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UNIFORM PROJECTION DESIGNS

BY FASHENG SUN1, YAPING WANG2 AND HONGQUAN XU3

Northeast Normal University, East China Normal University and
University of California, Los Angeles

Efficient designs are in high demand in practice for both computer and
physical experiments. Existing designs (such as maximin distance designs
and uniform designs) may have bad low-dimensional projections, which is
undesirable when only a few factors are active. We propose a new design
criterion, called uniform projection criterion, by focusing on projection uni-
formity. Uniform projection designs generated under the new criterion scatter
points uniformly in all dimensions and have good space-filling properties in
terms of distance, uniformity and orthogonality. We show that the new crite-
rion is a function of the pairwise L1-distances between the rows, so that the
new criterion can be computed at no more cost than a design criterion that
ignores projection properties. We develop some theoretical results and show
that maximin L1-equidistant designs are uniform projection designs. In ad-
dition, a class of asymptotically optimal uniform projection designs based on
good lattice point sets are constructed. We further illustrate an application of
uniform projection designs via a multidrug combination experiment.

1. Introduction. Computer experiments are becoming ubiquitous in science,
engineering and service for studying complex phenomena [Fang, Li and Sudjianto
(2006), Santner, Williams and Notz (2003)]. Latin hypercube designs (LHDs) are
popular in computer experiments because they can achieve the maximum one-
dimensional stratification. An LHD may have bad projections onto two or higher
dimensions, and thus improvements of space-filling properties are needed based on
other criteria. Orthogonality [Owen (1994), Tang (1998), Ye (1998)] and maximin
distance criterion [Johnson, Moore and Ylvisaker (1990), Zhou and Xu (2014)] are
two most commonly used design criteria. A number of authors have constructed
orthogonal and maximin LHDs; see Lin and Tang (2015) for an excellent review,
as well as Sun and Tang (2017), Xiao and Xu (2017, 2018) and Wang, Xiao and
Xu (2018) for some recent works. However, as Joseph and Hung (2008) and Xiao
and Xu (2018) pointed out, orthogonal LHDs often do not have maximin distance
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and maximin distance designs are often not orthogonal, except for some specific
cases [Wang, Yang and Xu (2018)].

Uniform designs are another class of space-filling designs which are widely
used in both physical and computer experiments; see Fang et al. (2000), Liang,
Fang and Xu (2001) and Fang, Li and Sudjianto (2006) for applications in dy-
namic systems, chemistry and chemical engineering and computer experiments.
The main idea of uniform designs is to spread the design points uniformly over the
entire design space. Many criteria have been proposed to measure the uniformity,
among which the centered L2-discrepancy is the most popular. Uniform designs
with low discrepancy are model robust in the sense that they can guard against in-
accurate estimates caused by model misspecification [Hickernell and Liu (2002)].

A computer or physical experiment often involves a large number of factors at
an early stage among which only a few of them are active [Moon, Dean and Sant-
ner (2012), Woods and Lewis (2016), Kleijnen (2017)]. Therefore, space-filling
designs with good projection properties are desirable for factor screening [Moon,
Dean and Santner (2011), Joseph, Gul and Ba (2015)]. Maximin distance designs
and uniform designs are space-filling in high dimensions, but can have bad low-
dimensional projections. To address this problem, Moon, Dean and Santner (2011)
proposed a two-dimensional distance metric and developed algorithms to construct
designs with good projection properties. Joseph, Gul and Ba (2015) proposed an-
other distance metric and constructed maximum projection designs.

We propose a new criterion, called uniform projection criterion, by focusing
on two-dimensional projection uniformity. Our new criterion is based on the cen-
tered L2-discrepancy, and the basic idea can be extended to other commonly used
discrepancies. Uniform projection designs scatter points uniformly in all dimen-
sions and have good space-filling properties in terms of distance, uniformity and
orthogonality. This is an important feature as experimenters often do not know in
advance which factors turn out to be important before conducting the experiment.
We present examples to show that uniform projection designs have better projec-
tion properties than maximum projection designs constructed by Joseph, Gul and
Ba (2015). In addition, we show that the new criterion is a function of the pair-
wise L1-distances between the rows. It is well known that uniformity is closely
related to orthogonality and aberration; see Fang and Mukerjee (2000), Ma, Fang
and Lin (2003), Tang, Xu and Lin (2012) and Zhou and Xu (2014). The connec-
tion between projection uniformity and L1-distance is surprising and important.
This connection enables us to compute the new criterion at no more cost than a
design criterion that ignores projection properties. The two-dimensional distance
metric proposed by Moon, Dean and Santner (2011) does not have this advantage.
In addition, this connection enables us to develop some general theoretical results.
We show that maximin L1-equidistant designs are uniform projection designs and
construct a class of uniform projection designs based on good lattice point sets
when the number of rows is an odd prime. We further provide an application of
uniform projection designs to a multidrug combination experiment.
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This paper is organized as follows. Section 2 introduces some notation and defi-
nitions. Section 3 introduces the new design criterion. Section 4 studies projection
properties of the new criterion and compares uniform projection designs with other
existing designs. Section 5 derives some general theoretical results. We establish
a connection between the new criterion and L1-distance distribution and then de-
rive a lower bound. We show in Theorem 3 that maximin L1-equidistant designs
are uniform projection designs and further construct a class of uniform projection
designs based on good lattice points. Section 6 considers applications of uniform
projection designs. We illustrate how uniform projection designs can be used to
efficiently study drug combination experiments. Section 7 gives some concluding
remarks. For clarity, the proofs are deferred to the Appendix.

