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Orthogonal arrays (OAs) are widely used in industrial experiments for factor screening. Suppose that
only a few of the factors in the experiments turn out to be important. An OA can be used not only for
screening factors, but also for detecting interactions among a subset of active factors. In this article a set
of optimality criteria is proposed to assess the performance of designs for factor screening, projection, and
interaction detection, and a three-step approach is proposed to search for optimal designs. Combinatorial
and algorithmic construction methods are proposed for generating new designs. Permutations of levels are
used for improving the eligibility and estimation efficiency of the projected designs. The techniques are
then applied to search for best three-level designs with 18 and 27 runs. Many new, efficient, and practically
useful nonregular designs are found and their properties are discussed.
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1. INTRODUCTION

For run size economy, orthogonal arrays (OAs) are widely
used in industrial experiments to screen important factors from
a large number of potential factors. Traditionally, the design and
analysis of screening experiments has been restricted to main
effects only by assuming that the interactions are negligible.
Hamada and Wu (1992) went beyond the traditional approach
and proposed an analysis strategy to demonstrate that some in-
teractions could be identified beyond a few significant main ef-
fects.

For illustration, consider an experiment reported by King and
Allen (1987) that studied axial lead 4.7-microhenry radio fre-
quency chokes. A radio frequency choke is a circuit element
designed to present a high impedance to radio frequency energy
while offering minimal resistance to direct current. The objec-
tive of the experiment was to identify important factors and best
settings in the choke winding operation. In the experiment, an
18-run OA was used to study one two-level factor (A) and seven
three-level factors (B—H), and each run had two replicates. The
response was a 10-piece sampling of the self-resonating fre-
quency in mega-Hertz. The design matrix and the responses are
given in Table 1.

Motivated by the procedure of Hamada and Wu (1992), we
perform a two-stage analysis on this experiment. At the first
stage, we fit an ANOVA model for main effects and find that
four factors, B, E, G, and H, are significant at the 1% level. At
the second stage, we consider models that consist of the main
effects of the four significant factors and some of two-factor
interactions among them. Because there are six two-factor in-
teractions, each with 4 degrees of freedom, the 18-run experi-
ment does not have enough degrees of freedom to estimate all

two-factor interactions among them. One possible strategy is to
use an iterative stepwise regression procedure to identify signif-
icant effects, as was done by Hamada and Wu (1992). Because
all factors are quantitative, we take an alternative approach and
fit a second-order model with 15 unknown parameters among
the four active factors. We find that the individual ¢ tests of all
four first-order effects, xg, xg, xg, and xg, and two second-order
effects, xgxg and xgxy, have p-values less than .01, and other
three second-order effects, x%, xpXg, and xgxg, have p-values
less than .05. The model with these nine terms and the constant
has an R? of .96, indicating a good fit. Notice that the identi-
fication of the four significant interactions is achieved through
the projection of the design matrix onto active factors, which
serves as a link between screening a larger number of factors
and the more intensive study of the response surface over a
smaller number of important factors.

The foregoing two-stage analysis was first suggested by
Cheng and Wu (2001; henceforth abbreviated as CW). For-
mally, the two-stage analysis is as follows:

e Stage 1. Perform ANOVA on the main-effect model for
factor screening and identify important factors.

e Stage 2. Fit a second-order model to the factors identified
in stage 1.

This analysis strategy assumes that only a few factors are ac-
tive in a factorial experiment, called factor sparsity by Box
and Meyer (1986), and that significant interactions appear only
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FACTOR SCREENING AND INTERACTION DETECTION

Table 1. Design Matrix and Responses, Radio Frequency
Chokes Experiment

Run A B C D E F G H Responses
1 0O 0 ©O 0O 0 © 0 0 106.20 107.70
2 0 o 1 1 1 1 1 1 104.20 102.35
3 0o 0 2 2 2 2 2 2 85.90 85.90
4 0o 1 0 0 1 1 2 2 101.15 104.96
5 0 1 1 1 2 2 0 0 109.92 110.47
6 0o 1 2 2 0 O 1 1 108.91 108.91
7 0o 2 0 1 0o 2 1 2 109.76 112.66
8 0 2 1 2 1 0 2 0 97.20 94.51
9 0 2 2 0 2 1 0 1 112.77 113.03
10 1 0 O 2 2 1 1 0 93.15 92.83
11 1 0 1 0 0 2 2 1 97.25 100.6
12 1 0o 2 1 1 0 0 2  109.51 113.28
13 1 1 0 1 2 0 2 1 85.63 86.91
14 1 1 1 2 0 1 0 2 113.17 113.45
15 1 1 2 0 1 2 1 0 104.85 98.87
16 1 2 0 2 1 2 0 1 113.14 113.78
17 1 2 1 0o 2 0 1 2 103.19 106.46
18 1 2 2 1 0 1 2 0 95.70 97.93

among these active factors, called strong effect heredity by
Chipman (1996) and functional marginality by McCullagh and
Nelder (1989, chap. 3). These are empirical principles whose
validity has been confirmed in many real experiments. How-
ever, the assumption of strong effect heredity can be restrictive
in some cases. If a factor’s significance is manifested through its
interactions with other factors but not through its main effects,
then it may be missed in the first-stage analysis. To circum-
vent this problem, one can use a more elaborate procedure like
Bayesian methods for factor screening in the first stage. (See
Box and Meyer 1993; Chipman, Hamada, and Wu 1997; Wu
and Hamada 2000, chap. 8, for further discussions and exam-
ples.)

Standard response surface methodology has three stages: an
initial factor screening stage, a stage of sequential experimenta-
tion to determine the region of an optimum, and a final stage
involving the fitting of a second-order model in this region.
Typically, separate experiments and designs are used for dif-
ferent stages. However, it is sometimes difficult or even im-
possible to perform the experiments sequentially (see Steinberg
and Bursztyn 2001 for an example). It is thus desirable to have
a methodology that allows factor screening and second-order
model fitting (i.e., the first and the third stages in response sur-
face methodology) to be conducted on the same experimental
region using one design. CW argued that the two-stage analysis
is a useful alternative to the standard response surface method-
ology when the response surface on the experimental region
is appropriate for studying second-order curvatures. Here we
should point out that the region may not contain a local opti-
mum even though a second-order model is required to study
its response surface. Details on response surface methodology
have been given by Box and Draper (1987), Myers and Mont-
gomery (1995), and Khuri and Cornell (1996).

This article considers the design problem associated with the
aforementioned two-stage analysis. Assume that only a few of
the factors are identified as significant by performing ANOVA
for main effects. We can use an OA for factor screening (esti-
mating main effects, including curvature effects), and, by pro-
jections, we can also study interactions (in our formulation, the

281

linear-by-linear interactions) for a subset of active factors. Be-
cause experimenters do not know in advance which factors are
important and what the final model will be, it is important to
choose a screening design that can entertain as many models as
possible. Note that the standard optimum design approach does
not apply here, because the number of runs is not sufficient to
fit a second-order model at the screening stage. Tsai, Gilmour,
and Mead (2000) considered a similar problem and studied the
projective properties of three-level designs with 18 runs. The
approach that we take here is quite different from theirs.

In Section 2 we review the generalized minimum aberra-
tion criterion (Xu and Wu 2001) for factor screening and the
projection-efficiency criteria (Cheng and Wu 2001) for inter-
action detection. Then we propose a new criterion to com-
bine these two objectives and a three-step approach for design
search. In Section 3 we consider the construction methods of
OAs. To construct new and efficient designs, we propose a com-
binatorial method as an extension of the method of Wang and
Wu (1991), an algorithmic search due to Xu (2002), and two
versions of a search algorithm for level permutations. We then
apply the techniques to search for the best three-level designs
with 18 and 27 runs. We find many new, efficient and practi-
cally useful nonregular designs, and discuss their properties in
Section 4. We provide a discussion and further remarks in Sec-
tion 5.

