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1 Introduction

Fractional factorial (FF) designs are widely used in various experiments. A common problem
experimenters face is the choice of FF designs. An experimenter who has little or no information
on the relative sizes of the effects would normally choose a minimum aberration design because
it has good overall properties. The minimum aberration criterion (Fries and Hunter, 1980), an
extension of the maximum resolution criterion (Box and Hunter, 1961), has been used explicitly
or implicitly in the construction of design tables in, among others, National Bureau of Standards
(1957), Box, Hunter and Hunter (1978, Table 12.15), Dean and Voss (1999, Tables 15.55 and 15.56),
Wu and Hamada (2000, Tables 4A and 5A) and Montgomery (2001, Tables 8-14). The reader is



referred to Wu and Hamada (2000) for rich results on minimum aberration designs and extensive
references.

An experimenter who has knowledge of the importance of certain main effects and interactions
might use a design that guarantees the clear estimation of important effects. For example, in a
robust parameter experiment, the experimenter would want to estimate the interactions between
control factors and noise factors. There are many cases where minimum aberration designs cannot
meet the practical need but other designs can. Different situations call for different designs. A
catalogue of designs would help experimenters choose the best design. A collection of FF designs
with 16, 27, 32 and 64 runs was given by Chen, Sun and Wu (1993, hereafter CSW).

The main purpose of this paper is to extend the work of CSW for three-level FF designs. We
have completely enumerated all 27 and 81-run designs, 243-run designs of resolution IV or higher,
and 729-run designs of resolution V or higher. A complete catalogue of 27-run FF designs is given.
For 81, 243 and 729 runs, there are too many designs for all to be listed. We carefully choose
designs so that the catalogue covers all interesting designs with different properties. Previously,
Connor and Zelen (1959) gave a collection of three-level FF designs up to 10 factors and Franklin
(1984) gave minimum aberration designs up to 12 factors. A complete catalogue of designs with
27 runs was first given by CSW. Our new catalogue provides more information on the estimation
of main effects and interactions. As often done in the literature, the “FF design” in the paper
represents only regular fractional factorial designs with resolution at least III.

The extension is not straightforward because the computation is challenging. The original
algorithm of CSW failed to construct the complete set of FF designs with 81 runs. We take a
coding theory approach and propose new methods to classify and rank designs efficiently. Then we
modify their algorithm to construct the catalogue of FF designs with 81, 243 and 729 runs.

In Section 2, we review some basic concepts and definitions for three-level FF designs. We
introduce the coding theory approach in Section 3 and the construction method in Section 4.
Tables of designs with 27, 81, 243 and 729 runs are given in Section 5 with comments. Concluding

remarks are given in Section 6.

2 Basic concepts and definitions

We explain some basic concepts briefly through an example; see standard textbooks such as

Kempthorne (1952), Dean and Voss (1999), Wu and Hamada (2000) and Montgomery (2001) for



Table 1: Two designs of 27 runs and 5 factors

Run A B C D FE

Run A B C D FE

10 0 0 0 O

20 0 2 00

10 0 0 0 O

1 0
300 2 2 0

20 01

300 1 00

2
2

1

4010

50 1 0 2 2

6 01 2 2 2

1
6 01 2 0 2

1
1
1
1
1
1
0

1
1

70 2 2

1
1
1
1
1
1

70 2 0 2
1 0 2 0
1

8 0 2

8 0 2 1

0
1
1

1

90 2 0 1

101 0 1

9 0 2 2
101 0 O

2

11 1 0 0 2
121 0 2 2

11 1 0 1 2
121 0 2 0

1
1

131 1 2

14 1 1

13 1

14 1

15 1

16 1 2 0 0 2
17 1 2 1

1

1 0 0

151 1 0 1 0

0

1

1 2

16 1 2 0 0 2

17 1 2 2 0 2

2

1

181 2 1 0 2

18 1 2 2 2 2

2
2
2
1
1

1
1

212 0 0 1
22 2 1 0 0
23 2 1 2 0

19 2 0 2
24 2 1

19 2 0 0 2 2

20 2 0 1

202 01 0 2

2
1
1
1
0
0

1
22 2 1 0 0

212 0 2

1 1
24 2 1 2 2

23 2 1

0

1

252 2 1 2 0

1
2

25 2 2 0

26 2 2 0 2 0

1
272 2 2 0 O

26 2 2

21 2 2 2 2 0




detailed descriptions and more examples.

