 62 −1 −1 1 −1 −1 1 −1 1
63 3 2 3 3 63 −1 1 −1 −1 −1 1 −1 1
64 0 3 3 3 64 1 1 −1 1 −1 1 −1 1

According to Theorem 1, design D has 1 complete word of length k2 = 6 and 8
partial words of length k1 = 5 with aliasing index ρ = 0.5. It is easy to verify that
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the first six columns form a complete word and that columns (a, b, c,7,8) form a
partial word with aliasing index 0.5, where a = 1 or 2, b = 3 or 4 and c = 5 or 6.
Therefore, by definitions (2) and (3), the resolution of D is 5.5, and the wordlength
pattern of D is A5(D) = 2, A6(D) = 1 and Ai(D) = 0 for i �= 5,6.

For ease of presentation, we say that the ith identity column of In in G = (v, In)

is “associated with” number z if the ith element of v is z, where z = 0,1,2 or 3.
We also refer to a column of D as associated with number z if it is one of the two
columns generated by an identity column that is associated with number z. Further,
we refer to the two columns generated by v as associated with vector v. For exam-
ple, the first two columns of D in Table 1 are associated with vector v, columns 3
to 6 are associated with number 1, and the last two columns are associated with
number 2.

Now, we can describe more precisely about the words of D in Theorem 1. The
complete word of D consists of all columns associated with vector v and num-
bers 1 and 3. Each partial word consists of all columns associated with number 2,
one of the columns associated with vector v and each number 1 and 3. Further-
more, the columns associated with number 0 do not appear in any word.

Recall that a regular design has only complete words. Corollary 1 provides a suf-
ficient and necessary condition for D to be a regular design.

COROLLARY 1. Design D is regular if and only if f1 + f3 ≤ 1.

It is straightforward to complete the resolution of D according to the defini-
tion (2) and Theorem 1.

COROLLARY 2. The resolution of D is k2 if k1 ≥ k2, or k1 + 1 − ρ otherwise.

According to the definition (3), when summing up 2/ρ2 partial words of
length k1 with aliasing index ρ, we get Ak1(D) = 2. Corollary 3 specifies the
wordlength pattern of D.

COROLLARY 3. The wordlength pattern of D is:
(a) If k1 �= k2, then Ak1(D) = 2, Ak2(D) = 1 and Ai(D) = 0 for i �= k1, k2;
(b) If k1 = k2 = k, then Ak(D) = 3 and Ai(D) = 0 for i �= k.

Next, we consider the projectivity of design D generated by G = (v, In). The-
orem 1 suggests that there is a complete word of length k2 = 2(f1 + f3) + 2. This
implies that the projectivity of D is, at most, 2(f1 + f3) + 1. The next theorem
states that the projectivity of D is indeed 2(f1 + f3) + 1 if f2 > 0.

THEOREM 2. Suppose that D is the two-level 22n × (2n+2) design generated
by G = (v, In):

(a) If f2 > 0, the projectivity of D is 2(f1 + f3) + 1;
(b) If f2 = 0 and f1 + f3 > 0, the projectivity of D is 2(f1 + f3) − 1.



2568 F. K. H. PHOA AND H. XU

Theorem 2 implies that the projectivity of D is not affected by the partial words.
As an example, consider design D in Example 1. Theorem 2 suggests that the
projectivity of D is 5. This can be verified directly.

2.3. Designs with 22n−1 runs. Design D, generated by G = (v, In), has 22n

runs and 2n + 2 factors. To construct quarter-fraction designs with 22n−1 runs,
we use the half fraction method, which works as follows. Choose any column
of D as a branching column, which divides D into two half-fractions according to
the symbols of the branching column. Deleting the branching column yields two
22n−1 × (2n + 1) designs. It is easy to verify that the two half-fractions of D are
equivalent. However, the properties of the half-fractions depend on the branching
column, which are characterized in Theorem 3.

THEOREM 3. Suppose that D is the two-level 22n × (2n+2) design generated
by G = (v, In) and that D′ is a half-fraction of D. Define k1, k2 and ρ as in
Theorem 1:

(a) If the branching column is associated with number 1 or 3, D′ has 1 complete
word of length k2 − 1, 1/ρ2 partial words of length k1 with aliasing index ρ and
1/ρ2 partial words of length k1 − 1 with aliasing index ρ;

(b) If the branching column is associated with number 2, D′ has 1 complete
word of length k2 and 2/ρ2 partial words of length k1 − 1 with aliasing index ρ.

It is easy to verify that, if the branching column is associated with vector v, this
is identical to case (a) when f1 + f3 > 0 or case (b) when f1 + f3 = 0 and f2 > 0.
If the branching column is associated with number 0, D′ and D share the same
words because the branching column does not appear in any word of D.

The following four corollaries summarize the resolution and wordlength pattern
of D′ for cases (a) and (b), separately.

COROLLARY 4. The resolution of D′ derived in Theorem 3(a) is k2 − 1 if
k1 ≥ k2, or k1 − ρ otherwise.