2. OPTIMALITY CRITERIA

The ANOVA Model and Generalized Minimum
Aberration Criterion

2.1

For factor screening, we adopt the generalized minimum
aberration (GMA) criterion (Xu and Wu 2001), which is an ex-
tension of the minimum aberration criterion (Fries and Hunter
1980). For a factorial design with N runs and » factors, the (full)
ANOVA model is

Y =Xpao + Xjoe1 + -+ - + X, + &, (1)

where Y is the vector of N observations, « is the general mean,
a; is the vector of j-factor effects, Xo is the vector of 1’s, X is
the matrix of contrast coefficients for e, and & is the vector
of independent random errors. Note that j-factor effects rep-
resent main effects when j = 1 and interactions when j > 2.
Here we consider only the cases where the contrast coefficient
of an j-factor interaction effect is the product of its correspond-
ing contrast coefficients of j main effects. As was done by Xu
and Wu (2001), here the main effect contrasts are normalized
so that for a full factorial design, all factorial effects have the
same variance. In particular, for a two-level factor, the contrast
vector of its main effect is coded as (—1, 1); for a three-level
factor, the contrast vectors of the linear and quadratic main ef-
fects are coded as (—1,0, 1) x \/g/\/i and (1, -2, 1)/\/5. For
j=1,...,n,Xuand Wu (2001) defined A;, a function of X, to
measure the overall aliasing (or correlation) between all j-factor
effects and the general mean. Specifically, if X; = [x%)], where
xl%i) is the ith component of the kth j-factor effect contrast, then
let
nj | N 2
A=NTY )]
k=11i=1
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where 7; is the number of all j-factor effect contrasts. The vec-
tor (Aq,...,Ap) is called the generalized word-length pattern,
because A; is the number of words of length j for a two-level
regular design. Xu and Wu (2001) showed that for an OA (of
strength 2), A; = A = 0. The GMA criterion is to sequentially
minimize A1, A3, A3, ....

Two designs are called combinatorially isomorphic if the de-
sign matrix of one design can be obtained from that of the other
by permutations of rows, columns, and levels in the columns.
Because combinatorially isomorphic designs have the same
generalized word-length pattern, they are indistinguishable un-
der the GMA criterion.

Note that the computation of A; according to (2) is cumber-
some because it involves all possible projections onto j factors.
Alternative efficient computations have been given by Xu and
Wu (2001) and Xu (2003).

Example 1. Consider choosing six columns from the com-
monly used OA(18, 37) given in Table 2(a) and table 7C.2 of
Wu and Hamada (2000). There are seven possible choices.
For illustration, consider three choices. Let d;, dy, and d3
be the resulting design from omitting the first, second, and
third columns. The generalized word-length patterns for the
three designs are (0, 0, 10, 22.5,0,7), (0,0, 13, 13.5,9,4), and
(0,0,13,13.5,9,4).Hence d is the best according to the GMA
criterion. Note that d, and d3 have the same generalized word-
length pattern, and thus the GMA criterion cannot distinguish
between them.

To explain why GMA is suitable for screening out poor
designs, consider the estimation of main effects in the pres-
ence of two-factor interactions. Specifically, assume that three-
and higher-order interactions are negligible. Then the ANOVA

model (1) becomes
Y = Xpap + Xja1 +Xoa + ¢, 3)

which contains the constant effect, main effects, and two-factor
interactions. At the screening stage, the degrees of freedom
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a balanced design (i.e., all levels occurring equally often for
each factor), an unbiased estimate of the main effects o is
a = (X Xl)_IXIY. However, under the true model (3),

E(@1) =aj + Cay,

where C = (X/IX])_IX/IXQ is the alias matrix (see Box and
Draper 1987, sec. 3.10; Wu and Hamada 2000, sec. 8.1, for de-
tails). In other words, the estimation of the main effects is con-
taminated by nonnegligible two-factor interactions (Box and
Draper 1987, p. 67). A good design should have small contami-
nation. This leads to the minimum contamination criterion, that
is, the minimization of ||C||> = }_ |c;|? if C = (c;j) (Tang and
Deng 1999; Xu and Wu 2001; Steinberg and Bursztyn 2001).
Xu and Wu (2001) showed that the contamination ||C||? is re-
lated to the Az value for an OA,

ICII? = 34s. “4)

Recall that A3 measures the overall aliasing between all three-
factor interactions and the general mean. Equation (4) holds
because a three-factor interaction is the product of a main ef-
fect and a two-factor interaction. For an OA with smaller A3,
its main effects suffer less contamination when a main effects
model is fitted, and thus factor screening is more effective as
long as strong effect heredity is present. For this reason, we use
the minimization of A3 as the criterion for factor screening.

2.2 The Second-Order Model and
Projection-Efficiency Criteria

For interaction detection, we consider a second-order model
and adopt the projection-efficiency criteria (Cheng and Wu
2001). Assume that all factors are quantitative and are denoted
by x1,x2, ..., x,. Then the second-order model for these factors
is given by

y=pBo+ Z Bixi + Z Biix? + Z Bijxixi+¢€, ()

commonly are not sufficient to fit model (3); therefore, a main i=1 i=1 I=i<i
effects model [i.e., with a¢p = 0 in (3)] is fitted instead. For where € is the error term.
Table 2. OA(18, 37)
(@ (b) (c)

Run 1 2 3 4 &5 6 7 Run 1 2 3 4 5 6 7 Run 1 2 3 4 5 6 7
1 0O 0 0 O O o0 O 1 o 2 0 0 1 2 2 1 0o 1 0o 2 1 0o 2
2 0o 1 1 1 1 1 1 2 1 1 0 1 0 2 1 2 1 0 1 2 0 O 1
3 o 2 2 2 2 2 2 3 2 2 0 1 2 0 O 3 2 2 2 0 1 0 1
4 1 0O 0 1 1 2 2 4 0O 0 2 0 0O 0 O 4 o 0 2 1 1 1 0
5 1 1 1 2 2 0 0 5 1 0 1 1 1 1 0 5 1 1 2 0 0 2 0
6 1 2 2 0 O 1 1 6 2 0 1 2 0 2 2 6 2 0 1 0o 2 1 2
7 2 0 1 0o 2 1 2 7 0o 2 1 2 2 1 1 7 o 2 1 1 0o 2 2
8 2 1 2 1 0o 2 0 8 1 1 2 2 2 0 2 8 1 1 0o 1 2 1 1
9 2 2 0 2 1 0 1 9 2 1 2 0 1 1 1 9 2 2 0 2 2 2 0

10 o 0 2 2 1 1 0 10 0 1 o 2 0 1 0 10 o o 2 2 2 2 1

11 0o 1 o 0o 2 2 1 11 1 2 1 0O 0 O 1 11 1 0O 0 O 1 2 2

12 0o 2 1 1 0O 0 2 12 2 1 1 0o 2 2 0 12 2 1 1 1 1 2 1

13 1 0 1 2 0 2 1 13 0o 1 1 1 1 0 2 13 0 1 1 0O 2 0 O

14 1 1 2 0 1 0o 2 14 1 2 2 2 1 2 0 14 1 2 2 1 2 0 2

15 1 2 0 1 2 1 0 15 2 2 2 1 0o 1 2 15 2 1 2 2 0 1 2

16 2 0 2 1 2 0 1 16 0O 0 2 1 2 2 1 16 O 2 0 0 O 1 1

17 2 1 0O 2 0 1 2 17 1 0O 0 o0 2 1 2 17 1 2 1 2 1 1 0

18 2 2 1 0 1 2 0 18 2 0 0 2 1 0 1 18 2 0 0 1 0O 0 o

TECHNOMETRICS, AUGUST 2004, VOL. 46, NO. 3
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Note that the second-order model (5) is different from the
ANOVA model (3). For a three-level design, a two-factor
interaction has four orthogonal components: linear-by-linear,
linear-by-quadratic, quadratic-by-linear, and quadratic-by-
quadratic, each having 1 degree of freedom. The second-order
model includes only the linear-by-linear component of a two-
factor interaction, whereas the ANOVA model includes all
four components. For n factors with three levels, the second-
order model (5) has (n + 1)(n + 2)/2 parameters, whereas the
ANOVA model (3) has 2n* + 1 parameters. The main reason
for considering the second-order model for interaction detec-
tion is that the linear-by-linear active contrasts occur more of-
ten in practice than higher-order contrasts. Another reason is
that in many cases the degrees of freedom are not sufficient
to entertain model (3) but may be sufficient to entertain the
second-order model (5). For example, for three factors (with
three levels), an 18-run design can entertain model (5) but
not model (3); for four factors, a 27-run design can entertain
model (5) but not model (3).