2. Notation and definitions. Let (n, sm) denote a design with n runs and m

factors, each taking s levels from Zs = {0,1, . . . , s − 1}. Such a design can be
represented by a matrix D = (xik)n×m. Throughout this paper, we only consider
balanced designs where each level appears equally often in every column. An LHD
is a balanced design with s = n.

For an (n, sm) design D = (xik), let ρave(D) = ∑
j �=k |ρjk|/[m(m − 1)] be the

average of absolute correlations between columns, where ρjk is the correlation
between the j th and kth columns. A design is orthogonal if ρave(D) = 0.

The Lp-distance between the ith row xi = (xi1, . . . , xim) and the j th row xj =
(xj1, . . . , xjm) is

(2.1) dp(xi, xj ) =
(

m∑
k=1

|xik − xjk|p
)1/p

.

The Lp-distance of D is dp(D) = min{dp(xi, xj ),1 ≤ i < j ≤ n}. A maximin Lp-
distance design maximizes the dp(D) value. Joseph, Gul and Ba (2015) proposed
the following distance metric

(2.2) ψ(D) =
{

1(n
2

) n−1∑
i=1

n∑
j=i+1

1∏m
k=1(xik − xjk)2

}1/m

.

A maximum projection design minimizes the ψ(D) value.
For an (n, sm) design D = (xik), its (squared) centered L2-discrepancy is de-

fined as

CD(D) = 1

n2

n∑
i=1

n∑
j=1

m∏
k=1

(
1 + 1

2
|zik| + 1

2
|zjk| − 1

2
|zik − zjk|

)

− 2

n

n∑
i=1

m∏
k=1

(
1 + 1

2
|zik| − 1

2
|zik|2

)
+

(
13

12

)m

,

(2.3)

where zik = (2xik − s + 1)/(2s).
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3. Uniform projection designs. Designs with low discrepancy have good
uniformity in the full-dimensional space, but can have bad projections in lower-
dimensional spaces, which is undesirable when only a few factors are active. Since
in practice two-factor interactions are more important than three-factor or higher-
order interactions, we propose a new criterion focusing on two-dimensional projec-
tions. The new criterion, called uniform projection criterion, is defined as follows:

(3.1) φ(D) = 2

m(m − 1)

∑
|u|=2

CD(Du),

where u is a subset of {1,2, . . . ,m}, |u| denotes the cardinality of u and Du is the
projected design of D onto dimensions indexed by the elements of u. The φ(D)

defined in (3.1) is the average CD values of all two-dimensional projections of D.
When D has more than two factors, φ(D) is different from CD(D); see Example 1.
A design achieving the minimum φ(D) value is a uniform projection design.

EXAMPLE 1. Consider four 25 × 3 LHDs in Table 1. Design D1 is a uni-
form design under the centered L2-discrepancy from the uniform design website
at Hong Kong Baptist University. Designs D2 and D3 are maximin distance design
and maximum projection design constructed via R packages SLHD [Ba, Myers and
Brenneman (2015)] and MaxPro [Joseph, Gul and Ba (2015)], respectively. We ran
R commands maximinSLHD (with slice parameter t = 1) and MaxProLHD 100
times with default settings and chose the best designs. The uniform projection de-
sign (UPD) D4 is constructed via a threshold accepting algorithm [see Fang et al.
(2000)] using the φ(D) criterion. Table 2 compares the centered L2-discrepancy
(CD), the L2-distance d2(D), ψ(D) defined in (2.2), the uniform projection crite-
rion (3.1) and ρave value for the four designs. The larger the d2(D) value is, the
better a design is. For all other criteria, the smaller the better. As expected, each
design is the best under the corresponding criterion. The uniform projection design
D4 performs well with respect to other criteria and is the best under the correla-
tion criterion. Figure 1 displays bivariate projection plots of the four designs. The
uniform projection design D4 has the best projection properties among the four
designs. Each grid has one point for D4 whereas several grids have no points for
the other three designs.

4. Projection properties. The following theorem shows that uniform projec-
tion designs have good space-filling properties not only in two dimensions, but
also in all dimensions.

