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While the minimum aberration criterion is popular for selecting good
designs with qualitative factors under an ANOVA model, the minimum β-
aberration criterion is more suitable for selecting designs with quantitative
factors under a polynomial model. In this paper, we propose the concept of
wordlength enumerator to unify these two criteria. The wordlength enumera-
tor is defined as an average similarity of contrasts among all possible pairs of
runs. The wordlength enumerator is easy and fast to compute, and can be used
to compare and rank designs efficiently. Based on the wordlength enumera-
tor, we develop simple and fast methods for calculating both the generalized
wordlength pattern and the β-wordlength pattern. We further obtain a lower
bound of the wordlength enumerator for three-level designs and characterize
the combinatorial structure of designs achieving the lower bound. Finally, we
propose two methods for constructing supersaturated designs that have both
generalized minimum aberration and minimum β-aberration.

1. Introduction. Fractional factorial designs are widely used in various areas for screen-
ing important factors among a large number of potential variables. The minimum aberra-
tion criterion has been frequently used in the selection of regular fractional factorial designs
(Mukerjee and Wu (2006) and Wu and Hamada (2009)). It is popular especially when the
experimenter has little knowledge about the potential significant effects. In order to compare
general factorial designs, Tang and Deng (1999) and Xu and Wu (2001) proposed the gen-
eralized minimum aberration criterion. They further justified the criterion for designs with
qualitative factors under an ANOVA model. There are abundant researches on constructions
and properties of generalized minimum aberration designs; see Xu, Phoa and Wong (2009)
and Cheng (2014).

For experiments with quantitative factors, response surface models such as polynomial
models are frequently used for describing the relationship between the response and the fac-
tors. In such situations, the generalized minimum aberration criterion is not adequate be-
cause designs with the same generalized wordlength pattern may have very different sta-
tistical properties (Cheng and Wu (2001), Cheng and Ye (2004), Sabbaghi, Dasgupta and
Wu (2014)). Cheng and Ye (2004) argued that for designs with quantitative factors, effects
of lower polynomial degree should be regarded as more important than effects of higher
polynomial degree whereas effects of the same polynomial degree should be regarded as
equally important. Consequently, they defined the β-wordlength pattern and the minimum
β-aberration criterion based on a polynomial model. Tang and Xu (2014) and Lin, Yang and
Cheng (2017) provided statistical justification and additional insights regarding minimum
β-aberration designs. Tang and Xu (2014) also gave some properties of the β-wordlength
pattern and constructed regular minimum β-aberration designs with 27 and 81 runs. How-
ever, their method relies on the properties of regular designs, which makes it less applicable
for general fractional factorial designs.
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Computation is always an important issue for any algorithmic construction method be-
cause there are many nonregular designs and they do not have a unified structure (Xu, Phoa
and Wong (2009)). The minimum β-aberration criterion has a major drawback in this regard.
It is expensive to compute the β-wordlength pattern as it requires to consider all interaction
effects by definition.

In this paper, we introduce the concept of wordlength enumerator for general fractional
factorial designs. The wordlength enumerator is defined as an average similarity of contrasts
among all possible pairs of runs. The wordlength enumerator is easy and fast to compute, and
can be used to compare and rank designs efficiently. We show that the wordlength enumerator
is a linear function of the generalized wordlength pattern for designs with qualitative factors,
and a linear function of the β-wordlength pattern for designs with quantitative factors. We
further establish general theoretical results which enable us to develop fast computational
methods for calculating both the generalized wordlength pattern and the β-wordlength pat-
tern. Besides the computational advantages, the wordlength enumerator offers new insights
on design properties and constructions. We obtain a lower bound for wordlength enumerators
and propose methods for constructing designs achieving the lower bound. The resulting de-
signs have generalized minimum aberration as well as minimum β-aberration, whereas most
existing designs do not have minimum β-aberration.

The paper is organized as follows. Section 2 introduces some notation and backgrounds.
Section 3 presents the concept of the wordlength enumerator for general fractional factorial
designs and studies its properties. Section 4 focuses on three-level designs and gives a lower
bound of the wordlength enumerator. Section 5 proposes methods for constructing designs
that achieve the lower bound. Section 6 presents conclusions and discussions. For clarity, all
proofs are given in the Appendix.

2. Notation and backgrounds. A design with N runs, n factors and s levels, denoted
by (N, sn), is an N × n matrix with entries from Zs = {0,1, . . . , s − 1}. Let p0(x) ≡ 1 and
pj (x) be a polynomial of degree j defined on Zs , where j = 1, . . . , s − 1, such that

(1)
s−1∑
x=0

pi(x)pj (x) =
{

0 if i �= j ;
s if i = j.

The set {p0(x),p1(x), . . . , ps−1(x)} is called an orthogonal polynomial basis (Draper and
Smith (1998), Chapter 22). Denote F1, . . . ,Fn as the factors of an (N, sn) design D =
(dil)N×n. The orthogonal polynomial contrast coefficient for F

j1
1 · · ·Fjn

n is defined to be an
N -vector whose ith component is pj1(di1)×· · ·×pjn(din). For a number x, let wt(x) = 0 if

x = 0 and wt(x) = 1 if x �= 0. If wt(j1) + · · · + wt(jn) = k, F
j1
1 · · ·Fjn

n is called a k-factor

interaction effect as it involves k distinct factors. If j1 + · · · + jn = j , F
j1
1 · · ·Fjn

n is also
called a j th-degree interaction effect. For example, F1F

2
2 is a 2-factor interaction effect and

a 3rd-degree interaction effect.
For an (N, sn) design D, consider an ANOVA model

Y = X0α0 + X1α1 + · · · + Xnαn + ε,

where Y is the vector of N observations, α0 is the intercept and X0 is an N × 1 vector of 1’s,
αj is the vector of all j -factor interaction effects, Xj is the matrix of orthonormal contrast

coefficient for αj and ε is a random error. Denote nj = (s − 1)j
(n
j

)
and Xj = (x

(j)
ik )N×nj

,

where x
(j)
ik = pj1(di1) × · · · × pjn(din) with wt(j1) + · · · + wt(jn) = j . Xu and Wu (2001)

defined the generalized wordlength pattern of design D as

(2) Aj(D) = N−2
∑

0≤j1,...,jn≤s−1
wt(j1)+···+wt(jn)=j

∣∣∣∣∣
N∑

i=1

n∏
l=1

pjl
(dil)

∣∣∣∣∣
2

for j = 1, . . . , n.
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Throughout the paper, we always define A0(D) = 1. For two designs D1 and D2, D1 is
said to have less aberration than D2 if there exists an r ∈ {1,2, . . . , n}, such that Ar(D1) <

Ar(D2) and Ai(D1) = Ai(D2) for i = 1, . . . , r − 1. D0 is said to have generalized minimum
aberration if there is no other design with less aberration than D0.