Because we do not know in advance which of the compo-
nents are significant, considering all components in the screen-
ing stage seems prudent. A design that does not perform well
for model (3) is unlikely to do well for model (5) as long as
strong effect heredity is present. Therefore, the GMA criterion
can efficiently screen out designs that are not suitable for the
dual purposes of factor screening and interaction detection.

Some definitions are now in order. A design for n factors
is called a second-order design if all of the parameters in
model (5) are estimable. A projected design is said to be eligible
if it is a second-order design; otherwise, it is said to be ineligi-
ble. A design is called regular if it can be constructed through
the defining contrast subgroup among its factors; otherwise, it
is called nonregular. The 2"~ and 3" series of designs are
regular designs, and many mixed-level OAs are nonregular. De-
tails on these concepts and results have been given by Wu and
Hamada (2000).

The projection-efficiency criteria proposed by CW are as fol-
lows:

1. The number of eligible projected designs should be large,
and lower-dimensional projections are more important
than higher-dimensional projections.

2. Among the eligible projected designs, the estimation effi-
ciency, as measured by some optimality criterion, should
be high.

CW studied three-level designs with 18, 27, and 36 runs us-
ing these criteria. A major finding is that nonregular designs
are more efficient than regular designs. Apart from studying the
three classes of designs, they did not examine the important is-
sue of choosing optimal designs for the dual purposes of factor
screening and interaction detection.

For a design of size N, let X be the model matrix of (5) and
M = X'X/N be the moment matrix. A D-optimal design max-
imizes |M|, the determinant of M. Kiefer (1961) and Farrell,
Kiefer, and Walbran (1967) showed that the D-optimal contin-
uous design for model (5) is supported on a subset of points of
the 3" factorial. Let d* be the D-optimal continuous design, that
is, IM(d*)| = maxq [M(d)|. Then the D-efficiency of a design
d is defined as

Desr = (IM(d)|/IM(@*)])'7?, (6)
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Table 3. Eligible Projections, Estimation Efficiency, Overall Az Values,
and Projection Frequencies

Projection Az frequency

_ . _  Overall >
Design E3 E4 Es D3 D4 D5 A3 5 3 1 2
dq 20 15 0 .89 .74 0 10 20 0 0 0
do 19 12 0 88 .7 0 13 16 0 3 1
d3 20 15 0 .87 69 O 13 14 0 6 0

where p = (n + 1)(n + 2)/2 is the number of parameters in
model (5).

Here we quantify the definition of the projection-efficiency
criteria to rank designs. Let E; denote the number of eligible
i-factor projections and D; be the average D-efficiency of all el-
igible i-factor projections, where the D-efficiency is calculated
as in (6). Then the projection-efficiency criteria can be restated
as follows:

1. Sequentially maximize the eligibility E3, E4, Es, .. ..

2. Among those designs with the same eligibility, sequen-
tially maximize the average D-efficiency of eligible pro-
jections D3,D4,Ds, ...

Example 2 (Continued from Example 1). For each design,
there are 20 three-factor projections, 15 four-factor projections,
and 6 five-factor projections. Table 3 lists the number of eligible
projections E;, estimation efficiency D;, and some other proper-
ties to be explained later. Because the second-order model has
21 parameters for five factors, any five-factor projection of an
18-run design is ineligible and hence E5 = 0. For d; and d3, all
20 three-factor projections and 15 four-factor projections are
eligible (i.e., E3 = 20 and E4 = 15). (Whenever this happens,
boldface is used for the eligible numbers in the tables.) For d3,
one three-factor projection and three four-factor projections are
ineligible (i.e., E3 = 19 and E4 = 12). Furthermore, d; is better
than d3 in terms of D3 and D4. In summary, d; is the best and
d; is the worst under the projection-efficiency criteria.

The projection-efficiency criteria have one major shortcom-
ing: They are computationally intensive because the computa-
tion of D-efficiency for all possible projections is required.

2.3 Projection Aberration Criterion

Here we propose a new criterion to combine factor screening
and interaction detection. When a design with n factors is pro-
jected onto any three factors, it produces ('31) three-factor pro-
jected designs. Each of these designs has an A3 value, which
is called the projected Az value. We use overall A3 to denote
the A3 value calculated from the whole n-factor design. The
frequency of the projected A3z values is called the projection
frequency. Because large projected A3 values are deemed unde-
sirable, we propose the projection aberration criterion, which
sequentially minimizes the projection frequency starting from
the largest projected A3 value.

The following lemma explains the relationship among over-
all Az, projected A3, and projection frequency.

Lemma 1. The overall A3 value of a design equals the sum
of all of its projected A3 values; that is, the sum of distinctive
projected A3 values multiplied by their corresponding frequen-
cies.

TECHNOMETRICS, AUGUST 2004, VOL. 46, NO. 3
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The proof is straightforward and thus is omitted. Lemma 1
suggests that the projected A3 values and projection frequency
present more detailed information than the overall A3. It is rea-
sonable to expect that a design with a small overall A3 value will
have low projection aberration. For two-level designs, Deng and
Tang (2002) showed that the contamination criterion and the
projection aberration criterion are generally consistent in rank-
ing designs. The situation is more complicated for three-level
designs. As we discuss in Section 4, the two criteria are con-
sistent for ranking 18-run designs, but not for ranking 27-run
designs.

Example 3 (Continued from Example 1). For each design,
there are 20 three-factor projections, each with a projected A3
value. The frequencies of projected Az values are listed in
Table 3. Among the three designs, d, is the worst under the
projection aberration criterion because one of its three-factor
projections has projected A3 = 2; d; is again the best, because
all of its three-factor projections have projected A3 = .5. The
projection aberration criterion and the projection-efficiency cri-
teria produce the same ranking for the three designs, whereas
the GMA criterion cannot distinguish between d; and d3.

There is a close connection between projected Az values and
eligibility. A key finding of CW is that the presence of projec-
tions with three-letter words causes low projection efficiency.
This is referred to as the curse of three-letter words. The main
reason behind the curse is insufficient degrees of freedom for
fitting a second-order model, which has 10 parameters for three
factors. Three columns form a three-letter word if the level com-
binations of any two columns completely determine the level of
the third column. In other words, the three columns are com-
binatorially isomorphic to the three-factor regular design with
the defining relation I = ABC, possibly replicated. For example,
columns 1, 3, and 4 of Table 2(a) form a three-letter word. Note
that a three-factor projection (with three levels) has only nine
distinct runs if the three factors form a three-letter word. The
following lemma demonstrates the relationship between pro-
jected A3 values and the curse of three-letter words, and gives a
necessary and sufficient condition for a three-factor projection
to be free of three-letter words.

Lemma 2. For an s-level OA, the projected Az value of any
three-factor projection is less than or equal to s — 1, and the
equality holds if and only if the three factors form a three-letter
word.

The proof is given in the Appendix. From Lemma 2, a three-
factor projection of a three-level design is free of three-letter
words if and only if its projected Az value is strictly less than 2.
Because the projection aberration criterion first minimizes the
frequency of projected Az values of 2, optimal designs based
on it would have a maximum number of eligible three-factor
projections.

CW showed that for regular designs, any three-factor or four-
factor projection is eligible if it is free of any three-letter word.
Our study for 18- and 27-run designs suggests that the follow-
ing statement may be true for general designs: “Any three-factor
projection is eligible if it is free of any three-letter word.” We
have counter examples (see Sec. 4.1) to show that a four-factor
projection can be ineligible even if it is free of any three-letter
word.

TECHNOMETRICS, AUGUST 2004, VOL. 46, NO. 3
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There is also a close relationship between projected A3 values
and estimation efficiency. The projected A3 value captures an
important property of three-factor projection, that is, the num-
ber of distinct runs.

Example 4. Consider three-factor projections from 18-run
OAs. A complete search shows that there are four combina-
torially nonisomorphic three-factor projections, which can be
obtained by choosing three columns of the OA in Table 2(b).
Their A3 values, numbers of distinct runs, and average D3 val-
ues are as follows:

Az y Z 1 2
Distinct runs 18 17 15 9
Average D3 882 864 .82 O

Here the average D3 is the average D-efficiency of all possi-
ble 27 combinatorially isomorphic designs resulting from level
permutations (see Sec. 3.1 for a discussion on level permuta-
tions). Evidently the A3 value completely characterizes the es-
timation efficiency in this example.