COROLLARY 5. The wordlength pattern of D′ derived in Theorem 3(a) is:
(a) If k1 = k2 = k, then Ak−1(D

′) = 2, Ak(D
′) = 1 and Ai(D

′) = 0 for i �=
k − 1, k;

(b) If k1 = k2 − 1 = k, then Ak−1(D
′) = 1, Ak(D

′) = 2 and Ai(D
′) = 0 for

i �= k − 1, k;
(c) If k1 �= k2 or k2 − 1, then Ak1−1(D

′) = Ak2−1(D
′) = Ak1(D

′) = 1 and
Ai(D

′) = 0 for i �= k1 − 1, k1, k2 − 1.

COROLLARY 6. The resolution of D′ derived in Theorem 3(b) is k2 if k1 −1 ≥
k2, or k1 − ρ otherwise.
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COROLLARY 7. The wordlength pattern of D′ derived in Theorem 3(b) is:
(a) If k1 − 1 �= k2, then Ak1−1(D

′) = 2, Ak2(D
′) = 1 and Ai(D

′) = 0 for i �=
k1 − 1, k2;

(b) If k1 − 1 = k2 = k, then Ak(D
′) = 3 and Ai(D

′) = 0 for i �= k.

The next theorem summarizes the projectivity of a half-fraction of D.

THEOREM 4. Suppose that D is the two-level 22n × (2n+2) design generated
by G = (v, In) and that D′ is a half-fraction of D:

(a) If f2 > 0, f1 + f3 > 0 and the branching column is associated with number
1 or 3, the projectivity of D′ is 2(f1 + f3);

(b) If f2 = 0, f1 + f3 > 0 and the branching column is associated with number
1 or 3, the projectivity of D′ is 2(f1 + f3) − 2;

(c) If f2 > 1 and the branching column is associated with number 2, the projec-
tivity of D′ is 2(f1 + f3) + 1;

(d) If f2 = 1 and the branching column is associated with number 2, the projec-
tivity of D′ is 2(f1 + f3).

Comparing with Theorem 2, we observe that the projectivity of D′ is equal to
the projectivity of D for case (c), whereas the projectivity of D′ is equal to the
projectivity of D minus one for all other cases.

EXAMPLE 2. Consider half-fractions of D in Table 1. If one of the first six
columns is chosen as the branching column, we obtain a 32 × 7 design D′ with
resolution 4.5 and wordlength patterns A4(D

′) = 1, A5(D
′) = 2 and Ai(D

′) = 0
for i �= 4,5. Design D′ has 1 complete word of length 5, 4 partial words of length 5
with aliasing index 0.5 and 4 partial words of length 4 with aliasing index 0.5. For
example, if the first column is chosen as the branching column, then columns 2
to 6 form a complete word and columns (b, c,7,8) and (2, b, c,7,8) form a partial
word with aliasing index 0.5, where b = 3 or 4 and c = 5 or 6. If one of the last two
columns is chosen as the branching column, we obtain a 32 × 7 design D′ with
resolution 4.5 and wordlength patterns A4(D

′) = 2, A6(D
′) = 1 and Ai(D

′) = 0
for i �= 4,6. Design D′ has 1 complete word of length 6 and 8 partial words of
length 4 with aliasing index 0.5. Finally, according to Theorem 4, any half-fraction
of D has projectivity 4, which can be verified directly.

3. Optimal quarter-fraction designs. In this section, we apply the theory de-
veloped in the previous section to construct optimal designs under the maximum
resolution, minimum aberration and maximum projectivity criteria. As shown be-
low, different criteria can lead to different optimal designs.
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3.1. Designs with 22n runs. Applying Theorem 1, we have the following re-
sults regarding maximum resolution and minimum aberration designs.

THEOREM 5. Among all 22n × (2n + 2) designs generated by G = (v, In):
(a) If n = 3k−1, k ≥ 1, then a design D defined by f1 +f3 = 2k−1 and f2 = k

has maximum resolution 4k;
(b) If n = 3k, k ≥ 1, then a design D defined by f1 + f3 = 2k and f2 = k has

maximum resolution 4k + 2 − 2−k ;
(c) If n = 3k+1, k ≥ 1, then a design D defined by f1 +f3 = 2k+1 and f2 = k

has maximum resolution 4k + 3 − 2−k .

THEOREM 6. Among all 22n × (2n + 2) designs generated by G = (v, In):
(a) If n = 3k−1, k ≥ 1, then a design D defined by f1 +f3 = 2k−1 and f2 = k

has minimum aberration and its wordlength pattern is A4k(D) = 3;
(b) If n = 3k, k ≥ 1, then a design D defined by f1 + f3 = 2k and f2 = k

has minimum aberration and its wordlength pattern is A4k+1(D) = 2 and
A4k+2(D) = 1;

(c) If n = 3k + 1, k ≥ 1, then a design D defined by f1 + f3 = 2k and f2 =
k + 1 has minimum aberration and its wordlength pattern is A4k+2(D) = 1 and
A4k+3(D) = 2.

When n = 3k −1 or 3k, the minimum aberration design in Theorem 6 coincides
with the maximum resolution design in Theorem 5; however, when n = 3k +1, the
minimum aberration design differs from the maximum resolution design.