For an (N, sn) design, Cheng and Ye (2004) defined the β-wordlength pattern. Consider a
polynomial model

Y = Z0θ0 + Z1θ1 + · · · + ZKθK + ε,

where Y is the vector of N observations, θj is the vector of all j th-degree interactions and
Zj is the matrix of orthonormal polynomial contrast coefficient for θj , K = n(s − 1) is the

highest polynomial degree, and ε is a random error. Denote Zj = (z
(j)
ik )N×n′

j
where z

(j)
ik =

pj1(di1)×· · ·×pjn(din) with j1 +· · ·+jn = j and n′
j is the number of effects with degree j .

The β-wordlength pattern (β1, . . . , βK) is defined by

(3) βj (D) = N−2
∑

0≤j1,...,jn≤s−1
j1+···+jn=j

∣∣∣∣∣
N∑

i=1

n∏
l=1

pjl
(dil)

∣∣∣∣∣
2

for j = 1, . . . ,K.

Let β0(D) = 1 for convenience. Cheng and Ye (2004) argued that a good design should
sequentially minimize β1, β2, . . . , βK . Such a criterion was termed as the minimum β-
aberration criterion by Tang and Xu (2014).

The Aj(D) defined in (2) measures the overall aliasing of all j -factor interaction effects
whereas the βj (D) defined in (3) measures the overall aliasing of all j th-degree interac-
tion effects. For two-level designs, the β-wordlength pattern is the same as the generalized
wordlength pattern; however, for multilevel designs with s > 2, the β-wordlength pattern is
different from the generalized wordlength pattern.

Two designs are combinatorially isomorphic if one design can be obtained from the other
by permuting rows, columns and factor levels. For geometrical isomorphism, factor level
permutations are restricted to the reversal of all levels for each factor (Cheng and Ye (2004)).
Geometrically isomorphic designs have the same β-wordlength pattern but combinatorially
isomorphic designs may have different β-wordlength patterns.

3. Wordlength enumerator. From the expressions (2) and (3), we can easily see that
both the generalized wordlength pattern and the β-wordlength pattern are defined based on
relationship among columns. Although this way of thinking is statistically sound, it comes
with a heavy computational burden. For an (N, sn) design and any j , the complexity of
calculating Aj or βj is at least O(N

(n
j

)
). To compute all Aj or βj , it requires O(Nsn) oper-

ations, which is cumbersome and even unmanageable for a moderate or large n. To alleviate
the computational burden, Xu and Wu (2001) used coding theory to establish a relationship
between the generalized wordlength pattern and the (Hamming) distance distribution of a
design. Xu (2003) further proposed an alternative criterion, called minimum moment aberra-
tion, based on the pairwise Hamming distances of a design. However, their approaches do not
work for the minimum β-aberration criterion. In this section, we propose a general approach
based on the concept of wordlength enumerator and develop a fast computational method for
the β-wordlength pattern, which requires O(N2n2(s − 1)) operations. This is crucial in the
algorithmic construction of minimum β-aberration designs.

DEFINITION 1. Let {p0(x),p1(x), . . . , ps−1(x)} be a set of orthogonal polynomial basis
and {y0, y1, . . . , ys−1} be a set of s numbers. For u, v ∈ Zs , define the contrast similarity as

(4) R(u, v) =
s−1∑
i=0

pi(u)pi(v)yi .
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It is easy to see that the contrast similarity R(u, v) has the symmetrical property
R(u, v)=R(v,u) for any u and v in Zs .

Without loss of generality, let y0 = 1 throughout the paper. We can choose other yi ac-
cording to the importance of contrasts. Specifically, we consider two choices: (i) yi = y for
i = 1, . . . , s−1 and (ii) yi = yi for i = 1, . . . , s−1. The first choice assumes that all contrasts
are equally important. This is appropriate for the ANOVA model with qualitative factors and
the generalized minimum aberration criterion. On the other hand, the second choice assumes
that lower order contrasts are more important than higher order contrasts when 0 < y < 1.
This is appropriate for quantitative factors with polynomial models and the minimum β-
aberration criterion. The choice of y is arbitrary. It could be a real or complex number.

EXAMPLE 1. When s = 3, the orthogonal polynomials satisfying (1) are p0(x) = 1,
p1(x) = √

1.5(x − 1) and p2(x) = √
2[1.5(x − 1)2 − 1] for x ∈ Z3. It is easy to verify that

(5)

⎧⎪⎪⎨
⎪⎪⎩

R(0,1) = R(1,0) = R(1,2) = R(2,1) = 1 − y2,

R(0,2) = R(2,0) = 1 − 1.5y1 + 0.5y2,

R(0,0) = R(2,2) = 1 + 1.5y1 + 0.5y2,

R(1,1) = 1 + 2y2.

DEFINITION 2. For an (N, sn) design D = (dik)N×n, the wordlength enumerator of D

is defined as

(6) E(D) = N−2
N∑

a=1

N∑
b=1

n∏
j=1

R(daj , dbj ).

The wordlength enumerator E(D) is an overall measure of the contrast similarities among
all possible pairs of rows in D. We use the term wordlength enumerator because E(D) char-
acterizes the generalized wordlength pattern or β-wordlength pattern when we let yi = y for
i = 1, . . . , s − 1 or yi = yi for i = 1, . . . , s − 1, respectively. For clarity, we denote E(D) as
Eα(D;y) or Eβ(D;y) to distinguish these two cases; see Theorems 1 and 2.