Example 5. Consider three-factor projections from 27-run
OAs. A complete search shows that there are nine combinato-
rially nonisomorphic three-factor projections. Their A3 values,
numbers of distinct runs, and average D3 values are as follows:

8 4 14 2 2 20 10
Az 0 2 9 27 3 3 27 g 2
Distinctruns 27 23 21 20 19 18 18 15 9
Average D3 .932 .904 .889 .881 .864 .864 .855 .805 O

A 33 full factorial design has 27 distinct runs and A3z =0,
whereas a regular 33~! design has 9 distinct runs and A3 = 2.
A nonregular OA(27, 33) has an A3z value between 0 and 2.
Again, it is evident that the smaller the A3 value, the larger the
number of distinct runs and hence the higher the estimation ef-
ficiency.

2.4 A Three-Step Approach for Design Search

CW noted that combinatorial isomorphism cannot fully dis-
criminate between designs. Through level permutation, a design
can be changed to combinatorially isomorphic designs with dif-
ferent geometric structures and thus different eligibility and es-
timation efficiencies. CW referred to these designs as model
nonisomorphic designs. Because combinatorially isomorphic
designs have the same generalized word-length pattern, neither
GMA nor the projection aberration criterion can discriminate
between them. After optimal designs are chosen based on these
criteria, the levels of factors of the design should be permuted
to further improve eligibility and estimation efficiency. Summa-
rizing the discussions in this section, we propose the following
three-step approach to search for optimal projective designs for
factor screening and interaction detection among OAs:

Step 1. Use the overall A3 value to screen out poor OAs for
factor screening.
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Step 2. Apply the projection aberration criterion to select a
best design among the designs chosen in step 1. This
step sequentially minimizes the frequencies of the
Az values among the projected designs, where A3 is
given in (2).

Determine the best level permutations of the design
chosen in step 2 for further improvement on eligibil-
ity and estimation efficiency under the second-order
model (5).

Step 3.

In the three-step approach, various design properties are ex-
amined sequentially. For each step, only those designs that are
qualified in the previous step are kept for later comparison. As
mentioned earlier, the overall A3 value and the projection aber-
ration criterion may not be consistent in ranking designs. De-
signs with large overall A3 values but low projection aberration
may be screened out in step 1 and thus have no chance to be
compared in step 2. When the computational load is not too
heavy or the number of designs for comparison not too large,
it is recommended that both criteria be applied to all designs.
When the two criteria lead to different rankings, some trade-
off is required. When the number of factors is large, factor
screening is probably more important than interaction detec-
tion; hence a design with minimum overall A3 value is pre-
ferred. On the other hand, for a small to moderate number of
factors, interaction detection is probably more important, which
favors designs with less projection aberration.

3. CONSTRUCTION METHODS FOR NONREGULAR
ORTHOGONAL ARRAYS

Traditionally, only a few OAs are used for a given run size,
and many commonly used OAs are regular designs. As CW ob-
served, regular designs are not efficient for the dual purposes.
Here we consider methods for constructing nonregular OAs.
Section 3.1 presents a combinatorial method and level permu-
tations that can produce a large number of nonisomorphic OAs.
For a systematic study, Section 3.2 proposes computational al-
gorithms to handle the huge collection of designs. Readers not
interested in technical details can skip Section 3.1 and jump to
the algorithms in Section 3.2.

3.1 A Combinatorial Method and Level Permutations

Here we present a general construction method, which is an
extension of the difference matrix method of Wang and Wu
(1991). Let G be an additive group of s elements denoted by
{0,1,...,5 — 1}, s being a prime number. An n X k matrix
with elements from G, denoted by D, 4., is called a differ-
ence matrix if, among the differences, modulus s of the cor-
responding elements of any two columns, each element of G
occurs exactly n/s times. For two matrices U of order n x m
and V = (vj) of order ny x my, define their Kronecker sum to
be U@ V = (U"), a matrix of order (n1ny) x (mmy), where
each partition U = (U 4 v;) (mod s) is a matrix of order
ny x myp. It is known (e.g., Wang and Wu 1991) that the Kro-
necker sum U@ V is an OA(NM, s') if U is an OA(N, s') and
V is a difference matrix Dy t.;. Here we generalize the Kro-
necker sum as follows. For two n x m partitioned matrices
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U =[U;] and V = [V;], define the generalized Kronecker sum
tobe U®V =[U; ® V;]. Let

\4T

U=, ..., Upw) and V=

Vo

Suppose that U;; is an OA(N, sl:/), U; is an OA(N, sl]‘ ~-~s£,2’
and V; is a difference matrix DM,kj;s]- fori=1,...,n and
j=1,...,m. It can be shown, by following the proof of Wang
and Wu (1991), that U ® V is an OA(NM, s} .- shfm) Tt is
important to note that both row and column partitions are al-
lowed for the matrix U, whereas in Wang and Wu’s original
construction, only column partitions are allowed for the ma-
trix U. Therefore, their method is a special case with n = 1.
Following Wang and Wu (1991), we can enlarge the OAs by
adding Oy 6 Ly to U® V, where Oy is the N x 1 vector of 0’s
and Ly, is an OA of M runs. Many combinatorially nonisomor-
phic OAs can be constructed by choosing various difference
matrices for each column of the OAs or by choosing different
OAs for each row of the difference matrix.

This generalization allows the construction of nonregular
OAs such as OA(27,313) in Table 4(a). The key step is to
choose a different OA for each row of the difference matrix.
This is illustrated in the following example.

Example 6. Let a = (0,0,0,1,1,1,2,2,2), b= (0,1, 2,
0,1,2,0,1,2), c=a+b,d=a—b, U = (a,b,c,d),
U;=(,b,2¢+2,d+1), V; =(0,0,0), V, =(0,1,2), and
V3 =1(0, 2, 1), modulus 3. Then

U; Vi [Ui® V) 09
U |®1V2].00L3 |=|{Ui®V; 19
L \Uj V3 | | U1 ®V3 29 |

and
[ /U, Vi 1T [Ui@V) 09
U@l V2],000L3|=|U280V; 19
L\ Ui V3 1 LUi® V3 29

are two nonisomorphic OA(27, 313)’s, where L3 = (0, 1,2)
and ig is the 9 x 1 vector of i’s. It is more convenient to rewrite
these two designs in the following form:

a b ¢ d a+1 b+1 c¢+1 d+1
a b ¢ d a+2 b+2 c¢c+2 d+2

a b C d 09

<abcda b c d

a+2 b+2 c¢+2 d+2 1 (mod 3)
a+1 b+1 c+1 d+1 2

and

a b c d a b c d

(a b 2¢+2 d+1 a+1 b+1 2¢ d+2

a b c d a+2 b+2 c¢c+2 d+2
a b c d 09
a+2 b+2 2c+1 d 19) (mod3).
a+1 b+1 c¢+1 d+1 29

It is easy to see that the first design is isomorphic to a regular
design, whereas the second design, given in Table 4(a), is not.
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Table 4. OA(27, 3'9)
(a) (b)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 Run 1 2 3 4 5 6 7 8 9 10 11 12 13
i 0 0 0 0 0 0O 0 0 O O 0 O0 O 1+ 0 0 0 0 0 1 2 0 0 O 0 0 O
2 0 1 1 2 0 1 1 2 0 1 1 2 0 2 0 1 1 2 2 2 2 2 2 2 1 0 0
3 0 2 2 1 0 2 2 1 0 2 2 1 0 3 0 2 2 2 1 2 1 0 0 0 1 2 1
4 1 0 1 1 1 0 1 1 1 0 1 1 0 4 0 0 1 1 2 1 0 1 1 0 1 1 1
5 1 1 2 0 1 1 2 0 1 1 2 o0 0 5 0 1 2 2 0 1 1 1 1 1 2 o0 2
6 1 2 0 2 1 2 0 2 1 2 0 2 0 6 0 2 0 0 2 2 0 2 1 1 0 2 2
7 2 0 2 2 2 0 2 2 2 0 2 2 0 7 0 0 0 1 0 0 1 2 2 2 2 2 1
8 2 1 0 1 2 1 0 1 2 1 0 1 0 8 0 1 2 1 1 0 0 0 2 1 0 1 0
9 2 2 1 0 2 2 1 0 2 2 1 0 0 9 0 2 1 0 1 0 2 1 0 2 2 1 2