Applying Theorem 2, we have the following result regarding maximum projec-
tivity designs.

THEOREM 7. Among all 22n × (2n + 2) designs generated by G = (v, In),
a design D defined by f1 + f3 = n − 1 and f2 = 1 has maximum projectivity
2n − 1, and so does a design D defined by f1 + f3 = n and f2 = 0.

The maximum projectivity designs in Theorem 7 are different from designs
in Theorems 5 and 6 when n > 4. According to Corollary 2, a design defined
by f1 + f3 = n − 1 and f2 = 1 has resolution n + 3 − 2−�(n−1)/2� for n ≥ 2,
and a design defined by f1 + f3 = n and f2 = 0 has resolution n + 2 − 2−�n/2�;
therefore, the former design is recommended.

3.2. Designs with 22n−1 runs. To find optimal designs with 22n−1 runs, we
consider all possible designs generated by G = (v, In) and all possible half-
fractions. It turns out that it is sufficient to consider only half-fractions of the min-
imum aberration designs in Theorem 6 and the maximum projectivity designs in
Theorem 7.
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THEOREM 8. Suppose that D′ is a half-fraction of a design D given in The-
orem 6. Among all 22n−1 × (2n + 1) designs that are half-fractions of designs
generated by G = (v, In), D′ has maximum resolution and minimum aberration:

(a) If n = 3k − 1, k ≥ 1, and the branching column is associated with number 2.
The resolution of D′ is 4k − 2−(k−1) and the wordlength pattern is A4k−1(D

′) = 2
and A4k(D

′) = 1;
(b) If n = 3k, k ≥ 1, and the branching column is associated with number 1.

The resolution of D′ is 4k + 1 − 2−k and the wordlength pattern is A4k(D
′) = 1

and A4k+1(D
′) = 2;

(c) If n = 3k + 1, k ≥ 1, and the branching column is associated with number 2.
The resolution of D′ is 4k + 2 and the wordlength pattern is A4k+2(D

′) = 3.

THEOREM 9. Any half-fraction of a design D in Theorem 7 has maximum
projectivity 2n − 2 among all 22n−1 × (2n + 1) designs that are half-fractions of
designs generated by G = (v, In).

3.3. Table of designs. For easy reference, we provide some optimal designs
and their properties in Table 2. Following the convention on regular designs, we use
the notation 2m−2 to represent a quarter-fraction design with m factors and 2m−2

runs. The second column of Table 2 specifies the three optimality criteria: max-
imum resolution (r), minimum aberration (a) and maximum projectivity (p). The
third column is the vector v in the generator matrix G = (v, In) and the letter at the
end denotes the branching column, which is either the first (f ) or last (l) column.
The first column is associated with vector v, while the last column is associated
with number 2. Choosing the first column or a column associated with number 1 as
the branching column yields an equivalent design. The next three columns, under
the category of “quaternary-code designs,” are the wordlength pattern (WLP), res-
olution (R) and projectivity (pr) of the design generated by G = (v, In). The last
two columns, under the category of “regular,” are the resolution and projectivity of
a regular minimum aberration design with the same size.

Table 2 shows that the maximum resolution designs and the minimum aberra-
tion designs are similar, but they often differ from the maximum projectivity de-
signs. Specifically, the “r” design coincides with the “a” design when m �= 6k + 4,
k > 0, whereas the “p” design differs from the “r” or “a” design when m = 9 or
m > 10.

According to Corollary 1, all designs in Table 2 are nonregular designs, except
for design 26−2, which is equivalent to the regular minimum aberration design.
Design 28−2 is considered in Example 1 and given explicitly in Table 1. Design
27−2 is a half-fraction of design 28−2 and illustrated in Example 2.

It is of great interest to compare the quaternary-code designs with regular min-
imum aberration 2m−2 designs, which were given by Chen and Wu [6]. A regular
minimum aberration 2m−2 design has resolution R = �2m/3�, projectivity R − 1
and wordlength pattern AR = 3R − 2m + 3 and AR+1 = 2m − 3R. All of the “r”
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TABLE 2
Optimal quarter-fraction designs

Quaternary-code designs Regular

Design Criterion vT WLP R pr R pr

26−2 r, a,p [12] A4 = 3 4.0 3 4 3
27−2 r, a,p [112]f A4 = 1, A5 = 2 4.5 4 4 3
28−2 r, a,p [112] A5 = 2, A6 = 1 5.5 5 5 4
29−2 r, a [1122]l A6 = 3 6.0 5 6 5

p [1112]f A5 = 1, A6 = 2 5.5 6
210−2 r,p [1112] A6 = 2, A8 = 1 6.5 7 6 5

a [1122] A6 = 1, A7 = 2 6.0 5
211−2 r, a [11122]l A7 = 2, A8 = 1 7.5 7 7 6

p [11112]f A6 = A7 = A9 = 1 6.75 8
212−2 r, a [11122] A8 = 3 8.0 7 8 7

p [11112] A7 = 2, A10 = 1 7.75 9
213−2 r, a [111122]f A8 = 1, A9 = 2 8.75 8 8 7

p [111112]f A7 = A8 = A11 = 1 7.75 10
214−2 r, a [111122] A9 = 2, A10 = 1 9.75 9 9 8