THEOREM 1. Let D be a balanced (n, sm) design. For any 2 ≤ k ≤ m,

1(m
k

) ∑
|u|=k

φ(Du) = φ(D),

where Du is the projected design onto k factors indexed by u.
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TABLE 1
Four 25 × 3 LHDs

Uniform D1 Maximin D2 MaxPro D3 UPD D4

18 16 14 0 2 20 0 6 12 2 3 2
19 9 0 1 20 10 1 15 5 4 5 13
11 1 2 2 7 12 2 18 21 0 11 9
16 20 3 3 13 21 3 9 0 3 16 17
20 22 12 4 9 3 4 12 17 1 22 22
14 7 10 5 19 0 5 0 10 8 0 7

4 17 1 6 23 19 6 21 3 6 8 19
12 12 7 7 14 13 7 4 19 9 14 24
10 15 24 8 0 7 8 23 13 5 18 4
22 14 5 9 3 17 9 11 7 7 20 11

2 21 22 10 21 8 10 14 24 12 2 21
15 11 21 11 8 9 11 3 1 10 9 0

1 5 4 12 6 1 12 8 15 14 12 14
3 10 11 13 18 23 13 19 9 13 15 6

23 3 8 14 15 2 14 1 22 11 24 15
0 13 15 15 10 18 15 7 4 17 4 10
8 23 6 16 24 16 16 16 18 15 7 5
7 8 18 17 16 11 17 24 6 19 10 18
9 4 13 18 1 15 18 13 11 16 19 20
6 19 9 19 22 4 19 22 23 18 23 1

24 18 19 20 4 6 20 2 14 21 1 16
21 6 23 21 5 24 21 17 2 23 6 23
13 24 17 22 12 5 22 10 20 22 13 3
17 0 16 23 17 22 23 5 8 20 17 12

5 2 20 24 11 14 24 20 16 24 21 8

Theorem 1 shows that the average φ value of all k-factor projected designs is
φ(D). Thus a uniform projection design tends to have small φ(Du) values for all
projections. Theorem 1 does not hold for the CD criterion defined in (2.3).

We compare projection properties of uniform projection designs with three
other types of designs: uniform designs, maximin distance designs and maximum

TABLE 2
Comparison of the four LHDs in Table 1

Design CD × 1000 d2(D) ψ(D) φ(D) × 1000 ρave(D)

Uniform D1 1.421 5.385 0.046 0.533 0.013
Maximin D2 2.091 8.246 0.062 0.751 0.037
MaxPro D3 1.840 6.403 0.043 0.666 0.079
UPD D4 1.534 6.164 0.047 0.528 0.008
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FIG. 1. Bivariate projections of four 25 × 3 LHDs in Table 1, where “X” means that there are no
points in the grid and D[i, j ] stands for the projected design of D onto the ith and j th columns.
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FIG. 2. Comparisons of projection designs under four criteria (a) minimum Euclidean distance
(the larger the better), (b) maximum ψ(D) (the smaller the better), (c) relative maximum CD (the
smaller the better) and (d) maximum ρave (the smaller the better).

projection designs. For illustration, we report the results for four 19 × 18 LHDs.
The results of other sizes are similar. The uniform projection design is constructed
in Example 3 in the next section. The φ values (multiplied by 1000) for the uni-
form projection design, uniform design, maximin design and maximum projection
design are 1.478, 1.482, 1.543 and 1.588, respectively.

Figure 2 shows the comparisons of the projected designs onto 3 ≤ k ≤ 18
dimensions. For each k, we evaluate all

(m
k

)
projected designs and determine

the worst projection with respect to four criteria: (a) minimum Euclidean dis-
tance, (b) maximum ψ(D) defined in (2.2), (c) relative maximum centered L2-
discrepancy (CD) and (d) maximum correlation ρave. The relative maximum CD
value is computed as the difference of the CD values between the corresponding
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design and the uniform projection design. Figure 2 shows that our uniform projec-
tion design performs well for all dimensions under all criteria. Compared to the
other three designs, the uniform projection design is more robust under various
criteria.

5. Connection between the φ(D) criterion and distance criterion. Max-
imizing the minimum inter-site distance is a popular criterion for finding good
space-filling designs. The CD(D) defined in (2.3) is a function of the pairwise
Hamming distances between design points in D for two-level designs [Fang and
Mukerjee (2000)]; but this does not hold for general s-level designs [Tang, Xu and
Lin (2012)]. For two-level designs, the Hamming distance is equivalent to the L1-
distance. It is a surprise that φ(D) defined in (3.1) is a function of the pairwise
L1-distances between design points in D for general s-level designs.

THEOREM 2. For a balanced (n, sm) design D = (xik),

(5.1) φ(D) = g(D)

4m(m − 1)n2s2 + C(m, s),

where

(5.2) g(D) =
n∑

i=1

n∑
j=1

d2
1 (xi, xj ) − 2

n

n∑
i=1

(
n∑

j=1

d1(xi, xj )

)2

,

d1(xi, xj ) is defined in (2.1) with p = 1, and

C(m, s) = 4(5m − 2)s4 + 30(3m − 5)s2 + 15m + 33

720(m − 1)s4 + 1 + (−1)s

64s4 .

The φ(D) defined in (3.1) measures the relationships of the columns whereas
equation (5.2) measures the relationships of rows, so Theorem 2 establishes a link
between the relationships of rows and columns of the design. In addition, Theo-
rem 2 is important in the computational perspective as it provides a fast calculation
of φ(D). The complexity for computing φ(D) based on (3.1) is O(n2m2) whereas
the complexity based on (5.1) is O(n2m), the same complexity as for computing
the maximin distance or the centered L2-discrepancy without considering projec-
tions. Uniform projection designs can be constructed via search methods such as
simulated annealing or threshold accepting algorithms in the same fashion as tra-
ditional maximin distance designs or uniform designs. We omit the details.