0 0 0 2 1 1 1 0 2 2 2 1 o0 1 10 1 0 1 2 1 1 0 2 0 1 2 2 0

1 0 1 1 0 1 2 2 1 2 0 0 2 1 11 1 1 0 0 1 2 0 1 2 0 2 0 1

2 0 2 0 2 1 0 1 0 2 1 2 1 1 12 1 2 1 2 0 0 0 0 1 2 0 0 1

3 1 0 1 2 2 1 2 0 0 2 o0 1 1 13 1 0 2 2 2 0 2 1 2 0 0 2 2

4 1 1 0 1 2 2 1 2 0 0 2 0 1 14 1 1 0 1 1 1 2 0 1 2 1 2 2

%5 1 2 2 0 2 0 0 1 0 1 1 2 1 145 1 2 0 1 2 0 1 1 0 1 1 0 ©

%6 =2 o0 o0 o o 1 1 1 1 2 2 2 1 146 1 0 1 0 0 2 1 0 2 1 1 1 2

7 2 1 2 2 0 2 0o o 1 o0 1 1 1 17 1 1 2 0 2 1 1 2 0 2 0 1 1

8 2 2 1 1 0 0 2 2 1 1 o0 0 1 18 1 2 2 1 0 2 2 2 1 0 2 1 0

9 0 0 0 0 2 2 2 2 1 1 1 1 2 19 2 0 0 2 1 2 1 1 1 2 0 1 0

20 0 1 1 2 2 0 0 1 1 2 2 0 2 20 2 1 1 0 2 0 1 0 1 0 2 2 0

24 0 2 2 1 2 1 1 0 1 0 0 2 2 240 2 2 2 0 0 1 0 1 2 2 1 2 0

2 1 0 1 1 0 2 0 0 2 1 2 2 2 22 2 0 2 1 2 2 0 0 0 2 2 0 2

22 1 1 2 0 0 0 1 2 2 2 o0 1 2 23 2 1 1 1 0 2 2 1 0 1 0 2 1

i 2 02 0 1 2 1 2 0 1 0 2 2 2 0 2 2 1 2 0 2 1 2 1 1
2 0 2 2 1 2 1 1 0 1 0 0 2 2 02 0 1 0 2 2 1 1 1 0 1
21 01 1 0 2 00 2 1 2 2 2 1 0 2 0 0 0 2 0 0 1 1 2
2 2 1 0 1 1 0 2 0 0 2 1 2 2 2 1 1 1 1 1 2 2 0 0 0 2

NOTE: Column (a) was constructed via the combinatorial method given in Section 3.1; column (b), via the algorithmic method given in Section 3.2.

When level permutations are also considered, more model-
nonisomorphic OAs can be constructed. For simplicity, we con-
sider only three-level designs here. The extension to general
levels is obvious. Table 5 shows six different level permutations
for a three-level factor, which can also be expressed through
modulo operation: po(x) = x, p1(x) =x+ 1, po(x) = x + 2,
p3(x) =2x, pa(x) =2x+ 1, and p5s(x) =2x+2 (mod 3) for
x=0, 1, 2. Itis easy to see from Table 5 that ps, p4, and p3 are
reflections of pg, p1, and p;. That is, ps (resp. pa and p3) be-
comes pg (resp. p1 and p») if levels 0 and 2 are exchanged. Be-
cause reflection of a factor (around level 1) does not change the
geometric structure of a design, the projection properties, such
as E;’s and D;’s, are unchanged under reflection. Therefore, we
consider only po, p1, and p; among the six permutations.

Example 7. In the set up for Example 6, consider an
0A(27,3%),

a b c d
d4:<a b 2¢+2 d+1

a b c d
a c b d
a+1 2¢ b+2 d ) (mod3),
a+2 ¢+2 b+1 d+1

Table 5. Six Level Permutations for a Three-Level Factor

Permutations
Level pg P1 P2 P3 P4 Ps
0 0 1 2 0 1 2
1 1 2 0 2 0 1
2 2 0 1 1 2 0
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which is a subdesign (columns 1-5, 7, 10 and 12) of Table 4(a).
Applying p3 on the columns 6 and 8, we obtain

a b c d
d5:< b 2¢+2 d+1

a
a b c d
a 2¢ b 2d
a+1 [ b+2 2d ) (mod3),
a+2 2¢c+1 b+1 2d+2

which is the nonregular design constructed by CW via a differ-
ent (but related) method. Applying p; on columns 6 and 8 and
p2 on column 7 of d4, we obtain

a b c d
d(,:(a b 2¢+2 d+1
a b c d
a c+1 b+2 d+1
a+1 2¢+1 b+1 d+1) (mod 3).
a+2 c b d+2

These three designs are combinatorially isomorphic; therefore,
they are equivalent under the GMA or projection aberration
criterion. However, they are not model-isomorphic and they
have different eligibilities. All three-factor and four-factor pro-
jections are eligible for the three designs, but the numbers of
ineligible five-factor projections for dy4, ds, and dg are 3, 1,
and 0. This example shows that a large number of model-
nonisomorphic designs can be constructed through level per-
mutations for some columns. The question of finding best level
settings will be discussed in Section 3.2.
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3.2 Computational Algorithms

Although the previous combinatorial method has the advan-
tage that the properties and structures of its constructed designs
can be studied theoretically, there are other and sometimes bet-
ter nonregular designs that cannot be obtained from using this
method. Our second construction method is via computational
algorithms.

To generate more OAs efficiently, we adopt an efficient al-
gorithm due to Xu (2002), downloadable at http://www.stat.
ucla.edu/"hgxu. This algorithm enables us to construct many
18- and 27-run OAs with different projection properties effi-
ciently. For example, we found an OA(27,3'3) [given in Ta-
ble 4(b)] that has 100% eligible three-, four-, and five-factor
projections. To our knowledge, none of the combinatorial meth-
ods described by Dey and Mukerjee (1999) and Hedayat,
Sloane, and Stufken (1999) can produce such a design. Indeed,
any 27-run design constructed by the combinatorial method de-
scribed in the previous section must contain some three-factor
projections that form three-letter words if the design has more
than eight factors. Therefore, some of the three-, four-, five-
factor projections would be ineligible.

We also propose algorithms to determine the best level per-
mutations. As mentioned in Section 3.1, we need to consider
three permutations for a three-level factor. For n factors, there
are 3" possible level permutations. When n is not large, a
complete search can be performed to determine the best level
permutation. Otherwise, the following two columnwise greedy
methods can be used.

Method I (Sequential greedy). Start with the first column
and permute three levels in that column with other columns
fixed. Find and fix the best level setting for that column. Go
to the next column or the first column if it is the last column.
Repeat this procedure until no improvement is seen for n con-
secutive times.

Method Il (Random greedy). Randomly select one column
and permute three levels in that column with other columns
fixed. Find and fix the best level setting for that column. Repeat
this procedure until no improvement is seen for some consecu-
tive times, say k = 10.

Example 8. Consider the level permutation of d4 in Exam-
ple 7. The results are given in Table 6. The original design d4
has 3 (out of 56) ineligible five-factor projections (see E5 = 53
in the row “no permutation”). Three methods find three differ-
ent combinations of level permutations, which are listed in the
column “level permutation.” In a combination, each permuta-
tion is applied to a column in d4. For example, in Table 6 the
best combination of level permutations in the complete search
is (po, po, Po, Po> Po, P1, P2, p1)- This means that no level per-
mutation is required for columns 1-5, columns 6 and 8 should
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be permuted by pi1, and column 7 should be permuted by p5.
The design found by the complete search is the same as dg
constructed in Example 7. All methods succeed in finding level
permutations such that all 56 five-factor projections are eligible
(i.e., Es = 56). After level permutations, the estimation efficien-
cies also increase (e.g., D3 increases from .891 to .892). The
complete search takes more than 200 minutes on a Sun Sparc
workstation with 400M CPU, whereas the sequential or random
greedy search takes only about 1 minute.

4. OPTIMAL DESIGNS

In this section we use the combinatorial and algorithmic
methods to construct many new OAs with 18 and 27 runs, and
then apply the three-step procedure to compare and rank them.

4.1 18-Run Designs

An 18-run OA can screen up to seven three-level factors. CW
studied the commonly used OA given in Table 2(a) under the
projection-efficiency criteria. A question is whether the design
is optimal within a broader class of OAs.