EXAMPLE 2. Consider a three-level design

D =
⎛
⎝0 1 2

1 2 0
2 0 1

⎞
⎠ .

For the first two rows (0,1,2) and (1,2,0), the product of the contrast similarities is
R(0,1)R(1,2)R(2,0) = (1 − y2)(1 − y2)(1 − 1.5y1 + 0.5y2). It is straightforward to ver-
ify that

E(D) = 1 + (
3y2

1 + 18y1y2 + 3y2
2 + 2y3

2 + 6y2
1y2

)
/4.

When y1 = y2 = y, we have Eα(D;y) = 1 + 6y2 + 2y3. When y1 = y and y2 = y2, we have
Eβ(D;y) = 1 + (3y2 + 18y3 + 9y4 + 2y6)/4.

The following theorem establishes a fundamental relationship between Eα(D;y) and the
generalized wordlength pattern under the first choice of weights.

THEOREM 1. Let yi = y for i = 1, . . . , s − 1. For an (N, sn) design D,

(7) Eα(D;y) =
n∑

k=0

Ak(D)yk.
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When yi = y for i = 1, . . . , s − 1, according to the definition of orthogonal polynomial
and orthogonal matrix, we have

(8) R(u, v) =
s−1∑
i=0

pi(u)pi(v)yi =
{

1 + (s − 1)y if u = v;
1 − y if u �= v.

Let dH (a, b) be the Hamming distance of rows a and b, that is, the number of positions where
rows a and b differ from each other. Let Bi(D) = N−1#{(a, b) : dH (a, b) = i} be the distance
distribution for i = 0, . . . , n. Then

Eα(D;y) = N−2
N∑

a=1

N∑
b=1

n∏
j=1

R(daj , dbj )

= N−2
N∑

a=1

N∑
b=1

[
1 + (s − 1)y

]n−dH (a,b)
(1 − y)dH (a,b)

= N−1
n∑

i=0

[
1 + (s − 1)y

]n−i
(1 − y)iBi(D).

Combining this with Theorem 1, we get the following relationship between the generalized
wordlength pattern and the distance distribution:

(9)
n∑

k=0

Ak(D)yk = N−1
n∑

i=0

[
1 + (s − 1)y

]n−i
(1 − y)iBi(D).

EXAMPLE 3. Cheng and Ye (2004) considered two combinatorially isomorphic 33−1

designs with different geometrical structures; see Table 1. The first design D1 is defined by
F3 = F1 +F2 (mod 3) and the second design D2 is defined by F ′

3 = F1 +F2 +2 (mod 3). It
is easy to verify that B0(D) = 1,B1(D) = 0,B2(D) = 6,B3(D) = 2 for both designs. Simple
algebra shows that the right-hand side of (9) simplifies to 1 + 2y3. So we have A1(D) =
A2(D) = 0 and A3(D) = 2 for both designs.

Now consider the second choice of weights where yi = yi for i = 1, . . . , s − 1. The situ-
ation is more complicated because (8) no longer holds. For example, we have four different
R(u, v) values when s = 3; see (5). Nevertheless, we have the following important result that
relates Eβ(D;y) to the β-wordlength pattern.

TABLE 1
Two combinatorially isomorphic designs with different geometrical structures

Design D1 Design D2

F1 F2 F3 F1 F2 F ′
3

0 0 0 0 0 2
0 1 1 0 1 0
0 2 2 0 2 1
1 0 1 1 0 0
1 1 2 1 1 1
1 2 0 1 2 2
2 0 2 2 0 1
2 1 0 2 1 2
2 2 1 2 2 0
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THEOREM 2. Let yi = yi for i = 1, . . . , s − 1. For an (N, sn) design D,

(10) Eβ(D;y) =
n(s−1)∑
k=0

βk(D)yk.

EXAMPLE 4. Consider the two 33−1 designs given in Table 1 again. When yi = yi for
i = 1,2, it is straightforward to verify that their wordlength enumerators are

Eβ(D1;y) = 1 + (
3y3 + 3y4 + 9y5 + y6)

/8

and

Eβ(D2;y) = 1 + (
3y4 + y6)

/2,

respectively. According to Theorem 2, their β-wordlength patterns are (0,0,3/8,3/8,

9/8,1/8) and (0,0,0,3/2,0,1/2), respectively. This agrees with the results from Cheng and
Ye (2004) who computed the β-wordlength patterns according to the definition. Note that
Eβ(D1;y)−Eβ(D2;y) = 3y3(1 − 3y + 3y2 − y3)/8 = 3y3(1 − y)3/8 > 0 when 0 < y < 1.

THEOREM 3. Let D1 and D2 be two (N, sn) designs. If D1 has less β-aberration than
D2, then there exists a positive ε, such that for any y ∈ (0, ε),

Eβ(D1;y) − Eβ(D2;y) < 0.

Theorem 3 implies that the wordlength enumerators can be used for identifying and rank-
ing nonisomorphic designs. Pang and Liu (2011) and Bird and Street (2018) developed al-
gorithms to enumerate geometrically isomorphic orthogonal arrays. Due to the complexity
of isomorphism check, they only enumerated 18-run orthogonal arrays. Geometrically iso-
morphic designs have the same β-wordlength pattern, so they also have the same Eβ(D;y)

values for all y. Whenever two designs have different Eβ(D;y) values for some y, they must
be geometrically nonisomorphic. Since the computation of Eβ(D;y) is much faster than
isomorphism check, one can compute and compare Eβ(D;y) to identify and rank noniso-
morphic designs efficiently.

EXAMPLE 5. Pang and Liu (2011) and Bird and Street (2018) identified 13 geometrically
nonisomorphic OA(18,33). We compute their β-wordlength patterns and Eβ(D;y) with y =
0.005, shown in Table 2. All 13 nonisomorphic designs have different β-wordlength patterns
and different Eβ(D;0.005) values. The ranking of Eβ(D;0.005) values is consistent with the
ranking of the β-wordlength patterns. It is certainly more efficient and convenient to compute
and compare Eβ(D;y) than the whole β-wordlength pattern.