We now derive a lower bound of φ(D). By Theorem 2, φ(D) is a quadratic
form of all pairwise L1-distances between distinct rows. A major challenge here
is that the quadratic form in (5.2) is not positive definite, and hence the traditional
quadratic optimization technique cannot be applied directly. Intuitively, we should
minimize

∑n
i=1

∑n
j=1 d2

1 (xi, xj ) while maximizing
∑n

i=1(
∑n

j=1 d1(xi, xj ))
2, but

these two objectives often contradict with each other. To derive a lower bound, we
utilize the constraint that our designs are balanced; see the Appendix for details.
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THEOREM 3. For a balanced (n, sm) design D, φ(D) ≥ LB, where

LB = 5m(4s4 + 2(13n − 17)s2 − n + 5) − (n − 1)(8s4 + 150s2 − 33)

720(m − 1)(n − 1)s4

+ 1 + (−1)s

64s4 .

The lower bound is achieved if and only if D is an equidistant design under the
L1-distance.

Based on Theorem 3, we define the φ-efficiency φeff(D) = LB/φ(D) to mea-
sure the goodness of a design D. Wang, Xiao and Xu (2018) constructed a class of
exact L1-equidistant n×n LHDs whenever 2n+1 is an odd prime. By Theorem 3,
these are uniform projection designs with φeff(D) = 1.

Now we give a construction method of uniform projection designs with n runs
and n − 1 columns based on good lattice point designs for any odd prime n. Zhou
and Xu (2015) studied space-filling properties of good lattice point designs and
their linear permutations. Let n be an odd prime and D = (xik) be an n × (n −
1) good lattice point design, that is, xik = (i × k) (mod n). For an integer b, let
Db = D + b = (xik + b) (mod n) be a linear permutation of D.

Wang, Xiao and Xu (2018) considered nonlinear permutations of good lattice
point designs under the Williams transformation. The Williams transformation was
first used by Williams (1949) to construct Latin square designs that are balanced
for nearest neighbors. For any x ∈ Zn = {0,1, . . . , n − 1}, the Williams transfor-
mation is defined by

W(x) =
{

2x, 0 ≤ x < n/2,

2(n − x) − 1, n/2 ≤ x < n.

The transformation defines a permutation of Zn. For example, when n = 7, it per-
mutes levels (0,1,2,3,4,5,6) to (0,2,4,6,5,3,1). Since W(·) is invertible, we
use W−1(·) to denote its inverse function. Let Eb = W(Db) be the Williams trans-
formation of Db, that is, W(Db) is an n × (n − 1) matrix with the (i, k)th entry
being W((xik + b) (mod n)).

EXAMPLE 2. Let n = 19. Table 3 shows the φ values and the corresponding
φ-efficiencies of Db and Eb for b = 0,1, . . . ,18. From Table 3, several Williams
transformed designs Eb (b = 2,7,11,12,16,17) have smaller φ values and are
better than any linear permuted designs Db.

The next theorem gives an analytical formula for computing φ(Eb) and the best
choices of b for minimizing φ(Eb) when n is an odd prime. It also shows that the
resulting designs are asymptotically optimal.
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TABLE 3
The φ values (multiplied by 1000) and φ-efficiencies of Db and Eb for n = 19 and b ∈Zn

b φ(Db) φeff(Db) φ(Eb) φeff(Eb) b φ(Db) φeff(Db) φ(Eb) φeff(Eb)

0 2.107 0.696 2.641 0.555 10 1.662 0.882 1.989 0.738
1 1.592 0.922 1.630 0.900 11 1.685 0.871 1.483 0.989
2 1.703 0.861 1.478 0.992 12 1.757 0.835 1.555 0.943
3 1.757 0.835 1.666 0.881 13 1.788 0.820 1.772 0.828
4 1.773 0.828 1.847 0.794 14 1.773 0.828 1.873 0.783
5 1.788 0.820 1.847 0.794 15 1.757 0.835 1.772 0.828
6 1.757 0.835 1.666 0.881 16 1.703 0.861 1.555 0.943
7 1.685 0.871 1.478 0.992 17 1.592 0.922 1.483 0.989
8 1.662 0.882 1.630 0.900 18 2.107 0.696 1.989 0.738
9 2.350 0.624 2.641 0.555

THEOREM 4. Let n be an odd prime.

(i) For the n × (n − 1) LHD Eb, we have

(5.3) φ(Eb) = LB + f 2(b)/
[
(n − 2)n4]

,

where

f (b) = (
W(b) − (n − 1)/2

)2 − (
n2 − 1

)
/12

and LB = (12n3 + 154n2 − 12n − 29)/(720n4) is defined in Theorem 3 with m =
n − 1 and s = n.

(ii) Let c0 = �
√

(n2 − 1)/12� and �x� be the integer part of x. Let

c =
⎧⎨
⎩c0, c0 ≥

√(
n2 − 4

)
/12 − 1/2,

c0 + 1, c0 <

√(
n2 − 4

)
/12 − 1/2,

and

(5.4) b∗ = W−1(
(n − 1)/2 ± c

)
.