First, using Xu’s (2002) algorithm, we generate 1,000
OA(18,37)’s randomly. All these OAs have the same gener-
alized word-length pattern (0, 0, 22, 34.5, 27, 31, 6); therefore,
the GMA criterion cannot distinguish between them. Then we
apply the projection aberration criterion and find that they fall
into three classes. For illustration, in Table 2 we list three OAs,
each representing one class. The design in Table 2(a) is from
standard textbooks (e.g., Wu and Hamada 2000, p. 335), and
the other two constructed via the algorithm are chosen arbitrar-
ily.

Table 7 gives the overall A3’s, projection frequencies, E;’s,
and D;’s for the three arrays given in Table 2. All three ar-
rays have one three-factor projection that has nine distinct runs
(i.e., A3 = 2). The projection aberration criterion would choose
array (c) because it has no projection with A3 = 1, whereas
the other two arrays have at least two projections with A3 = 1
(which has 15 distinct runs). However, the difference is not sub-
stantial.

Because all arrays have one three-letter word (i.e., A3 = 2),
they have the same number of eligible three-factor projections
(i.e., E3 = 34). Both arrays (a) and (c) have 31 (out of 35)
eligible four-factor projections, whereas array (b) has 28. As
explained in CW, for 18-run designs, the degrees of freedom
are not sufficient to entertain any second-order model with five
factors; therefore, any five-factor projection is ineligible. Level
permutations can increase the eligibility and estimation effi-
ciency of the projections.

A complete search is performed for each array. The best level
permutations are (po, po, po, Po. Pos Pos P0), (P2, o, p2, p1,

Table 6. A Comparison of Algorithms for Level Permutations

Method E; E; E; D3 Dy Ds Seconds Level permutation

No permutation 56 70 53 891 .767 .595 0 Po Po Po Po Po Po Po Po
Sequential greedy 56 70 56 .892 .772 .609 58 P2 P2 P2 Po Po Po Po Po
Random greedy 56 70 56 .892 .769 .601 74 Po P2 Po P1 Po P1 Po Po
Complete search 56 70 56 .892 772 .609 12,801 Po Po Po Po Po P1 P2 P1
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Table 7. Comparison of OA(18, 37)
Overall Projected Az frequency
Array  Ag ] 2 1 2 E3 E4 E5 D3 D4 Ds
(a) 22 28 0 6 1 34 31 0 .876 .704 O
(b) 22 20 12 2 1 34 28 0 .871 684 O
(c) 22 16 18 0o 1 34 31 0 .876 .689 O

Po> pos o), and (p2, po, p2, p2, p1, po, p2) for arrays (a), (b),
and (c) (see Table 8, n = 7). After level permutations, they

have the same eligibility (E3 = 34, E4 = 31, and E5 = 0) and
similar estimation efficiency. For array (a), there is no improve-
ment (because no permutation is done); for array (b), D3 in-
creases from .871 to .881 and D4 increases from .684 to .694;
and for array (c), Dy increases from .689 to .692. Therefore,
after level permutations, these three arrays are competitive un-
der the projection-efficiency criteria. It is interesting to point
out that the three four-factor projections (2, 4, 5, 6), (2,4,5,7),
and (3,5, 6,7) from array (b) are ineligible even though they
are free of three-letter words. They become eligible after level
permutation (i.e., E4 increases from 28 to 31).

We next consider subdesigns from these arrays. For each ar-
ray, we search for the best n-factor subdesigns by applying the
three-step procedure for all n with 3 <n < 7. In the construc-
tion, step 1 keeps all subdesigns with smallest overall A3 values,
step 2 selects one best design under the projection aberration
criterion, and step 3 uses a complete search. Table 8 gives the
chosen designs, the projection properties, and level permuta-
tions for each n. For example, if a four-factor design is required
from array (c), we should choose columns 1, 3, 5, and 6 ac-
cording to Table 8(c). These four columns form an OA(18, 3%
that has a minimum overall A3 value of 2 and a minimum pro-
jection aberration. Its levels should be permuted as (pg, pi,
po, p2). After the level permutations, its eligibility and effi-
ciency are E3 =4 and E4 = 1 and D3 =.89 and D4y = .74.

From Table 8, we observe that the best subdesigns (for
3 <n <6) can always be found from array (a) for all of the
criteria. Indeed, this is supported by a theoretical result. Apply-
ing theorem 2 and corollary 4 of Xu (2003), it can be shown
that any subdesign not containing the first column of Table 2(a)
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has GMA and minimum projection aberration among all pos-
sible designs. In addition, all three- and four-factor projections
not containing the first column are eligible and have the same
estimation efficiencies.

In summary, the commonly used OA given in Table 2(a)
and its subdesigns not containing the first column are recom-
mended, because any subdesign not containing the first column
is optimal under the GMA and projection aberration criteria.

4.2 27-Run Designs

A 27-run OA can screen up to 13 three-level factors. CW
studied the commonly used 27-run regular designs under the
projection-efficiency criteria. They showed that minimum aber-
ration designs are optimal among regular designs. They also
gave an example to illustrate that nonregular designs may have
higher projection efficiency and are thus better than regular de-
signs. Here we apply the construction methods in Section 3 and
the three-step procedure in Section 2 to search for optimal de-
signs in a much broader class of OAs.

First, we arbitrarily generate 100 OA(27, 313)’s by applying
the construction methods in Section 3. According to Xu and
Wu (2001), all these (saturated) OAs have the same generalized
word-length pattern (0, 0, 104, 468, ...); thus, they are indis-
tinguishable under the GMA criterion. Next we consider the
projection-aberration and projection-efficiency criteria. For il-
lustration, we compare three designs: the regular 313710 de-
sign, the nonregular OA(27, 3'3) constructed in Example 6, and
a nonregular OA(27, 3'3) constructed via Xu’s algorithm. The
two nonregular designs are given in Table 4 and referred to
as nonregular designs (a) and (b). Table 9 gives the projection
properties for the three arrays. The regular design has a sim-
ple projection pattern: A three-factor projection is either a 33
full factorial (i.e., projected Az = 0) or a replicated 3371 de-
sign (i.e., projected A3 = 2). Among the 286 three-factor pro-
jections, the regular design has 52 projections with three-letter
words (i.e., projected A3 = 2) and thus has 52 ineligible three-
factor projections (and E3 = 234); the nonregular design (a) has
16 projections with three-letter words and therefore has 16 in-
eligible three-factor projections (and E3 = 270); the nonregular
design (b) has no projection with three-letter words and there-
fore has no ineligible three-factor projection (and E3 = 286).

Table 8. 18-Run Optimal Designs From Table 2

Projected A3 frequency

Overall

Array n Az 5 % 1 2 E; E4 Es5 Dg Dy Ds Columns Level permutation
(a) 3 5 1 0 0 0 1 0 0 89 0 0 234 Po Po Po

(a) 4 2 4 0 0 0 4 1 0 .89 74 0 2345 Po Po Po Po

(a) 5 5 10 0 0 0 10 5 0 .89 74 0 23456 Po Po Po Po Po
(a) 6 10 20 0 0 0 20 15 0 .89 74 0 234567 Po Po Po Po Po Po
(a) 7 22 28 0 6 1 34 31 0 .88 70 0 1234567 pypo Po Po Po Po Po
(b) 3 5 1 0 0 0 1 0 0O 89 O 0 125 Po Po P1

(b) 4 2 4 0 0 0 4 1 0 .89 74 0 2346 Po Po Po P1

(b) 5 5.67 6 4 0 0 10 5 0 .89 71 0 23456 Po Po P1 Po P2
(b) 6 1133 12 8 0 0 20 15 0 .89 71 0 234567 Po P1 Po Po P2 P2
(b) 7 22 20 12 2 1 34 31 0 .88 69 0 1234567 p2pg P2 P1 PO PO PO
(c) 3 5 1 0 0 0 1 0 0O 89 O 0 124 Po Po Po

(c) 4 2 4 0 0 0 4 1 0 .89 74 0 1356 Po P1 Po P2

(c) 5 6 4 6 0 o 10 5 0 .88 71 0 12345 P1 P1 Po P2 P2
(c) 6 12 8 12 0 0 20 15 0 .88 71 0 123456 P1 Po Po P P1 P2
(c) 7 22 16 18 0 1 34 31 0 .88 69 0 1234567 popg P2 P2 P1 PO P2
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Table 9. Comparison of OA(27, 313)