If we can obtain an explicit formula for the wordlength enumerator Eβ(D;y), then by
comparing the coefficients of the monomials with the same order, we can provide closed
forms for the βk(D) values. However, an explicit formula for the wordlength enumerator is
often not available. Here, we develop an efficient method for calculating the βk(D) values by
solving a simple linear equation system.

Let K = n(s − 1) and B = (β1, . . . , βK)T be a vector of the β-wordlength pattern. Let
ω1, . . . ,ωK be K distinct numbers and Eβ(D;ωj ) be the wordlength enumerator of D eval-
uated at y = ωj . Denote E = (Eβ(D;ω1) − 1, . . ., Eβ(D;ωK) − 1)T . From Theorem 2, we
have E = VB, where V is the Vandermonde matrix

V =

⎡
⎢⎢⎢⎢⎣

ω1 ω2
1 · · · ωK

1

ω2 ω2
2 · · · ωK

2
...

...
. . .

...

ωK ω2
K · · · ωK

K

⎤
⎥⎥⎥⎥⎦ .
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TABLE 2
Properties of geometrically nonisomorphic OA(18,33)

Design β3 β4 β5 β6 Eβ(D;0.005) × 108

1 0 0.125 0.75 0.125 0.008
2 0 0.375 0 0.125 0.023
3 0 0.5 0 0.5 0.031
4 0 1.5 0 0.5 0.094
5 0.01 0.344 0.281 0.031 0.152
6 0.042 0.125 0.375 0.125 0.529
7 0.094 0.094 0.281 0.031 1.178
8 0.094 0.594 0.281 0.031 1.209
9 0.167 0 0 0.5 2.083

10 0.167 0.375 0 0.125 2.107
11 0.26 0.094 0.281 0.031 3.261
12 0.375 0.125 0.375 0.125 4.695
13 0.375 0.375 1.125 0.125 4.711

It is well known that the Vandermonde matrix V is nonsignular as long as ω1, . . . ,ωK

are distinct, which leads to B = V−1E. We can choose arbitrarily K distinct numbers for
ω1, . . . ,ωK . For easy computation, we can choose ω1, . . . ,ωK such that V−1 has a simple
closed form. Specifically, let ω = e2π

√−1/K and ωi = ωi for i = 1, . . . ,K so that ωK = 1 and

ωK
i = 1. Then VV

T = V
T

V = KI and V−1 = K−1V
T

, where V
T

is the conjugate transpose

of V and I is a K × K identity matrix. Note that the (i, j)th elements of V and V
T

are ωij

and ω−ij , respectively. We have the following theorem.

THEOREM 4. Let K = n(s − 1) and ω = e2π
√−1/K . For an (N, sn) design D,

(11) βi(D) = 1

K

K∑
j=1

ω−ij (
Eβ

(
D;ωj ) − 1

)
for i = 1, . . . ,K.

Theorem 4 provides a simple and fast method for computing the β-wordlength pattern,
which is extremely useful in practice. For an (N, sn) design, the complexity of computing
each wordlength enumerator Eβ(D;ωj ) according to (6) is O(N2n). So the complexity of
computing the entire β-wordlength pattern according to Theorem 4 is O(N2nK + K2) =
O(N2n2(s − 1) + n2(s − 1)2), which is equivalent to O(N2n2(s − 1)). In contrast, the
complexity of computing the entire β-wordlength pattern according to the definition (3) is
O(Nsn). The difference is huge for moderate to large n.

EXAMPLE 6. Consider an OA(36,313) listed on Sloane (2019) and given in Ap-
pendix B. Using Theorem 4, we obtain the β-wordlength pattern as (β1, . . ., β26) =
(0,0,7.875,53.039,137.426, . . . ,1.545). It took 4.5 seconds to compute the entire β-
wordlength pattern using Theorem 4 using R on an iMac computer with 3.2 GHz Intel Core
i5 processor. In comparison, it took 28, 67 and 204 seconds to compute the first three, four
and five βi according to the definition (3).

To further illustrate the use of Theorems 3 and 4, we construct minimum β-aberration de-
signs from the OA(36,313) given in Appendix B. Owing to the high efficiency of the method
for calculating βk(D) values stated above, we adopt an exhaustive search by considering
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TABLE 3
Minimum β-aberration designs from an OA(36,313) in Appendix B

n Columns and level permutations (β3, β4)

3 3u 4 13 (0, 0.0313)
4 2 3 8u 13u (0, 0.4219)
5 1 2u2 6 7 13 (0, 2.875)
6 1 2u2 3u 6 7 13 (0.0938, 4.1016)
7 1 4u2 5 8u 10u2 11 12 (0.2813, 5.8125)
8 1u 2 5u2 6u 7u 8 12 13 (0.6563, 11.9453)
9 1u 2 3u 4u2 5u2 7u 9u 12 13 (1.1719, 17.7891)

10 1u2 2u 3 4u2 5 7u2 8u2 10u2 11 (1.875, 21.375)
12

11 1u2 2u 3 4u2 5 6 7u2 8u2 10u2 (2.8125, 29.8828)
11 12

12 1u2 2u 3 4u2 5 6 7u 8u2 9 (3.75, 44.5313)
10u2 11 12

13 1u2 2u 3 4u2 5 6 7u 8u2 9 (5.6719, 61.7578)
10u2 11 12 13

Note: u and u2 represent {0,1,2} → {1,2,0} and {0,1,2} → {2,0,1}, respectively.

all projections and conducting all level permutations to find the minimum β-aberration de-
signs. There are six level permutations for three levels; however, as pointed by Cheng and Ye
(2004), the six permutations can be divided into three pairs when geometrical isomorphism
is considered. Following Cheng and Ye (2004), we only need to consider three linear per-
mutations, that is, the identical transformation I : {0,1,2} → {0,1,2}, u: {0,1,2} → {1,2,0}
and u2: {0,1,2} → {2,0,1}. For example, when we consider 10-factor projections, there are(13
10

) = 286 projections. For each projection, there are 310 = 59,049 linear level permutations.
For each of these designs, we compute the β-wordlength pattern according to Theorem 4.
If the original formula of β-wordlength pattern (3) is used, the computational time needed
is intolerable. Table 3 lists the columns and level permutations of the best projections with
n = 3–13 columns. According to Table 3, for n = 10, to obtain the minimum β-aberration
projection design, we should choose columns 1–5, 7–8 and 10–12, and further apply level
permutation u to column 2, level permutation u2 to columns 1, 4, 7, 8 and 10. The resulting
design has β3 = 1.875 and β4 = 21.375.