Then φ(Eb∗) minimizes φ(Eb) among b ∈ Zn.
(iii) The φ-efficiency of Eb∗ is

(5.5) φeff(Eb∗) = LB

φ(Eb∗)
>

n2

n2 + 5
→ 1 (n → ∞).

EXAMPLE 3. Suppose n = 19. Then c0 = �
√

(192 − 1)/12� = 5. We set

c = c0 = 5 based on Theorem 4(ii) because c0 ≥
√

(n2 − 4)/12 − 1/2. Then

b∗ = W−1(9 ± 5) = 2 or 7 by (5.4). This agrees with Table 3. For these two de-
signs, we have φeff(Eb∗) = 0.992.
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In general, for an odd prime n ≥ 23, by (5.5), we have φeff(Eb∗) > n2/(n2 +
5) > 0.99 when b∗ is chosen by (5.4). Wang, Xiao and Xu (2018) studied the
performance of Eb under the L1-distance and correlation criteria. The optimal
choices of b are different under different criteria. Uniform projection designs Eb∗
always have large L1-distance and small correlations.

6. Applications. We illustrate an application of uniform projection designs
using a drug combination experiment on lung cancer conducted by Al-Shyoukh
et al. (2011). The experiment used a 512-run and 8-level full factorial design to
study three drugs for both normal cells and lung cancer cells. The response variable
was the ATP level (standardized to 0-1 range) of the cell measured 72 hours after
the drug treatments. One purpose of this experiment was to model the response
surface and to systematically quantify the characterization of cellular responses.

Polynomial models, nonlinear Hill-based models and neural networks have been
used to analyze drug combination experiments [Al-Shyoukh et al. (2011), Ning
et al. (2014)]. Xiao, Wang and Xu (2017) recently proposed the use of Kriging
models for drug combination experiments. Kriging models are widely used in com-
puter experiments for optimization and sensitivity analysis. Different from deter-
ministic simulations and computer experiments, combinatorial drug experiments
have measurement errors. So Xiao, Wang and Xu (2017) considered a Kriging
model with a noise term

(6.1) y(x) = μ + Z(x) + ε,

where y(x) is the response at point x, μ is the intercept (or trend), Z(x) is a
Gaussian process with mean 0, variance σ 2 and correlation function R(·) and ε ∼
N(0, τ 2) is independent of Z(x). The correlation function is defined as

(6.2) R(xi, xj ) = cor
(
Z(xi),Z(xj )

) =
m∏

k=1

K
(|xik − xjk|/θk

)
,

where m is the number of factors, θk are the range parameters and K(·) is the cor-
relation kernel. Xiao, Wang and Xu (2017) recommended the use of Matérn kernel
K(h) = (1 + √

5h + 5h2/3) exp(−√
5h). Unknown parameters can be estimated

by the maximum likelihood estimation method.
We consider four possible designs using the four 25 × 3 LHDs given in Table 1.

Since each factor has eight levels, we collapse the 25 levels into eight levels via
a simple transformation, x → �8x/25�, and form the designs by selecting points
from the original grids of 512 observations. Given an n-run design, we fit a model
using n observations and use the model to predict all 512 observations. Then we
compute the mean square error (MSE) based on the 512 predicted and actual re-
sponses. Neural networks yield slightly different results each time so we report the
average value from 100 trials.

Table 4 displays MSE (multiplied by 1000) for different models and designs for
both normal and cancer cells. For comparison, we include the results from a 27-run
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TABLE 4
MSE (multiplied by 1000) for different models and designs

(a) Normal cells

25-Run designs Other designs

Uniform Maximin MaxPro UPD D27 D512

Kriging 0.47 0.52 0.62 0.22 0.31 0.002
Neural network 3.31 3.76 2.44 2.36 6.78 0.21
Polynomial 2.20 1.18 3.22 0.74 1.12 0.48
Hill-based 1.52 2.59 1.95 1.63 3.30 0.89

(b) Cancer cells

25-Run designs Other designs

Uniform Maximin MaxPro UPD D27 D512

Kriging 1.78 0.63 1.87 0.21 1.08 0.003
Neural network 3.60 4.16 3.34 3.31 10.87 0.48
Polynomial 20.16 13.58 16.04 4.42 5.84 2.98
Hill-based 1.60 1.43 6.69 2.23 4.70 1.42

3-level design (D27) from Xiao, Wang and Xu (2017) and the original 8-level full
factorial design with 512 runs (D512).

Table 4 shows that Kriging models are always the best in prediction among
the four types of models. Among the four 25-run designs, the uniform projection
design (UPD) is the most robust for fitting various models, especially for cancer
cells. The 25-run uniform projection design performs better than the 27-run 3-level
design used by Xiao, Wang and Xu (2017) for all four types of models. Remark-
ably, the Kriging models using the 25-run uniform projection design have similar
or smaller MSEs than neural network, polynomial and Hill-based models using all
512 runs. Uniform projection designs, having good projections in all dimensions,
can provide accurate estimations and precise predictions with a small number of
runs.