p [111112] A8 = 2, A12 = 1 8.75 11
215−2 r, a [1111222]l A10 = 3 10.0 9 10 9

p [1111112]f A8 = A9 = A13 = 1 8.875 12
216−2 r [1111122] A10 = 2, A12 = 1 10.75 11 10 9

a [1111222] A10 = 1, A11 = 2 10.0 9
p [1111112] A9 = 2, A14 = 1 9.875 13

designs in Table 2 have the same or larger resolution as regular minimum aberra-
tion designs; in particular, when m = 3k + 1 or 3k + 2, all of the “r” designs have
larger resolution and, therefore, larger projectivity. All of the “a” designs have the
same wordlength pattern as regular minimum aberration designs and have the same
or larger resolution and projectivity. Indeed, Xu [27] showed that regular minimum
aberration 2m−2 designs have minimum aberration among all possible designs. Ex-
cept for design 26−2, all of the “p” designs have higher projectivity than regular
minimum aberration designs, but they may have smaller resolution. Indeed, all of
the “p” designs have maximum projectivity among all possible designs. The next
theorem summarizes these results.

THEOREM 10. (a) The designs given in Theorems 6 and 8 have minimum
aberration among all possible designs.

(b) The designs given in Theorems 7 and 9 have maximum projectivity among
all possible designs.

It is of interest to know whether the designs given in Theorems 5 and 8 have
maximum resolution among all possible designs. We do not have an answer yet.
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The compete catalogs of [3, 20] suggest that designs 26−2, 27−2 and 28−2 given
in Table 2 have maximum resolution among all possible designs. This can also be
verified analytically using Proposition 2 of Deng and Tang [10].

Another interesting question is whether the optimality results can be extended
to 1/16 fraction designs by using a generator matrix which consists of an identity
matrix plus two columns. This is much more complicated due to the fact that we
have to deal with 16 level combinations of the two extra columns. We are investi-
gating this problem.

4. Proofs. Some lemmas are introduced in order to prove the theorems.

4.1. Some lemmas. Consider an n × (n + 1) generator matrix Gn = (vn, In),
where vn is an n × 1 column vector over Z4 and In is an n × n identity matrix.
Let Dn be the 22n × (2n + 2) binary design generated by Gn.

Let vn−1 be the vector consisting of the first n − 1 components of vn, and let
Dn−1 be the 22n−2 × 2n binary design generated by the (n − 1) × n generator
matrix Gn−1 = (vn−1, In−1). Denote Dn−1 = (a, b,E), where a and b are column
vectors generated by vn−1, and E is a 2(2n−2) × (2n − 2) full factorial generated
by In−1.

We can express Dn in terms of Dn−1, depending on the last component of vn,
which is denoted by z. It is trivial for z = 0. It is obvious that z = 1 and z = 3
produce an equivalent design. Therefore, it is sufficient to consider only z = 1
or 2.

When z = 1, Dn can be expressed as follows, up to row permutations

Dn =

⎛
⎜⎜⎝

a b E 1 1
b −a E 1 −1

−a −b E −1 −1
−b a E −1 1

⎞
⎟⎟⎠ ,(4)

where 1 is a vector of ones. From this expression and the definition (1), we estab-
lish the connection between the J -characteristics of Dn and Dn−1. Note that the
column indexes of Dn are {1,2, . . . ,2n + 2} and of Dn−1 are {1,2, . . . ,2n}. For
clarification, the s in the notation jk(s;D) refers to a subset of column indexes
of D, and we omit k when it is not important.

LEMMA 1. Suppose that the last component of vn is 1. For any subset e ⊂
{3,4, . . . ,2n}:

(a) j ({1,2n + 1} ∪ e;Dn) = j ({2,2n + 2} ∪ e;Dn) = 2j ({1} ∪ e;Dn−1) +
2j ({2} ∪ e;Dn−1);

(b) j ({1,2n + 2} ∪ e;Dn) = −j ({2,2n + 1} ∪ e;Dn) = 2j ({1} ∪ e;Dn−1) −
2j ({2} ∪ e;Dn−1);

(c) j ({1,2,2n + 1,2n + 2} ∪ e;Dn) = 4j ({1,2} ∪ e;Dn−1);
(d) j (s ∪ e;Dn) = 0 for s = {1}, {2}, {2n + 1}, {2n + 2}, {1,2}, {2n + 1,2n +

2}, {1,2,2n + 1}, {1,2,2n + 2}, {1,2n + 1,2n + 2}, or {2,2n + 1,2n + 2}.
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When z = 2, Dn can be expressed as follows, up to row permutations,

Dn =

⎛
⎜⎜⎝

a b E 1 1
−a −b E 1 −1
a b E −1 −1

−a −b E −1 1

⎞
⎟⎟⎠ .(5)

From this expression and the definition (1), we establish the connection between
the J -characteristics of Dn and Dn−1.