We can also develop a fast computational procedure for calculating the generalized
wordlength pattern (A1, . . . ,An) based on the wordlength enumerator Eα(D;y) with a com-
plexity of O(N2n2) for (N, sn) designs. The procedure is similar to Theorem 4 so we omit
the details.

4. A lower bound for three-level designs. In the rest of the paper, we focus on three-
level designs, which are commonly used for studying quantitative factors. For an (N,3n)

design D = (dil)N×n and a, b = 1, . . . ,N , let

(12)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n1(a, b) = �
{
l : (dal, dbl) = (0,1), (1,0), (1,2) or (2,1), l = 1, . . . , n

}
,

n2(a, b) = �
{
l : (dal, dbl) = (2,0) or (0,2), l = 1, . . . , n

}
,

n3(a, b) = �
{
l : (dal, dbl) = (0,0) or (2,2), l = 1, . . . , n

}
,

n4(a, b) = �
{
l : (dal, dbl) = (1,1), l = 1, . . . , n

}
.

For convenience, denote

σ1 = 1 − y2, σ2 = 1 − 1.5y1 + 0.5y2, σ3 = 1 + 1.5y1 + 0.5y2, σ4 = 1 + 2y2.
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Following (5) and (6), we have

(13) E(D) = N−2
N∑

a=1

N∑
b=1

σ
n1(a,b)
1 σ

n2(a,b)
2 σ

n3(a,b)
3 σ

n4(a,b)
4 .

THEOREM 5. Suppose σi > 0 for i = 1, . . . ,4. For a balanced (N,3n) design D,

(14) E(D) ≥ N−1[(
σ 2

3 σ4
)n/3 + (N − 1)

(
σ 2

1 σ2
)δ(

σ 2
3 σ4

)n/3−δ]
,

where δ = 2nN/[9(N − 1)]. The above lower bound can be achieved if and only if the fol-
lowing conditions are satisfied (i) n4(a, a) = n/3 for all rows a and (ii) n1(a, b) = 2δ,
n2(a, b) = δ, n3(a, b) = 2(n/3 − δ) and n4(a, b) = n/3 − δ for all distinct rows a and b,
where n1(a, b), n2(a, b), n3(a, b) and n4(a, b) are defined in (12).

Substituting y1 = y2 = y or y1 = y, y2 = y2 into (14), respectively, and collecting like
terms, we obtain the following corollary.

COROLLARY 1. For a balanced (N,3n) design D and 0 < y < 1,

Eα(D;y) ≥ 1 + n(2n − N + 1)

N − 1
y2 + · · · + 2n

N

[
1 + (N − 1)(−2)

−2nN
3(N−1)

]
yn,

and

Eβ(D;y) ≥ 1 + n(n − N + 1)

2(N − 1)
y2 + · · · + 2−n/3y2n.

For a balanced (N,3n) design D, both A1(D) and β1(D) are zero. Then Corollary 1
provides two lower bounds on A2(D) and β2(D) as y goes to 0. Specifically, we have

(15) A2(D) ≥ n(2n − N + 1)

N − 1
and β2(D) ≥ n(n − N + 1)

2(N − 1)
.

A balanced three-level design D achieving the lower bound in Theorem 5 has general-
ized minimum aberration and minimum β-aberration among all possible designs. Theorem 5
characterizes the combinatorial structure of such designs. The condition n4(a, a) = n/3 is
equivalent to that each row contains n/3 ones. The conditions on ni(a, b) ensure D to have
proper level balances for all possible pairs of rows. In addition, such a design is equidistant. It
is easy to see that the L1- and L2-distances between distinct rows of a and b are 4δ and

√
6δ,

respectively. Then, by Theorem 3 of Zhou and Xu (2015), D is a maximin distance design
under both the L1 and L2 distances.

EXAMPLE 7. The wordlength enumerators of the (9,312) design in Table 4 are

Eα(D;y) = 1 + 24y2 + 224y3 + · · · + 448y12,

Eβ(D;y) = 1 + 3y2 + 45y3 + · · · + 0.0625y24,

respectively. So we have A2(D) = 24 and β2(D) = 3, achieving the lower bounds of A2(D)

and β2(D) in (15), respectively. It is easy to verify that the conditions for achieving the lower
bound (14) in Theorem 5 are satisfied, so the design has generalized minimum aberration and
minimum β-aberration.
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TABLE 4
An optimal (9,312) design

Run 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 1 1 1 1 2 2 2 2
2 0 1 1 2 1 2 2 0 2 0 0 1
3 0 2 2 1 1 0 0 2 2 1 1 0
4 1 0 1 1 2 1 2 2 0 2 0 0
5 1 1 2 0 2 2 0 1 0 0 1 2
6 1 2 0 2 2 0 1 0 0 1 2 1
7 2 0 2 2 0 1 0 0 1 2 1 1
8 2 1 0 1 0 2 1 2 1 0 2 0
9 2 2 1 0 0 0 2 1 1 1 0 2

5. Construction of optimal supersaturated designs. We present two construction
methods for three-level designs achieving the lower bound of E(D) in Theorem 5. The re-
sulting designs are supersaturated in the sense that the number of factors is larger than the
number of runs. Supersaturated designs are useful for screening a large number of factors
using a small number of runs. There are many existing researches on the construction and
analysis of such designs after Lin (1993) and Wu (1993); see, for example, Sun, Lin and Liu
(2011) and Georgiou (2014) for a review.

Our first construction method uses saturated regular designs. We have the following gen-
eral result.

THEOREM 6. For any integer k ≥ 2, there exists an optimal (N,3n) design with N = 3k

and n = 3(3k − 1)/2 achieving the lower bound in Theorem 5.