Table 1 shows two FF designs of 27 runs and five factors, represented as two 27 x 5 matrices,
where each row corresponds to a run (i.e., treatment combination) and each column to a factor.
These are three-level FF designs as each column takes on three different values: 0, 1, 2. Label the
five columns as A, B, C, D, and E and let x1, 22, ..., x5 denote the levels of the five columns. The
first design (i.e., the left design) is constructed as follows: write down all possible 33 = 27 level

combinations for the first three columns and then define the last two columns by
rg=x1+2x2+ 23 (mod3), z5=ux1+2x2 (mod 3).

Equivalently, we write D = ABC and E = AB?, or I = ABCD? = AB?E?, where I is the identity
element, and ABCD? and AB?E? are called defining words. From these two defining words, the

following defining relations can be obtained

I =ABCD? = A’2B%2C?D = AB*E? = A’BE = AC?DE = A’CD*E? = BC?DE? = B*CD?E,
(1)
For a three-level design, words W and W?2 (e.g., ABCD? and A2B?C?D) represent the same
contrast. To avoid ambiguity, the convention is to set the first nonzero coefficient to be 1. Then

(1) reduces to

I = ABCD? = AB?E? = AC’DE = BC?DE?,

which is called the defining contrast subgroup for the design. This design has one word of length
three and three words of length four. The resolution is III because the shortest word has length 3.

A two-factor interaction (2fi) A x B has two orthogonal components AB and AB?, each repre-
senting a contrast of 2 degrees of freedom. A main effect or 2fi component is called clear (Wu and
Chen, 1992; Wu and Hamada, 2000, Section 5.4) if it is not aliased with any other main effects or
2fi components. A 2fi, say a x b, is called clear if both of its components, ab and ab?, are clear.
One can verify that for the first design in Table 1, the clear effects are C, D and C'D.

Now look at the second design in Table 1. The defining contrast subgroup is
I =ABD = AB’E* = AD°E = BD*E”.

All four words have length 3; therefore, the resolution is III. It has one clear main effect (C) and
four clear 2fi’s (A x C, Bx C, C x D and C x E).
An important issue is the choice of designs such as the two designs in Table 1. Both designs

have the same resolution III. The minimum aberration criterion (defined next) would choose the



first design because it has one word of length three while the second design has four words of length
three. Indeed, the first design is the minimum aberration design. Therefore, the first design is often
recommended especially when the experimenter considers all factors being equally important. On
the other hand, if the experimenter knows in advance that one factor and some 2fi’s involving that
factor is important, then the second design is recommended because it has more clear 2fi’s. See
CSW for further discussions.

In general, an s" % FF design is an N x n matrix, which has N = "%

runs, n factors,
each at s levels. There are n — k independent columns and other k& columns are related to the
n — k independent columns through defining words. All defining words and the identity element
I together form the defining contrast subgroup. The words W, W?2,...,W*™! represent the same
contrast and therefore they are viewed as the same. There are (s* —1)/(s — 1) distinct words. Let
A; be the number of distinct words of length j. The vector (Ay,...,A,) is called the wordlength
pattern. The resolution is the shortest wordlength. The minimum aberration criterion (Fries and
Hunter, 1980) is to sequentially minimize A; for j =1,...,n.