LEMMA 2. Suppose that the last component of vn is 2. For any subset e ⊂
{3,4, . . . ,2n}:

(a) j ({1,2n + 1,2n + 2} ∪ e;Dn) = 4j ({1} ∪ e;Dn−1);
(b) j ({2,2n + 1,2n + 2} ∪ e;Dn) = 4j ({2} ∪ e;Dn−1);
(c) j ({1,2} ∪ e;Dn) = 4j ({1,2} ∪ e;Dn−1);
(d) j (s ∪ e;Dn) = 0 for s = {1}, {2}, {2n + 1}, {2n + 2}, {1,2n + 1}, {1,2n +

2}, {2,2n + 1}, {2,2n + 2}, {2n + 1,2n + 2}, {1,2,2n + 1}, {1,2,2n + 2}, or
{1, 2,2n + 1,2n + 2}.

The next result describes the partial words of Dn and their J -characteristics.

LEMMA 3. Suppose that vn is a vector of n 1’s. For l = 1,2, let sl =
{l, x2, . . . , xn+1} where xi = 2i − 1 or 2i for i = 2, . . . , n + 1:

(a) If n = 2t + 1, either jn+1(s1;Dn) = 0 and |jn+1(s2;Dn)| = 23t+2 or
|jn+1(s1;Dn)| = 23t+2 and jn+1(s2;Dn) = 0;

(b) If n = 2t , |jn+1(s1;Dn)| = |jn+1(s2;Dn)| = 23t .

PROOF. We prove the lemma by induction. It is trivial to verify that the lemma
holds for n = 1,2. Assume the lemma holds for n = k − 1. Consider n = k. We
have s1 = {1, xk+1} ∪ e and s2 = {2, xk+1} ∪ e, where e ⊂ {x2, . . . , xk} with xi =
2i − 1 or 2i for i = 2, . . . , k.

First, consider xk+1 = 2k + 1. By Lemma 1(a) and (b),

jk+1(s1;Dk) = 2jk({1} ∪ e;Dk−1) + 2jk({2} ∪ e;Dk−1),(6)

−jk+1(s2;Dk) = 2jk({1} ∪ e;Dk−1) − 2jk({2} ∪ e;Dk−1),(7)

where Dk−1 is the 22k−2 × 2k design generated by Gk−1 = (1, Ik−1).
If n = k = 2t + 1, the assertion of k − 1 = 2t implies that |jk({1} ∪ e;Dk−1)| =

|jk({2} ∪ e;Dk−1)| = 23t . Then, from (6) and (7), we conclude that either
|jk+1(s1;Dk)|, or |jk+1(s2;Dk)| must be 0 and the other must be 23t+2.

If n = k = 2t + 2, the assertion of k − 1 = 2t + 1 implies that either |jk({1} ∪
e;Dk−1)|, or |jk({2} ∪ e;Dk−1)| must be 0 and the other must be 23t+2. Then,
(6) and (7) together yield |jk+1(s1;Dk)| = |jk+1(s2;Dk)| = 23t+3. This proves the
results for xk+1 = 2k + 1.
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The proof for xk+1 = 2k + 2 is similar. Therefore, the lemma holds for n = k.
The proof is completed by induction. �

The next result describes the complete and partial words of Dn and their aliasing
indexes.

LEMMA 4. Suppose that vn consists of p 1’s followed by q 2’s, where p +
q = n. For l = 1,2, let sl = {l, x2, . . . , xp+1,2p + 3,2p + 4, . . . ,2n + 2} where
xi = 2i − 1 or 2i for i = 2, . . . , p + 1:

(a) If p = 2t +1, either ρk(s1;Dn) or ρk(s2;Dn) is 0 and the other is 2−t where
k = p + 2q + 1;

(b) If p = 2t , ρk(s1;Dn) = ρk(s2;Dn) = 2−t where k = p + 2q + 1;
(c) ρk(s0;Dn) = 1 where s0 = {1,2, . . . ,2p + 2} and k = 2p + 2;
(d) ρk(s;Dn) = 0 for s other than s1, s2 or s0 considered in (a), (b) and (c).

PROOF. (a) and (b), when q = 0, it follows from Lemma 3. When q > 0,
recursively applying Lemma 2(a) or (b) yields the result.

(c) It follows from Lemmas 1(c) and 2(c).
(d) It follows from Lemmas 1(d) and 2(d). �

Now, consider half-fractions of Dn. Suppose that one of the last two columns
of Dn is chosen as the branching column. Let D′

n be the resulting 22n−1 × (2n+1)

design.
When the last component of vn is 1 and the last column of Dn is chosen as the

branching column, following (4), we can write D′
n as

D′
n =

(
a b E 1

−b a E −1

)
.(8)

The following lemma expresses the J -characteristics of D′
n in terms of that of

Dn−1 = (a, b,E).