EXAMPLE 8. A regular 34−2 design has two independent columns F1 and F2 and two
dependent columns F3 and F4, where F3 = F1 + F2 (mod 3) and F4 = F1 + 2F2 (mod 3).
Then the following 12 columns,

(F1,F2,F3,F4,F1 + 1,F2 + 1,F3 + 1,F4 + 1,F1 + 2,F2 + 2,F3 + 2,F4 + 2),

form an optimal (9,312) design, which is listed in Table 4, where the addition is over Z3.

Xu and Wu (2005) presented several methods for constructing optimal multilevel super-
saturated designs. Their designs have generalized minimum aberration, but do not have min-
imum β-aberration. The designs we constructed from Theorem 6 have both generalized min-
imum aberration and minimum β-aberration. Here is an example.

EXAMPLE 9. Xu and Wu (2005) provided two constructions of (9,312) designs via their
Theorems 6 and 7. Denote these two designs by D3 and D4 for convenience. Both designs
have the same Eα(D;y) as the optimal (9,312) design given in Table 4; see Example 7. Their
Eβ(D;y) are different and they are

Eβ(D3;y) = 1 + 6.5y2 + 41.625y3 + · · · + 0.1292y24,

Eβ(D4;y) = 1 + 7.5y2 + 31.5y3 + · · · + 0.1526y24,

respectively. For y = 0.001, Eβ(D3;y) = 6.5418 × 10−6 and Eβ(D4;y) = 7.5317 × 10−6.
The lower bound of Eβ(D;y) given in Theorem 5 is 3.0451 × 10−6, which is achieved by
the optimal (9,312) design given in Table 4.
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In addition, our new design is better than the designs from Xu and Wu (2005) in terms of
other aspects such as the number of nonorthogonal pairs and maximum absolute correlation
between the columns. Our optimal design has 12 nonorthogonal pairs, each with absolute cor-
relation 0.5, whereas the two designs from Xu and Wu (2005) have 38 and 54 nonorthogonal
pairs, respectively, and maximum absolute correlation 0.67 for both.

Huang, Lin and Liu (2012) proposed the γ -wordlength pattern to characterize supersat-
urated designs with quantitative factors. Such a criterion only considers the main effects
and two-factor interactions, thus can be regarded as a simpler version of the β-wordlength
pattern. In Example 4 of their paper, the authors listed a 9 × 28 array, which consists of
seven separated OA(9,34)s. We consider (9,312) designs formed by three OA(9,34)s. There
are

(7
3

) = 35 such (9,312) designs. For each design, we conduct all level permutations to
find the best designs. The 35 designs fall into two groups. One group has 21 designs which
can achieve the β-wordlength pattern of (0,4,44.25, . . . ,0.0039) or the γ -wordlength pat-
tern of (0,4,16,4). Using the notation in Huang, Lin and Liu (2012), one example of
such designs is 1 2 3 (acac baaa cbac). The other group has 14 designs which can only
achieve the β-wordlength pattern of (0,4.25,42.375, . . . ,0.015625) or the γ -wordlength
pattern of (0,4.25,15.5,4.25). One such design is 1 2 4 (aaca cacb bbcb). When y = 0.001,
Eβ(D;y) = 4.0444 × 10−6 or 4.2925 × 10−6, respectively, for these two designs. Both de-
signs do not achieve the lower bound of Eβ(D;y) given in Theorem 5 or Corollary 1.

Our second construction method uses generalized Hadamard matrices. A generalized
Hadamard matrix over an additive group G of order s, denoted by H(λ,G) = (hij ), is a
(λs) × (λs) matrix with entries from G satisfying that for every i, j , 1 ≤ i < j ≤ λs, the
multiset {hik − hjk|1 ≤ k ≤ λs} contains every element of G exactly λ times. A generalized
Hadamard matrix is normalized if all entries in the first row and first column of the matrix
are zero. When s = 2, a generalized Hadamard matrix is nothing but a Hadamard matrix.

EXAMPLE 10. The following 6 × 6 matrix is a generalized Hadamard matrix H(2,Z3):

0 0 0 0 0 0
0 0 1 1 2 2
0 1 0 2 1 2
0 1 2 0 2 1
0 2 1 2 0 1
0 2 2 1 1 0

Let H0 = (hij ) be the 6 × 5 matrix obtained by deleting the first column. Let H1 = ((hij + 1)

mod 3) and H2 = ((hij +2) mod 3). Then the column juxtaposition of H0,H1 and H2 forms
the (6,315) design D given in Table 5, which achieves the lower bound in Theorem 5.

TABLE 5
An optimal (6,315) design

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
2 0 1 1 2 2 1 2 2 0 0 2 0 0 1 1
3 1 0 2 1 2 2 1 0 2 0 0 2 1 0 1
4 1 2 0 2 1 2 0 1 0 2 0 1 2 1 0
5 2 1 2 0 1 0 2 0 1 2 1 0 1 2 0
6 2 2 1 1 0 0 0 2 2 1 1 1 0 0 2



266 Y. TANG AND H. XU

THEOREM 7. Let λ be a positive number, N = 3λ and n = 3(N − 1). If there exists
a generalized Hadamard matrix H(λ,Z3), then there exists an optimal (N,3n) design D

achieving the lower bound (14) in Theorem 5.

The following existence results of generalized Hadamard matrices can be found implicitly
in de Launey (1986) and Beth, Jungnickel and Lenz (1999).

LEMMA 1. For any integer k ≥ 0, there exist generalized Hadamard matrices H(2 · 3k,

Z3) and H(4 · 3k,Z3).

Combining Lemma 1 with Theorem 7, we can construct optimal (N,3n) designs with
N = 2 · 3k+1 or 4 · 3k+1 and n = 3(N − 1) achieving the lower bound (14) in Theorem 5.

Suen, Das and Midha (2013) used generalized Hadamard matrices to construct optimal
fractional factorial designs. Their designs do not have minimum β-aberration whereas de-
signs constructed from Theorem 7 do.