7. Concluding remarks. When only a subset of the input variables are ac-
tive, uniformity of projected designs in low-dimensional spaces is important. We
proposed a new design criterion which considers the projection uniformity un-
der the centered L2-discrepancy. We showed that uniform projection designs have
good space-filling properties not only in two dimensions, but also in all dimen-
sions. Uniform projection designs are robust and perform well under other design
criteria. Besides, we linked the new criterion with pairwise L1-distances between
design points (Theorem 2) and showed that maximin L1-equidistant designs are
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uniform projection designs (Theorem 3). We also constructed a class of asymp-
totically optimal uniform projection designs based on good lattice point designs
and the Williams transformation. The theoretical results can be easily extended
to other commonly used discrepancies such as wrap-around L2-discrepancy. We
further provided an application of uniform projection designs to a multidrug com-
bination experiment. Uniform projection designs have good projection properties
and are ideal for both computer and physical experiments. There are alternative ap-
proaches to constructing LHDs using orthogonal arrays or similar structures when
lower dimensional properties are important; see Tang (1993), He and Tang (2013,
2014), He, Cheng and Tang (2018) and Xiao and Xu (2018) for details.

APPENDIX: PROOFS

PROOF OF THEOREM 1. From the definition of φ(D) in (3.1), for 2 ≤ k ≤ m

and |u| = k, we have

φ(Du) = 1(k
2

) ∑
|v|=2,v⊆u

CD(Dv).

Then

∑
|u|=k

φ(Du) = ∑
|u|=k

1(k
2

) ∑
|v|=2
v⊆u

CD(Dv) = 1(k
2

) ∑
|v|=2

v⊆{1,...,m}

(
m − 2

k − 2

)
CD(Dv).

Because
(m
k

)(k
2

) = (m−2
k−2

)(m
2

)
, we have

1(m
k

) ∑
|u|=k

φ(Du) = 1(m
2

) ∑
|v|=2

v⊆{1,...,m}

CD(Dv) = φ(D).

�

To prove Theorems 2 and 3, we need the following two lemmas.

LEMMA 1. For a balanced (n, sm) design D = (xik) with levels from Zs , let
zik = (2xik − s + 1)/(2s). For any k = 1, . . . ,m,

(i)
n∑

i=1

|zik| =
{
n
(
s2 − 1

)
/
(
4s2)

, s odd,

n/4, s even;

(ii)
n∑

i=1

|zik|2 = n
(
s2 − 1

)
/
(
12s2);

(iii)
n∑

i=1

|zik|3 =
{
n
(
s2 − 1

)2
/
(
32s4)

, s odd,

n
(
s2 − 2

)
/
(
32s2)

, s even;
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(iv)

n∑
i=1

|zik|4 = n
(
s2 − 1

)(
3s2 − 7

)
/
(
240s4);

(v)

n∑
i=1

n∑
j=1

|zik − zjk|p = n2(
s2 − 1

)
/
(
3ps2)

, p = 1,2;

(vi)
n∑

i=1

n∑
j=1

|zjk||zik − zjk| =
{

3n2(
s2 − 1

)2
/
(
32s4)

, s odd,

n2(
3s2 − 4

)
/
(
32s2)

, s even.

Lemma 1 can be proved via some tedious calculations so we omit the details.

LEMMA 2. Let D = (xik)n×m be a balanced (n, sm) design with levels from
Zs . For any i = 1, . . . , n,

n∑
j=1

d1(xi, xj ) = nm(s2 − 1)

4s
+ n

s
d2

2 (xi, s0),

where xi is the ith row of D, d1(xi, xj ) is defined in (2.1) with p = 1, s0 = (s −
1)/2, and d2(xi, s0) = (

∑m
k=1(xik − s0)

2)1/2.

PROOF. Because each column of D contains each of the s levels exactly n/s

times, we have
n∑

j=1

d1(xi, xj ) =
n∑

j=1

m∑
k=1

|xjk − xik| =
m∑

k=1

n∑
j=1

|xjk − xik|

=
m∑

k=1

n

s

[(
1 + · · · + ∣∣(s − 1) − xik

∣∣) + (
0 + 1 + · · · + |xik|)]

=
m∑

k=1

n

2s

[
(s − 1 − xik)

2 + (s − 1 − xik) + (xik)
2 + xik

]

= nm(s2 − 1)

4s
+ n

s

m∑
k=1

(
xik − (s − 1)/2

)2
.

This completes the proof. �

PROOF OF THEOREM 2. For any balanced (n, sm) design D = (xik), let
Z = (zik) where zik = (2xik − s + 1)/(2s). Let f i

k = 1 + 1
2 |zik| − 1

2 |zik|2 and
dp(zi,0) = (

∑m
k=1 |zik|p)1/p for p = 1 and 2. By Lemma 1,

∑n
i=1(f

i
k )2 is a con-

stant independent of k. Then

G1 =
n∑

i=1

∑
1≤k1<k2≤m

f i
k1

f i
k2
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=
n∑

i=1

1

2

{(
f i

1 + · · · + f i
m

)2 − ((
f i

1
)2 + · · · + (

f i
m

)2)}

= 1

2

n∑
i=1

(
m + 1

2
d1(zi,0) − 1

2
d2

2 (zi,0)