Projected Az frequency

Overall 8 4 14 2 20 10 > >
Regular 104 234 0 0 0 0 0 0 52 234 234 0 93 86 O
Nonregular (a) 104 162 0 54 0 27 0 27 16 270 567 693 90 .79 .61
Nonregular (b) 104 78 0 156 0 52 0 0 0 286 715 1287 90 .78 .62

The numbers of eligible three-, four-, and five-factor projec-
tions are 234 (82%), 234 (33%), and 0 (0%) for the regular
design; 270 (94%), 567 (79%), and 693 (54%) for the nonregu-
lar design (a); and 286 (100%), 715 (100%), and 1,287 (100%)
for the nonregular design (b). Therefore, under both the pro-
jection aberration and projection-efficiency criteria, the regular
design is the worst and the nonregular design (b) is the best.
The nonregular design (b) has the property that all of its three-,
four-, and five-factor projections are eligible and the estima-
tion efficiencies are D3 = .90, D4 = .78, and D5 = .62. Now
consider level permutations. For the regular design, the eligi-
bility cannot be improved because of its three-letter words; for
the nonregular design (a), the eligibility of five-factor projec-
tion is improved from E5 = 693 to Es = 714 after the level per-
mutations given in Table 10(a) under n = 13; for the nonreg-
ular design (b), the eligibility cannot be improved (because it
is already maximized), whereas the estimation efficiency Ds is
slightly improved from .62 to .63 after the level permutations
given in Table 10(b) under n = 13.

Next, we consider subdesigns from the two nonregular OAs.
For each array, we search for the best n-factor subdesigns by
applying the three-step procedure for all n with 4 <n < 13.
In the construction, step 1 keeps all subdesigns with smallest
overall A3 values, step 2 selects one best design under the pro-
jection aberration, and step 3 uses a complete search if n <9
and either a sequential or a random greedy search (with k = 10

tries) if n > 9. Table 10 gives the chosen designs, the projec-
tion properties, and level permutations for each n. For example,
if an eight-factor design is required from Table 4(b), then we
choose columns 1-4, 6,7, 11, and 13 according to Table 10(b).
The eight columns form an OA(27, 38) that has the smallest
overall A3 value of 19.11 and minimum projection aberration
[among all eight-factor subdesigns from Table 4(b)]. Among
its 56 three-factor projections, 17 projections are full factorials
(i.e., A3 =0), 31 projections have an Az value of 4/9, and eight
projections have an A3 value of 2/3. From Table 10(b), the level
permutations are ( pg, p1, Po, P1, P2, Po, Po> P1)- The projection
efficiency of the resulting design is E3 = 56, E4 =70, E5 = 56,
D3 = .90, D4 = .79, and D5 = .64. Note that this design has
less projection aberration and higher projection efficiency than
all of the OA(27, 38)’5 considered in Examples 7 and 8.

It is interesting to compare the chosen designs in Ta-
ble 10(a) and (b). For n = 4, the two designs are equivalent (to a
regular 3*~! design). For n = 11, 12, 13, the designs from both
tables have the same overall A3 values, and the designs from Ta-
ble 10(b) have less projection aberration and better projection
efficiency than those from Table 10(a). Therefore, designs from
Table 10(b) are recommended. For 5 < n < 10, the situation is
more complicated. The designs from Table 10(b) have larger
overall A3 values, less projection aberration, and better projec-
tion efficiency than those from Table 10(a). The choice of these
designs depends on the objective. If factor screening is the pri-
mary task, then we choose designs from Table 10(a), because

Table 10. 27-Run Optimal Designs From Table 4

Projected Az frequency

Ar- Overall

ray n Az 0 £ % 122 2010 2 F E; Es D3Dy Ds Columns Level permutation

@ 4 o0 40 0000 0G0 4 1 0.93880 1256 Po Po Po P+

@5 2 603010001 5 1.91.8 .70 124713 Po Po Po P1 P4

@ 6 4 180 00 00 0 218 9 0 .93.880 1256910 Po Po Po P1 Po Pa

(@ 7 10 220 0012 0 0 1 34 31 15 .91.81 .65 1245689 Po Po P1 P1 Po P P1

@ 8 16 36 0 0018 0 0 2 54 60 36 .91.81 .65 124568910 Po Po P2 P1 Po P1 P2 Po

() 9 24 540 0027 0 0 3 81 108 81 .91.81 .65 12456891012 Po Po P1 P2 Po P2 P1 Po Po
@ 10 42 63 018 027 0 9 3117 189 180 .90.79 62 123456891012 Po P1 P1 Po Po Po Po Po Po P
(@) 11 60 81 036 027 0 18 3162 306 367 90.78 .61 1234567891012 Po Po P1 Po Po P1 P1 Po Po Po P
(@) 12 80 108 0 54 027 0 27 4216 459 633 90.78 .61 123456789101112 Py Po Po P1 Po Po Po P1 Po P1 Po Po
(@) 13104 162 0 54 0 27 0 27 16270 567 714 .90.79 .61 1234567891011 1213 pg Po Po Po P2 P1 Po Po P2 Po Po Po P
©) 4 0 40000000 4 1 0.93880 1278 Po Po Po Po

b) 5 244 50 40 10 0 010 5 1 .92.83 .71 12378 Po P1 P2 Po P4

b) 6 6 80 90 30 0 020 15 6.91.81 65 123489 Po P2 P2 P2 Po Po

() 7 1133 12 018 0 50 0 0 35 35 21 90.8 .65 12348911 P Po Po P1 Po Po Po

() 8 1911 177 031 0 8 0 0 0 56 70 56 .90.79 .64 1234671113 Po P1 Po P1 P2 Po Po P

() 9 2933 24 048 012 0 0O O 84 126 126 .90.79 .64 12345671113 P1 Po Po Po Po P1 P1 Po Py

(b) 10 4333 33 066 021 0 0 0120 210 252 90.79 63 123456781012 P1 Po P1 Po P1 Po Po Po P2 Po
(b) 11 60 45 090 030 0 O 0165 330 462 90.78 63 1234567891011 P2 Po Po Po P2 Po Po Po Po Po Po
(b) 12 80 60 0120 0 40 0 O 0220 495 792 .90.78 .63 123456789101112  py P2 Po Po P2 P2 Po Po P1 Po Pi Po
(b) 13104 78 0156 0 52 0 O 0286 7151,287 .90.78 .63 1234567891011 1213 py Po Po Po P1 P1 Po P1 P1 Po Po Po Po
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they have smaller overall Az values. If interaction detection is
the primary task, then we choose designs from Table 10(b), be-
cause all of their three-, four-, and five-factor projections are
eligible and have high efficiency.

While preparing this manuscript, we learned that there are
exactly 68 combinatorially-nonisomorphic OA(27, 3'3)’s (Lam
and Tonchev 1996). Therefore, we further searched for optimal
designs from all these 68 arrays. We found that the nonregular
design (b) given in Table 4(b) has minimum projection aberra-
tion and that the designs given in Table 10(a) have GMA among
all possible subdesigns from these 68 saturated OAs.

Because many 27-run OAs are not part of any saturated OA,
we used algorithms to search for optimal designs. For each n,
4 < n < 12, we constructed 1,000 OA(27,3")’s using Xu'’s al-
gorithm and ranked them according to their overall A3 values
and projected A3 values. We observed that their overall A3 val-
ues are always larger than or equal to those given in Table 10(a).
In other words, the designs given in Table 10(a) have minimum
contamination. We also found many new OAs that are not part
of any saturated OA and have less projection aberration than
those given in Table 10 for 5 <n < 10. Table 11 lists the best
OA(27, 3") under the projection aberration criterion for each n,
and Table 12 shows their projection properties. Level permuta-
tion algorithms have been applied to improve the projection ef-
ficiency. Compared with the designs given in Table 10(b), these
new designs have slightly larger (i.e., worse) overall A3 values,
less (i.e., better) projection aberration, the same eligibility, and
similar efficiency.

In summary, Table 4(b) and its subdesigns given in Ta-
ble 10(b) are recommended, because all of their three-, four-,
and five-factor projections are eligible and have high efficien-
cies.