LEMMA 5. Suppose that the last component of vn is 1, and the last column
of Dn is chosen as the branching column. For any subset e ⊂ {3,4, . . . ,2n}:

(a) j ({1} ∪ e;D′
n) = −j ({2,2n + 1} ∪ e;D′

n) = j ({1} ∪ e;Dn−1) − j ({2} ∪
e;Dn−1);

(b) j ({2} ∪ e;D′
n) = j ({1,2n + 1} ∪ e;D′

n) = j ({1} ∪ e;Dn−1) + j ({2} ∪
e;Dn−1);

(c) j ({1,2,2n + 1} ∪ e;D′
n) = 2j ({1,2} ∪ e;Dn−1);

(d) j (s ∪ e;D′
n) = 0 for s = {1,2}, or {2n + 1}.

It is easy to verify that choosing the second last column of Dn as the branching
column yields a design that is equivalent to D′

n in (8).
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When the last component of vn is 2 and the last (or second last) column of Dn

is chosen as the branching column, following (5), we can write D′
n as

D′
n =

(
a b E 1

−a −b E −1

)
.(9)

We can also express the J -characteristics of D′
n in terms of Dn−1.

LEMMA 6. Suppose that the last component of vn is 2 and the last column
of Dn is chosen as the branching column. For any subset e ⊂ {3,4, . . . ,2n}:

(a) j ({1,2n + 1} ∪ e;D′
n) = 2j ({1} ∪ e;Dn−1);

(b) j ({2,2n + 1} ∪ e;D′
n) = 2j ({2} ∪ e;Dn−1);

(c) j ({1,2} ∪ e;D′
n) = 2j ({1,2} ∪ e;Dn−1);

(d) j (s ∪ e;D′
n) = 0 for s = {1}, {2}, {2n + 1}, or {1,2,2n + 1}.

4.2. Proofs of theorems.

PROOF OF THEOREM 1. Without loss of generality, assume that v consists
of p 1’s followed by q 2’s, where p + q = n. Lemma 4 suggests that all possible
words are in forms of s1, s2 or s0. If p = 2t +1, by Lemma 4(a), there are 2p words
of length p + 2q + 1 with aliasing index ρ = 2−t . If p = 2t , by Lemma 4(b), there
are 2p+1 words of length p +2q +1 with aliasing index ρ = 2−t . By Lemma 4(c),
there is 1 complete word of length 2p + 2. This completes the proof. �

PROOF OF THEOREM 2. Without loss of generality, assume that v consists
of p 1’s and q 2’s, where p + q = n.

(a) We prove the result by induction on p. The result is trivial when p = 0.
Assume that it is true for p = k − 1. Consider p = k. As in (4), we can write
Dn = Dk+q , where a and b are the balanced two-level columns and E is a full
factorial with 2k + 2q − 2 columns. We need to show that Dk+q has projectivity
2k + 1. Consider any subset s with 2k + 1 columns of Dk+q . There are three
possible cases:

(i) Both of the last two columns of Dk+q belong to s. Denote E1 = (a, b,E),
E2 = (b,−a,E), E3 = (−a,−b,E) and E4 = (−b, a,E). Clearly the Ei ’s are
isomorphic to each other. The assertion of p = k − 1 implies that each Ei has
projectivity 2k − 1. Then, the projection onto s contains a full 22k+1 factorial;

(ii) None of the last two columns of Dk+q belong to s. Observe that E is a full
factorial with 2k + 2q − 2 ≥ 2k columns. It is easy to verify that the projection
onto s contains a full 22k+1 factorial, whether s includes none, one or both of the
first two columns;

(iii) One of the last two columns of Dk+q belongs to s and the other does not.
Observe that the projection onto the subset consisting of the first two and the last
two columns has resolution ≥ 4 and projectivity ≥ 3. Further, observe that E is
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a full factorial. Then, it is easy to verify that the projection onto s contains a full
22k+1 factorial whether s includes none, one or both of the first two columns.

The three cases together suggest that Dk+q has projectivity 2k+1. By induction,
the proof is completed.

(b) The proof is similar to (a) and omitted. �

PROOF OF THEOREM 3. Without loss of generality, assume that v consists of
p 1’s and q 2’s, where p + q = n. Let vn−1 be the vector consisting of the first
n − 1 components of v, and let Dn−1 be the binary design generated by Gn−1 =
(vn−1, In−1).

(a) Without loss of generality, assume that the last component of v is 1 and that
the last column of D is chosen as the branching column. If p = 2t , by Lemma 4(a),
Dn−1 has 2p−1 words of length p+2q with aliasing index 2−(t−1). By Lemma 5(a)
and (b), these 2p−1 words in Dn−1 generate 2p words of length p + 2q and 2p

words of length p + 2q + 1 with aliasing index ρ = 2−t in D′. If p = 2t + 1,
by Lemma 4(b), Dn−1 has 2p words of length p + 2q with aliasing index 2−t .
By Lemma 5(a) and (b), these 2p words in Dn−1 generate 2p−1 words of length
p + 2q and 2p−1 words of length p + 2q + 1 with aliasing index ρ = 2−t in D′.
So, in both cases, D′ has 1/ρ2 words of length p +2q = k1 −1 and 1/ρ2 words of
length k1 with aliasing index ρ = 2−�p/2�. By Lemma 4(c), Dn−1 has 1 complete
word of length 2p, which generates a complete word of length 2p + 1 in D′ by
Lemma 5(c). This completes the proof.