)2
− m

2

n∑
i=1

(
f i

1
)2

= 1

8

n∑
i=1

(
d1(zi,0) − d2

2 (zi,0)
)2 + C1(n,m, s),

where

C1(n,m, s) = nm2

2
+ m

2

n∑
i=1

(
d1(zi,0) − d2

2 (zi,0)
) − m

2

n∑
i=1

(
f i

1
)2

is a constant by Lemma 1.
Let g

ij
k = 1 + 1

2 |zik| + 1
2 |zjk| − 1

2 |zik − zjk|. By Lemma 1,
∑n

i=1
∑n

j=1(g
ij
k )2 is

a constant independent of k. Then

G2 =
n∑

i=1

n∑
j=1

∑
1≤k1<k2≤m

g
ij
k1

g
ij
k2

= 1

2

n∑
i=1

n∑
j=1

{(
g

ij
1 + · · · + gij

m

)2 − ((
g

ij
1

)2 + · · · + (
gij

m

)2)}

= 1

2

n∑
i=1

n∑
j=1

(
m + 1

2
d1(zi,0) + 1

2
d1(zj ,0) − 1

2
d1(zi, zj )

)2
− m

2

n∑
i=1

n∑
j=1

(
g

ij
1

)2

= 1

8

n∑
i=1

n∑
j=1

(
d1(zi,0) + d1(zj ,0) − d1(zi, zj )

)2 + C2(n,m, s),

where

C2(n,m, s) = n2m2

2
+ m

n∑
i=1

n∑
j=1

d1(zi,0) − m

2

n∑
i=1

n∑
j=1

d1(zi, zj )

− m

2

n∑
i=1

n∑
j=1

(
g

ij
1

)2

is a constant by Lemma 1.
Let s0 = (s − 1)/2. Since d1(zi,0) = d1(xi, s0)/s, d2(zi,0) = d2(xi, s0)/s, and

d1(zi, zj ) = d1(xi, xj )/s, we have

φ(D) = 2

m(m − 1)n2 G2 − 4

m(m − 1)n
G1 +

(
13

12

)2
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= 1

4n2m(m − 1)s2

n∑
i=1

n∑
j=1

(
d1(xi, s0) + d1(xj , s0) − d1(xi, xj )

)2

− 1

2m(m − 1)ns2

n∑
i=1

(
d1(xi, s0) − d2

2 (xi, s0)/s
)2 + C3(n,m, s),

where

C3(n,m, s) = 2

m(m − 1)n2 C2(n,m, s) − 4

m(m − 1)n
C1(n,m, s) +

(
13

12

)2
.

Then the result follows from Lemmas 1 and 2 and some tedious algebra. �

To prove Theorem 3, we introduce some notation. Let In be the identity matrix
of order n, 0n a column vector of n zeros, 1n a column vector of n ones and
Jn = 1n1T

n , where 1T
n is the transpose of 1n.

Let fn = n(n − 1)/2 and B2 = (1,1)T. For n > 2, define n × fn matrix Bn

recursively as follows:

(A.1) Bn =
(

1T
n−1 0T

fn−1

In−1 Bn−1

)

and An = Ifn − 1
n
BT

n Bn.

LEMMA 3.

(i) Bn1fn = (n − 1)1n and BT
n 1n = 2×1fn ;

(ii) BnB
T
n = (n − 2)In + Jn;

(iii) The eigenvalues of An are 1, 2/n and (2 −n)/n with multiplicities of fn −
n, n − 1 and 1, respectively.

(iv) For n > 2, An is invertible and A−1
n 1fn = n

2−n
1fn .

PROOF. Parts (i) and (ii) can be obtained by the definition of Bn directly.
(iii) There exists a one-to-one correspondence between the eigenvalues of An

and the eigenvalues of BT
n Bn, that is, if μ is an eigenvalue of BT

n Bn, then 1 − μ/n

must be an eigenvalue of An. Hence we only need to derive the eigenvalues of
BT

n Bn. From (ii), we know that BnB
T
n = (n − 2)In + Jn. It is straightforward to

show that BnB
T
n has eigenvalues n − 2 and 2n − 2 with multiplicities of n − 1

and 1, respectively. Therefore, BT
n Bn has eigenvalues 0, n − 2, and 2n − 2 with

multiplicities of fn − n, n − 1 and 1, respectively.
(iv) For n > 2, An is invertible following part (iii). In addition, An1fn = 2−n

n
1fn ,

and hence A−1
n 1fn = n

2−n
1fn . This completes the proof. �

PROOF OF THEOREM 3. Let y be the fn-dimensional column vector defined
by

y = (
d1(x1, x2), . . . , d1(x1, xn), d1(x2, x3), . . . , d1(xn−1, xn)

)T
,
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that is, y collects all d1(xi, xj )’s for i < j according to the lexicographic order,
where fn = n(n − 1)/2. Due to the symmetry d1(xi, xj ) = d1(xj , xi), it is easy to
verify that the ith element of Bny is

∑n
j=1 d1(xi, xj ), where Bn is defined in (A.1).

Then we have

g(D) = 2yTy − 2

n
yTBT

n Bny = 2yTAny.

To simplify the problem, we enlarge the domain of y to be R
fn+ = {yi ≥ 0, i =

1, . . . , fn} instead of a discrete space. Because An is not positive definite, there is
no global minimum. For balanced designs, by Lemma 1(v), we have the constraint∑n

i=1
∑n

j=1 d1(xi, xj ) = mn2(s2 − 1)/(3s). Then our problem is to minimize

yTAny subject to yT1fn = mn2(s2 − 1)

6s
for y ∈ R

fn+ .