6. Conclusions and discussions. We introduced the concept of wordlength enumera-
tor for general factorial designs. It is defined as an average similarity of contrasts between
all possible pairs of runs. The wordlength enumerator can unify the generalized minimum
aberration criterion for designs with qualitative factors and the minimum β-aberration crite-
rion for designs with quantitative factors. We developed simple and fast methods for calcu-
lating the generalized wordlength pattern and the β-wordlength pattern with O(N2n2) and
O(N2n2(s − 1)) operations, respectively, for (N, sn) designs.

We illustrated how the wordlength enumerator can be used to rank and select designs
efficiently. As an example, we searched minimum β-aberration projection designs from
an OA(36,313). The method is general and can be extended to deal with mixed-level de-
signs, blocked orthogonal arrays (Lin (2014)) and split-plot orthogonal arrays (Yang and Lin
(2017)) with a simple modification. Lin and Cheng (2012) examined various methods for
classifying and ranking designs. Obviously, the two wordlength enumerators we considered
in the paper have the same classification power as the generalized wordlength pattern and
the β-wordlength pattern, respectively. Nevertheless, we can choose other yi values to define
new enumerators. For example, if we are only interested in linear and quadratic contrasts and
assume that higher order contrasts are negligible, we can let yi = 0 for i = 3, . . . , s − 1. This
defines a new enumerator and a new type of wordlength pattern, which focuses on the inter-
actions among the linear and quadratic effects. Other types of enumerators can be defined by
different choices of the yi values.

We also obtained a lower bound for three-level designs and constructed supersaturated
designs that achieve the lower bound. These designs not only have generalized minimum
aberration, but also have minimum β-aberration. They are particularly useful in the early
stage of an investigation for screening important variables. Various analysis strategies can be
used for analyzing data from such designs; see Chipman, Hamada and Wu (1997), Joseph
and Delaney (2007), Yuan, Joseph and Lin (2007) and Moon, Dean and Santner (2012).

APPENDIX A: PROOFS

PROOF OF THEOREM 1. For rows a and b of D = (dil), we have R(dal, dbl) = 1 +∑s−1
i=1 pi(dal)pi(dbl)y, so

n∏
l=1

R(dal, dbl) =
n∏

l=1

[
1 + y

s−1∑
i=1

pi(dal)pi(dbl)

]
,
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which is a product of n polynomials, each with degree one. Expanding it and collecting like
terms, we know that the coefficient of yk in

∏n
l=1 R(dal, dbl) is

∑
(j1,...,jn)∈Sk

∏n
l=1 pjl

(dal) ×
pjl

(dbl), where the summation is over the set Sk = {(j1, . . . , jn) : wt(j1)+ · · ·+wt(jn) = k,

0 ≤ j1, . . . , jn ≤ s − 1}. So we have

Eα(D;y) = N−2
N∑

a=1

N∑
b=1

n∏
j=1

R(daj , dbj )

= N−2
N∑

a=1

N∑
b=1

s−1∑
k=0

[ ∑
(j1,...,jn)∈Sk

n∏
l=1

pjl
(dal)pjl

(dbl)

]
yk

= N−2
s−1∑
k=0

[ ∑
(j1,...,jn)∈Sk

N∑
a=1

N∑
b=1

n∏
l=1

pjl
(dal)pjl

(dbl)

]
yk

= N−2
s−1∑
k=0

∑
(j1,...,jn)∈Sk

[
N∑

a=1

n∏
l=1

pjl
(dal)

]2

yk.

Then Eα(D;y) = ∑s−1
k=0 Ak(D)yk follows definition (2). �

PROOF OF THEOREM 2. For rows a and b of D = (dil), we have R(dal, dbl) = 1 +∑s−1
i=1 pi(dal)pi(dbl)y

i , so

n∏
l=1

R(dal, dbl) =
n∏

l=1

[
1 + p1(dal)p1(dbl)y + · · · + ps−1(dal)ps−1(dbl)y

s−1]
,

which is a product of n polynomials, each with degree s − 1. Expanding it and collecting like
terms, we know that the coefficient of yk in

∏n
l=1 R(dal, dbl) is

∑
(j1,...,jn)∈S′

k

∏n
l=1 pjl

(dal) ×
pjl

(dbl), where the summation is over the set S′
k = {(j1, . . . , jn) : j1 + · · · + jn = k,

0 ≤ j1, . . . , jn ≤ s − 1}. So we have

Eβ(D;y) = N−2
N∑

a=1

N∑
b=1

n(s−1)∑
k=0

[ ∑
(j1,...,jn)∈S′

k

n∏
l=1

pjl
(dal)pjl

(dbl)

]
yk

= N−2
n(s−1)∑
k=0

[ ∑
(j1,...,jn)∈S′

k

N∑
a=1

N∑
b=1

n∏
l=1

pjl
(dal)pjl

(dbl)

]
yk

= N−2
n(s−1)∑
k=0

∑
(j1,...,jn)∈S′

k

[
N∑

a=1

n∏
l=1

pjl
(dal)

]2

yk.

Then Eβ(D;y) = ∑n(s−1)
k=0 βk(D)yk follows definition (3). �

PROOF OF THEOREM 3. Because D1 has less β-aberration than D2, there exists an r ∈
{1,2, . . . , n}, such that βr(D1) < βr(D2) and βi(D1) = βi(D2) for i = 1, . . . , r − 1. Thus

Eβ(D1;y) − Eβ(D2;y) =
n(s−1)∑
k=r

(
βk(D1) − βk(D2)

)
yk,

and

lim
y→0+

Eβ(D1;y) − Eβ(D2;y)

yr
= βr(D1) − βr(D2) < 0.



268 Y. TANG AND H. XU

Therefore, there exists a positive number ε such that Eβ(D1;y) − Eβ(D2;y) < 0 for all
y ∈ (0, ε). �

PROOF OF THEOREM 5. Based on (13), we rewrite E(D) into two parts.

E(D) = 1

N2

N∑
a=1

σ
n3(a,a)
3 σ

n4(a,a)
4 + 1

N2

N∑
a=1

∑
b �=a

σ
n1(a,b)
1 σ

n2(a,b)
2 σ

n3(a,b)
3 σ

n4(a,b)
4 .