5. SUMMARY AND FURTHER REMARKS

For factor screening and interaction detection, we propose
computationally efficient criteria for ranking three-level de-
signs. We show that the generalized word-length pattern is
closely related to various design properties, including contam-
ination, eligibility and estimation efficiency. In the three-step
approach, these criteria are combined to sequentially search for
optimal designs. Although we focus on three-level designs, this
approach can be applied to designs with any number of levels,
because the generalized word-length pattern is not restricted to
three levels. To obtain more OAs for comparison, we propose
both combinatorial and algorithmic construction methods, and
present two versions of a search algorithm for level permuta-
tions. Some 18- and 27-run optimal designs are found.

Here we use only A3 values (overall and projected) in rank-
ing designs. For designs with small run size, using the A3 val-
ues suffices for discriminating and ranking designs. Because
lower-dimensional projections are more important than higher-
dimensional projections, there is no need to use A4 values when
Az can do the job. However, for large run size (e.g., 81), there
are many designs with zero overall and projected Az values.
These designs are equally good under the current contamina-
tion and projection aberration criteria. In this case, the projec-
tion aberration criterion should be modified and extended to A4
values. The extension of projection frequency to A4 values is
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straightforward. Because the overall A4 value is not related to
the aliasing between main effects and two-factor interactions,
there is no need to extend the contamination criterion to A4.
Therefore, step 1 in the three-step approach should be dropped.

For constructing OAs, the algorithmic approach in Sec-
tion 3.2 is very flexible and effective for small run sizes, such
as 18 and 27, and outperforms the combinatorial method. How-
ever, it is computationally prohibitive (or even infeasible) for
a larger run size, such as 81. In this situation, combinatorial
construction should be used until the algorithm can be further
improved.
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APPENDIX: PROOF OF LEMMA 2

Let d be a three-factor projection of an OA with N runs and
s levels, denoted by 0, 1, ...,s — 1. Fori,j,k=0,1,...,s — 1,
let £(i, j, k) be the number of times that the level combination
(i, ], k) appears in d. It is clear that Zi;(l)f(i,j, k) = Ns—2 for
i,j=0,...,5 — 1, because d is an OA. Then

s—1 s—1s—1 s—1s—1[ s—1 2
PIDN(BAEDD Z[Zf(i,j, k)}
i=0 j=0 k=0 i=0 j=0 L k=0

s—1 s—1

_ ZZ[NS—Z]z — N2,

i=0 j=0

where the equality holds if and only if for each pair of i, j there
is a unique k such that f(i,j, k) = Ns~2. In other words, the
equality holds if and only if the factor levels of the first two
columns completely determine the factor level of the third col-
umn; that is, the three factors form a three-letter word. On the
other hand, let By = N~ 32720 3020 >"j_(,f(i.j, k). By ap-
plying some fundamental results from coding theory, Xu and
Wu (2001) showed that By is a linear combination of the gen-
eralized word-length pattern. Specifically, for a design of N
runs and three s-level factors, By = Ns_3(1 + A1 4+ Ar + A3).
From Xu and Wu (2001), A; = A; = 0 for an OA. Therefore,
A3 =N"1$°By — 1 < s— 1, where the equality holds if and only
if the three factors form a three-letter word.

[Received February 2002. Revised March 2004.]
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Table 11. OA(27, 3")

OA27.7

OA27.6

OA27.5

Run

Run

Run

TONOANOT~AlmrlmrmrmrONNOOO A ANNOT~O
O-rmANANOANOTTrmrmNOANOT O AN T TrOANONOAWN ™
AN ANANTT~TO OO TrAlmNOOTT O TN ~TO AN OANWNO
ANT~TOOANOT~rAlmNOANOAN T~~~ ONONOO~TT QA
—TOANOTF~mTAlNOOANANOO T~ lmrmrrmOANOOANT™QN
O~ NO~ANOT~TANO~TNOTTNO~TANOT~TANOT~ANO— A

OO0 O0O0O0OO0O0OO0OrrrmrrmrmrrmrrrrAlAUANANANANANANAN

MERALLLLEE ST 513 .35
TrFrrNOOANOANOTTANOANO~TANNmr—ONOANT~TANT™O
ONOANOTTFmrlmrOrlmOANTTANONOOANTTANO ™
OCANANO~TO AN TTrmNOOTTrFmrlmMmNOT~ O+~ OO~ QA NN
Tr OO~ AlNOOANANANTO T T~OOANTT T OANNOT™

O~ ANO~TNO~TANO~TANO T NO~TNOT~TNO—~NO~—QN

OO000000O0Orrrmr~rmrmrrrmrAlANANANANANNANAN

FANTOONDOIO T~ AN ONDDO

—Frrrrrrrrre N
FANONT+-~TOT-TONOAT~TA~T~OOANANNT—~OO0OO A
FrAANNTOO0OO0OT-TOANNOOANTTT~ONANT~NOO ™+~
NOON~NO~—T~TOANNONO+rrr—~Or—ANONOWN

O~ NO~TNOT~TF AN O~ AN O~ NOT~TNOT~TNO~TNO~QN

OO000000O0Orrrmrmrmrmr~r—rr~rAlAUANAN AN AN NN AN

FANNTDONDOOT~ANMTIONDDO
—Frrrrrrrrrre N

1
~—

OA27.10
2 3 4 5 6

OA27.9

2 3 4 5 6

OA27.8
2 3 4 5 6

10

8

7

Run

8

7

Run

7

Run

—TOO~TAANO~TANANOTTr~rNOOANTTNOOANTTANO ™

NOOOANTT "~ AlANOAN T~ NN~ OOOANTT O~ ANANO
NOANO T mrmNOOTrFrmrmrONANNOTT T OANONOWN ™
Or-rmrOA~TANANOTTO AN T O T~TO AN ANTOANANTOWNT™O
OCOANNO~AlmmrAlmNOOOT~ANlmmrANOOANAN T~ T™O
TFTrANOANOO~ANlmrrmrNOOANOANTTANmTANNNT—OOO
OO0 rmmrOANANANANANTO T (lmOOT~TOTrrANOO~AQA
ONO~TANO AN T ~TNOOTT O~ AlmNNmr—TrOOANOANAN
O~rANO~ANOT~TANO~TANO~TNOT~TNO~TANOT~TANO— AN

OO00000O0O0OFrrrmrr~rm—r—r—rAAANAANANANANAN

—TANNTOONOO®O
—

TAANANTT~TOOO0OOANTOANANT O~ AN T~TOAN T AN~ OO
—TOANANOTTOANTTrAlmOrrNOO~AlmMmANOO~rrANOQWN
ANT~TOO AT mANOrrmANNANOOOT+r~rmrrmrAONOOAN
AN~ NOT~TOANOTrrFmrmrOOANO~TANANOOANANNTTT™TO
TOOANANOTrmrAllmMmNO AN T OO TTNOANOANT™T™T™O
AN~ ANT~TO OO~ ANANANANT OO~ OO A T~"TAN T~ OWNO
ANNOT"TmrmrOOANTOOANANNOT TTOANANT~TO T~ AN T™O
O~ ANO~ANOT~TANO~TANO~TNOT~TNO~TANOT~TANO— AN

OO0O0000O0O0Orrrmrr~rr—r——aAlAdANAANANANANAN

—TANMITOHDONOO®OO
—

11

TNOT"FmTONOANANANTOOANT "TOOOT~T O~ AN ANAN ™
OANANTTOOr AlmrOANANOTT O AN T T ~TOANNOOWNT™
ANNO~TOANOTrrmrmrANOOANTTANT~TOANTTr—OANOON
OO0 AN ANANTTFrrOrmAINNO O~ O ANANTOOWN ™
NO~rOrOANANTrrmNOO T~ ANNmrOANANTANONOT™ O
OCOANr"TANNTFTOANANTOrr~TONOT~TOOANANTTTTOQWN
O~rANO~T AN O~ ANO~TANO~TNO~TNO~TANO~TANO~—AN

OO0O0000O0O0OrrmrrrmrrrmrAlAANANANANANANAN

—TANNTOHOONOO®O
—

NOTE: Constructed via the algorithmic method given in Section 3.2.

Table 12. 27-Run Optimal Designs From Table 11

Array
OA27.5
OA27.6
OA27.7

Ds

Al

Projected Az frequency
14

OA27.8
OA27.9
0OA27.10

69
.68
65

64
64
63

82
.81
80
79
.79
79

92
91
.90
.90
.90
90

1

6
21
56
126
252

5
15
35
70

126
210

[eNeNojooNo]

[eNeoNoNoNoNe]

[eNeNe Nl iole]
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