For an s" % FF design, the defining contrast subgroup has (s* — 1)/(s — 1) different words,
causing some difficulties in computation when k is large (e.g., k > 10). For example, for a 320~16 FF
design, there are 21,523,360 words. It is quite inefficient and sometimes impractical to compute the
wordlength pattern and find clear effects via counting all words in the defining contrast subgroup

and aliasing sets. In the next section, we propose alternative ways to compute the wordlength

pattern and find clear effects based on coding theory.

3 A coding theory approach

3.1 Linear codes

The connection between FF designs and linear codes was first observed by Bose (1961). For an
introduction to coding theory, see MacWilliams and Sloane (1977), van Lint (1999) and Hedayat,
Sloane and Stufken (1999, chap. 4).

For a prime power s, let GF(s) be the finite field of s elements. An 5" ¥ FF design D is a
linear code of length n and dimension n — k over GF'(s), called an [n,n — k] code. The defining
contrast subgroup of D corresponds to the dual code D+, an [n, k] linear code that consists of all
row vectors (ui,...,u,) over GF(s) such that Y ;' ; u;v; = 0 for all (vy,...,v,) in D. When s is a

prime, the dual code is also known as the annihilator (Bailey, 1977).



The Hamming weight of a vector (ui,...,u,) is the number of nonzero components u;. Let
B;(D) and B;(D™*) be the number of rows with Hamming weight 4 in D and D™, respectively.
The vectors (By(D), By(D),...,B,(D)) and (By(D+), By (DY), ..., B,(DV)) are called the weight
distributions of D and D*.

The weight distributions of D and D+ are related through the MacWilliams identities and Pless

power moment identities, two fundamental results in coding theory.

Lemma 1. For an s * FF design D and j =0,1,...,n,

Bj(D*) = s~ "M 3" Py(i;n, 5)Bi(D), (2)
=0
BJ(D) = Sikipj(i;n, S)Bi<DJ—), (3)
=0

where Pj(x;n,s) = S20_o(—1)i(s — 1)7 ) (Z:f) are the Krawtchouk polynomials.

Lemma 2. For an s" % FF design D and positive integers t

n min (n,t)
Y i'Bi(D) =" 3" Quli;n,s)Bi(DY), (4)
i=0 =0

where Qu(i;n, s) = (—1)" S5_o j1S(t, 5)s ™ (s — )71 (220) and S(t,5) = (1/51) SL_o(=1)7*())i" is

a Stirling number of the second kind.

The equations (2) and (3) are known as the MacWilliams identities. The equation (4) is known
as the Pless power moment identities after Pless (1963).

The wordlength pattern of D is proportional to the weight distribution of the dual D+ as
follows:

Ai(D) = By(DY)/(s —1) fori=1,...,n,

As a result, the wordlength pattern can be computed through MacWilliams identities (2). In the
following we introduce another convenient approach due to Xu (2001, 2003) that uses the Pless

power moment identities (4).

3.2 Minimum moment aberration criterion

For an N x n matrix X = (x;;) and positive integers ¢, define power moments

N N
K =N72Y " (65), (5)

i=1j=1

6



where 6;; is the number of coincidences between the ith and jth rows, i.e., the number of k’s such
that z;; = z;. For an s"* FF design, (5) can be simplified as K; = N~' 3N, (6;;)!, where j
can be any row number between 1 and N. Note that an FF design contains the vector of zeros.
Let C; be the number of rows with i zero components. The vector (Cy, Cy,...,C,) are called the

coincidence distribution. Then (5) becomes
n
Ky =N"1Y it (6)
i=1
By applying the Pless power moment identities (4), Xu (2001, 2003) showed that the power
moments K; are linear combinations of A1, ..., A; as follows.

Theorem 1. For an s"* FF design and positive integers t,
t
Kt - th(i;n, S)Aia (7)
i=0

where ci(i;n,s) = (s — 1) ;ZO(—l)j(;.)nt*ij(i;n,s) for i =0,1,....t, Q;(i;n,s) is defined in
Lemma 2, Ag =1/(s — 1) and A; =0 when i > n. In addition, the leading coefficient of Ay in (7)
is ci(t;n, 8) = (s — 1)t!/st.