Let L = yTAny + λ(yT1fn − mn2(s2−1)
6s

). Taking derivatives with respect to y

and λ, respectively, and setting them to 0, we have

∂L

∂y
= 2Any + λ1fn = 0,

∂L

∂λ
= yT1fn − mn2(s2 − 1)

6s
= 0.

The equations can be solved based on Lemma 3, that is,

y∗ = mn(s2 − 1)

3s(n − 1)
1fn and λ∗ = 2(n − 2)m(s2 − 1)

3s(n − 1)
.

To prove this solution is a strict minimum of the Lagrange multiplier problem,
we perform the second derivative test. Let

H =
(

∂2L

∂(λ, y)∂(λ, y)T

)∣∣∣∣
(λ∗,y∗)

=
(

0 −1T
fn−1fn An

)

be the bordered Hessian matrix of L, where all of the partial derivatives are evalu-
ated at λ = λ∗ and y = y∗. By Theorem 5.4 of Sundaram (1996), we only need to
show that

yTAny > 0 for any y ∈ N = {
z ∈ R

fn : zT1fn = 0 and z �= 0fn

}
.

Then the solution is a strict minimum.
Let λ1, . . . , λfn be the eigenvalues of An and unit vectors v1, . . . , vfn be the

mutually orthogonal eigenvectors of An. Then any y ∈ N is a linear combination
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of vectors v1, . . . , vfn , that is,

y = b1v1 + · · · + bfnvfn.

By Lemma 3(iii), An has one negative eigenvalue. Without loss of generality, let
λ1 = (2 − n)/n be the unique negative eigenvalue. By Lemma 3(iv), v1 = 1fn , so
b1 = yTv1 = yT1fn = 0. Then

yTAny = λ2b
2
2 + · · · + λfnb

2
fn

> 0

owing to λi > 0 for 2 ≤ i ≤ fn.
In summary, L achieves the minimum if and only if all the entries of y are equal,

which is equivalent to that D is an equidistant design under the L1-distance. It is
easy to verify that the minimum is LB as stated in the theorem. �

We need the following lemma from Wang, Xiao and Xu (2018) to prove Theo-
rem 4.

LEMMA 4. Let n be an odd prime and b ∈ Zn. The L1-distances of distinct
rows of Eb take on only three values,

dij (Eb) =

⎧⎪⎪⎨
⎪⎪⎩

(
n2 − 1

)
/3 + f (b), i = n or j = n,(

n2 − 1
)
/3 − 2f (b), i = n − j,(

n2 − 1
)
/3, otherwise,

where f (b) = (W(b) − (n − 1)/2)2 − (n2 − 1)/12 and dij (Eb) denotes the L1-
distance between the ith and j th rows of Eb, i, j = 1, . . . , n and i �= j .

PROOF OF THEOREM 4. (i) Using Lemma 4 and after some tedious algebra,
we have

g(Eb) = (n − 1)
{
36f (b)2 − (n − 2)

(
n2 − 1

)2}
/
(
9n2)

.

Then the result follows from (5.1) and some additional algebra.
(ii) By (5.3), minimizing φ(Eb) is equivalent to minimizing |f (b)| = |(W(b)−

(n − 1)/2)2 − (n2 − 1)/12|. Since W(b) is an integer and n is odd, the minimum
value of f (b) must be one of the two values, c2

0 − (n2 −1)/12 or (c0 +1)2 − (n2 −
1)/12. Comparing these two values, we further have

f
(
b∗) =

{
c2

0 − (
n2 − 1

)
/12, c2

0 + (c0 + 1)2 ≥ (
n2 − 1

)
/6,

(c0 + 1)2 − (
n2 − 1

)
/12, c2

0 + (c0 + 1)2 <
(
n2 − 1

)
/6.

Then equation (5.4) follows after some algebra.
(iii) By part (i), we have

(A.2) φeff(Eb∗) =
(

1 + 720f 2(b∗)
(n − 2)(12n3 + 154n2 − 12n − 29)

)−1
.
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By (5.4) and noting that c0 ≤
√

(n2 − 1)/12 < c0 + 1, we have that if c0 ≥√
(n2 − 4)/12 − 1/2, then

0 ≤ f
(
b∗)2 = [

c2
0 − (

n2 − 1
)
/12

]2 ≤ (
n2 − 4

)
/12.

Similarly, if c0 <

√
(n2 − 4)/12 − 1/2, we also have

0 ≤ f
(
b∗)2 = [

(c0 + 1)2 − (
n2 − 1

)
/12

]2 ≤ (
n2 − 4

)
/12.

Substituting the inequality f (b∗)2 ≤ (n2 − 4)/12 into (A.2) and using the fact that
n ≥ 3, we get

φeff(Eb∗) ≥
(

1 + 60(n + 2)

12n3 + 154n2 − 12n − 29

)−1

>

(
1 + 60(n + 2)

12n3 + 24n2

)−1
= n2

n2 + 5
,

which goes to one as n → ∞. This completes the proof. �
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