As D is a balanced design, we have
∑N

a=1 n3(a, a) = 2Nn/3 and
∑N

a=1 n4(a, a) = Nn/3.
Thus according to the inequality of arithmetic and geometric means, we have

1

N

N∑
a=1

σ
n3(a,a)
3 σ

n4(a,a)
4 ≥

(
N∏

a=1

σ
n3(a,a)
3 σ

n4(a,a)
4

)1/N

= (
σ 2

3 σ4
)n/3

.

Similarly, for a balanced design, we have

N∑
a=1

∑
b �=a

n1(a, b) = 4nN2/9,

N∑
a=1

∑
b �=a

n2(a, b) = 2nN2/9,

N∑
a=1

∑
b �=a

n3(a, b) = 2nN(N − 3)/9,

and
N∑

a=1

∑
b �=a

n4(a, b) = nN(N − 3)/9.

Thus according to the inequality of arithmetic and geometric means again, we have

1

N(N − 1)

N∑
a=1

∑
b �=a

σ
n1(a,b)
1 σ

n2(a,b)
2 σ

n3(a,b)
3 σ

n4(a,b)
4

≥
(

N∏
a=1

∏
b �=a

σ
n1(a,b)
1 σ

n2(a,b)
2 σ

n3(a,b)
3 σ

n4(a,b)
4

) 1
N(N−1)

= (
σ 2

1 σ2
)δ(

σ 2
3 σ4

)n/3−δ
.

The result is then straightforward. �

PROOF OF THEOREM 6. Let D0 = (dil) be a saturated regular three-level design with
N = 3k runs and m = (N − 1)/2 columns. Such a design is unique up to row and column
permutations. For j = 1,2, let Dj = ((dil +j) mod 3). Let D = (D0,D1,D2) be the column
juxtaposed design with n = 3(N − 1)/2 columns. We show that D satisfies the conditions in
Theorem 5. First, it is easy to verify that n4(a, a) = n/3 holds for any row a of D. Second,
for any two distinct rows a and b, by Lemma 1 of Mukerjee and Wu (1995), there are exactly
(N − 3)/6 columns in D0 where dal = dbl and exactly N/3 columns where dal �= dbl . Then,
by the construction of D, there are exactly (N − 3)/6 columns in D where dal = dbl = 1 so
that n4(a, b) = (N − 3)/6, which is equal to n/3 − δ, where δ = N/3. Similarly, there are
exactly 2 × (N − 3)/6 columns in D where dal = dbl = 0 or 2 so that n3(a, b) = (N − 3)/3.
Finally, for each pair of dal �= dbl in D0, we will have two columns in D with |dal − dbl | = 1
and one column in D with |dal − dbl| = 2. Because there are exactly N/3 columns in D0
where dal �= dbl , so that n1(a, b) = 2N/3 and n2(a, b) = N/3. This shows that the quantities
n1(a, b), n2(a, b), n3(a, b) and n4(a, b) for D satisfy the conditions in Theorem 5. This
completes the proof. �
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PROOF OF THEOREM 7. Let H = [0H0] be a normalized generalized Hadamard matrix
H(λ,Z3), where 0 represents the all-zero vector. Denote H0 = (hij ) and Hk = ((hij + k)

mod 3) for k = 1,2. Then D = (H0,H1,H2) is the required design. Similar to the proof of
Theorem 6, by the construction of D and the properties of a generalized Hadamard matrix,
we can verify that n4(a, a) = n/3 for any row of D and the quantities n1(a, b), n2(a, b),
n3(a, b) and n4(a, b) defined in (12) satisfy the conditions in Theorem 5. �

APPENDIX B

TABLE 6
A 36-run orthogonal array OA(36,313)

Row 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1 0
3 2 2 2 2 2 2 2 2 2 2 2 2 0
4 0 0 0 0 1 1 1 1 2 2 2 2 0
5 1 1 1 1 2 2 2 2 0 0 0 0 0
6 2 2 2 2 0 0 0 0 1 1 1 1 0
7 0 0 1 2 0 1 2 2 0 1 1 2 0
8 1 1 2 0 1 2 0 0 1 2 2 0 0
9 2 2 0 1 2 0 1 1 2 0 0 1 0

10 0 0 2 1 0 2 1 2 1 0 2 1 0
11 1 1 0 2 1 0 2 0 2 1 0 2 0
12 2 2 1 0 2 1 0 1 0 2 1 0 0
13 0 1 2 0 2 1 0 2 2 1 0 1 1
14 1 2 0 1 0 2 1 0 0 2 1 2 1
15 2 0 1 2 1 0 2 1 1 0 2 0 1
16 0 1 2 1 0 0 2 1 2 2 1 0 1
17 1 2 0 2 1 1 0 2 0 0 2 1 1
18 2 0 1 0 2 2 1 0 1 1 0 2 1
19 0 1 0 2 2 2 0 1 1 0 1 2 1
20 1 2 1 0 0 0 1 2 2 1 2 0 1
21 2 0 2 1 1 1 2 0 0 2 0 1 1
22 0 1 1 2 2 0 1 0 0 2 2 1 1
23 1 2 2 0 0 1 2 1 1 0 0 2 1
24 2 0 0 1 1 2 0 2 2 1 1 0 1
25 0 2 1 0 1 2 2 0 2 0 1 1 2
26 1 0 2 1 2 0 0 1 0 1 2 2 2
27 2 1 0 2 0 1 1 2 1 2 0 0 2
28 0 2 1 1 1 0 0 2 1 2 0 2 2
29 1 0 2 2 2 1 1 0 2 0 1 0 2
30 2 1 0 0 0 2 2 1 0 1 2 1 2
31 0 2 2 2 1 2 1 1 0 1 0 0 2
32 1 0 0 0 2 0 2 2 1 2 1 1 2
33 2 1 1 1 0 1 0 0 2 0 2 2 2
34 0 2 0 1 2 1 2 0 1 1 2 0 2
35 1 0 1 2 0 2 0 1 2 2 0 1 2
36 2 1 2 0 1 0 1 2 0 0 1 2 2
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