(b) Without loss of generality, assume that the last component of v is 2 and that
the last column of D is chosen as the branching column. By Theorem 1, Dn−1 has 1
complete word of length 2p + 2 and 2/ρ2 words of length p + 2(q − 1) + 1 with
aliasing index ρ = 2−�p/2�. By Lemma 6(a) and (b), each partial word in Dn−1
generates a partial word of length p + 2q = k1 − 1 in D′ with aliasing index ρ.
Lemma 6(c) implies that the complete word in Dn−1 produces a complete word
with the same length 2p + 2 = k2 in D′. This completes the proof. �

PROOF OF THEOREM 4. Without loss of generality, assume that v consists
of p 1’s and q 2’s, where p + q = n.

(a) By Theorem 2(a), D has projectivity 2p + 1. It is obvious that any half-
fraction of D has projectivity ≥ 2p. By Theorem 3(a), D′ has a complete word of
length 2p + 1, so its projectivity is 2p.

(b) As in (a), by Theorem 2(b), D has projectivity 2p − 1, so D′ has projectiv-
ity ≥ 2p − 2.

(c) Without loss of generality, we write D′ as (9), where a and b are balanced
two-level columns and E is a full factorial with 2p + 2q − 2 columns. By Theo-
rem 2(a), Dn−1 = (a, b,E) has projectivity 2p + 1, so is (−a,−b,E). Then, it is
clear that D′ has projectivity 2p + 1.

(d) By Theorem 2, D has projectivity 2p + 1, so D′ has projectivity ≥ 2p. �
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PROOF OF THEOREM 5. Without loss of generality, we assume f0 = f3 = 0.
Then, f2 = n− f1, k1 = f1 + 2f2 + 1 = 2n− f1 + 1 and k2 = 2f1 + 2. According
to Theorem 1 and Corollary 2, we need to consider whether the condition k1 ≥ k2
holds. It is obvious that the condition k1 ≥ k2 is equivalent to f1 ≤ (2n − 1)/3.
If k1 ≥ k2, the resolution is k2 = 2f1 + 2, so we shall maximize k2 and choose
f1 = �(2n− 1)/3�, since f1 is an integer. If k1 < k2, the resolution is k1 + 1 −ρ =
2n − f1 + 2 − ρ, so we shall maximize k1 and choose f1 = �(2n + 1)/3�, which
is the smallest integer that is greater than (2n − 1)/3.

(a) When n = 3k −1, the first choice leads to f1 = 2k −1, f2 = k, k1 = k2 = 4k

and R(D) = 4k, while the second choice leads to f1 = 2k, f2 = k−1, k1 = 4k−1,
k2 = 4k + 2 and R(D) = 4k − 2−k . Therefore, the first choice leads to a maximum
resolution design.

(b) When n = 3k, the first choice leads to f1 = 2k − 1, f2 = k + 1, k1 = 4k + 2,
k2 = 4k and R(D) = 4k, while the second choice leads to f1 = 2k, f2 = k, k1 =
4k + 1, k2 = 4k + 2 and R(D) = 4k + 2 − 2−k . Therefore, the second choice leads
to a maximum resolution design.

(c) When n = 3k + 1, the first choice leads to f1 = 2k, f2 = k + 1, k1 = 4k + 3,
k2 = 4k + 2 and R(D) = 4k + 2, while the second choice leads to f1 = 2k + 1,
f2 = k, k1 = 4k + 2, k2 = 4k + 4 and R(D) = 4k + 3 − 2−k . Therefore, the second
choice leads to a maximum resolution design. �

PROOF OF THEOREM 6. Note that the minimum aberration design must max-
imize the integer part of the resolution. As explained in the proof of Theorem 5,
we only need to consider two choices: f1 = �(2n − 1)/3� or f1 = �(2n + 1)/3�.

(a) When n = 3k −1, the first choice leads to a minimum aberration design with
f1 = 2k − 1, f2 = k, k1 = k2 = 4k and A4k(D) = 3.

(b) When n = 3k, the second choice leads to a minimum aberration design with
f1 = 2k, f2 = k, k1 = 4k + 1, k2 = 4k + 2, A4k+1(D) = 2 and A4k+2(D) = 1.

(c) When n = 3k + 1, the first choice leads to f1 = 2k, f2 = k + 1, k1 = 4k + 3,
k2 = 4k + 2, A4k+2(D) = 1 and A4k+3(D) = 2, while the second choice leads to
f1 = 2k + 1, f2 = k, k1 = 4k + 2, k2 = 4k + 4, A4k+2(D) = 2, and A4k+4(D) = 1.
Therefore, the first choice leads to a minimum aberration design. �

PROOF OF THEOREM 7. It follows from Theorem 2. �

PROOF OF THEOREM 8. Without loss of generality, we assume f0 = f3 = 0
so that f1 + f2 = n. According to Theorem 3, we need to consider four cases:
(i) the branching column is associated with number 1 and k1 ≥ k2, (ii) the branch-
ing column is associated with number 1 and k1 < k2, (iii) the branching column
is associated with number 2 and k1 − 1 ≥ k2 and (iv) the branching column is as-
sociated with number 2 and k1 − 1 < k2. For each case, we choose f1 and f2 to
maximize the shortest wordlength and resolution. The resolutions and wordlength
patterns of the resulting designs can be calculated by Corollaries 4, 5, 6 and 7.
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(a) When n = 3k − 1, the condition k1 ≥ k2 is equivalent to f1 ≤ 2k − 1; the
condition k1 − 1 ≥ k2 is equivalent to f1 ≤ 2k − 4/3. For case (i), we want to
maximize k2, so we choose f1 = 2k − 1 and f2 = k, which yields k1 = 4k, k2 =
4k, R(D′) = 4k − 1, A4k−1(D

′) = 2 and A4k(D
′) = 1. For case (ii), we want to

maximize k1, so we choose f1 = 2k and f2 = k−1, which yields k1 = 4k−1, k2 =
4k+2, R(D′) = 4k−1−2−k , and A4k−2(D

′) = A4k−1(D
′) = A4k+1(D

′) = 1. For
case (iii), we want to maximize k2, so we choose f1 = 2k−2 and f2 = k+1, which
yields k1 = 4k+1, k2 = 4k−2, R(D′) = 4k−2, A4k−2(D

′) = 1 and A4k(D
′) = 2.

For case (iv), we want to maximize k1, so we choose f1 = 2k−1 and f2 = k, which
yields k1 = 4k, k2 = 4k, R(D′) = 4k − 2−(k−1), A4k−1(D

′) = 2 and A4k(D
′) = 1.

Therefore, the design in case (iv) has both maximum resolution and minimum
aberration.

(b) When n = 3k, the condition k1 ≥ k2 is equivalent to f1 ≤ 2k − 1/3; the con-
dition k1 − 1 ≥ k2 is equivalent to f1 ≤ 2k − 2/3. For case (i), we shall choose
f1 = 2k − 1 and f2 = k + 1, which yields k1 = 4k + 2, k2 = 4k, R(D′) = 4k − 1
and A4k−1(D

′) = A4k+1(D
′) = A4k+2(D

′) = 1. For case (ii), we shall choose
f1 = 2k and f2 = k, which yields k1 = 4k+1, k2 = 4k+2, R(D′) = 4k+1−2−k ,
A4k(D

′) = 1 and A4k+1(D
′) = 2. For case (iii), we shall choose f1 = 2k − 1 and

f2 = k + 1, which yields k1 = 4k + 2, k2 = 4k, R(D′) = 4k, A4k(D
′) = 1 and

A4k+1(D
′) = 2. For case (iv), we shall choose f1 = 2k and f2 = k, which yields

k1 = 4k+1, k2 = 4k+2, R(D′) = 4k+1−2−k , A4k(D
′) = 2 and A4k+2(D

′) = 1.
Therefore, the design in case (ii) has both maximum resolution and minimum aber-
ration.

(c) When n = 3k + 1, the condition k1 ≥ k2 is equivalent to f1 ≤ 2k + 1/3;
the condition k1 − 1 ≥ k2 is equivalent to f1 ≤ 2k. For case (i), we shall choose
f1 = 2k and f2 = k + 1, which yields k1 = 4k + 3, k2 = 4k + 2, R(D′) = 4k + 1
and A4k+1(D

′) = A4k+2(D
′) = A4k+3(D

′) = 1. For case (ii), we shall choose f1 =
2k + 1 and f2 = k, which yields k1 = 4k + 2, k2 = 4k + 4, R(D′) = 4k + 2 − 2−k

and A4k+1(D
′) = A4k+2(D

′) = A4k+3(D
′) = 1. For case (iii), we shall choose

f1 = 2k and f2 = k + 1, which yields k1 = 4k + 3, k2 = 4k + 2, R(D′) = 4k +
2 and A4k+2(D

′) = 3. For case (iv), we shall choose f1 = 2k + 1 and f2 = k,
which yields k1 = 4k +2, k2 = 4k +4, R(D′) = 4k +2−2−k , A4k+1(D

′) = 2 and
A4k+4(D

′) = 1. Therefore, the design in case (iii) has both maximum resolution
and minimum aberration. �

PROOF OF THEOREM 9. It follows from Theorem 4. �

PROOF OF THEOREM 10. (a) The quarter-fraction designs given in Theo-
rems 6 and 8 have the same wordlength patterns as the regular minimum aber-
ration designs. Then, the result follows from Theorem 2 of Xu [27], which states
that the regular minimum aberration 2m−2 design has minimum aberration among
all possible designs.
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(b) The quarter-fraction designs given in Theorems 7 and 9 have 2m−2 runs
and projectivity m − 3. It is sufficient to prove that the projectivity of any 2k × m

two-level design D is at most k − 1 when m ≥ k + 2. Assume that D has projec-
tivity k. Then, the projection onto any k factors is an unreplicated 2k full factorial,
because D has exactly 2k runs. Therefore, D is an orthogonal array of strength k.
Theorem 2.19 of Hedayat, Sloane and Stufken [15] implies that m < k + 1. This
contradicts the condition m ≥ k + 2. �
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