Remark 1. The definition of K; here differs from that in Xu (2001, 2003). Nevertheless, it is

evident that they are equivalent up to some constants.

For an s" % FF design with resolution at least III, K1 = n/s and Ko = n(n + s — 1)/s? are
constants because there are no words of length one or two (i.e., A1 = A3 = 0). For s = 3 and

t =3-6, (7) becomes

K3 = [12A43+n(2+6n+n?)]/27,

Ky = [48A4+24(3+2n)A3+n(—6420n+ 1202 +n?)]/81,

Ks = [240 A5 +240 (24 n)Ay + 60 (=3 + 100 + 2n?) A3 + n (=30 4+ 101 + 80n? + 200> + n')] /243,
Kg = [1440 Ag + 720 (5 +2n)A5 + 720 (=1 + 671 + n?) Ay + 120 (=39 + 13n + 21 n® + 2n3) A3

+n (42 — 320 + 270 n? 4 220 + 30 n* + n®)]/729.
Solving As, ..., Ag yields

A3 = [2TK3—n(2+6n+n?)]/12, (8)

Ay = [2TK4—18(3+2n)K3+n(6+8n+6n*+n))/16, (9)



As = [81K5—135(2+n)Ks+45(15+4n+2n?)K3

—n (60 + 1107 4 2572 + 1073 + 2n)]/80, (10)
Ag = [7129 K¢ — (3645 4 1458 n) K5 + 1215 (11 + 3n +n?) K, — 135 (165 4 80n + 6 n* + 4n®) K3
+n (2148 + 3010 + 1485n* + 175n° + 30n* + 1071°)]/1440. (11)

Example 1. Consider the first design in Table 1. It is easy to verify that Cy = 4, C; = 6, Cy = 14,
C3 =2, Cy =0, and C5 = 1. Definition (6) gives K3 = 11, K; = 113/3, K5 = 1355/9 and
K¢ = 5995/9. Then equations (8)—(11) yield A3 = 1, Ay = 3, A5 = 0 and Ag = 0. Note that

equation (11) is valid although n = 5 here.

Since the power moments K; measure the similarity among runs (i.e., rows), it is natural that
a good design should have small power moments. The smaller the K}, the better the design. Xu
(2001, 2003) proposed the minimum moment aberration criterion which sequentially minimizes
Ki,Ks,...,K,.

The following result relates minimum moment aberration and minimum aberration.

Theorem 2. Sequentially minimizing K1, Ks, ..., K, is equivalent to sequentially minimizing A1,

Ao, ..., A,. Therefore, designs with less moment aberration have less aberration.

The proof follows from the fact that the leading coefficient of A; in (7) is a positive constant.
In this paper we use the minimum moment aberration criterion to rank designs because the power

moments are easier to compute than the wordlength patterns.

3.3 Power moments and clear effects

Here we introduce a simple method to find clear effects without using the defining contrast subgroup.
To determine whether or not the main effect of column j is clear, for i = 0,...,n — 1, let C; be

the number of rows with ¢ 4+ 1 zero elements and the jth element being zero. Define
Ky =KY = NS, (12)
i=1
Theorem 3. For an s"* FF design,
- (J) _ _ 3
Ky’ >(n—-1)(n+s—2)/s". (13)

The main effect of column j is clear if and only if the lower bound is achieved.



The proof of this and next theorems is beyond the scope of this paper. Interested readers are
referred to Xu (2001, Section 4.3), who derived some general identities relating power moments to

split wordlength patterns. Theorems 3 and 4 can be verified from these identities.

Example 2. Consider the first design in Table 1. For n = 5 and s = 3, the lower bound in (13)
is 8/9. First consider column A. It is easy to verify that Co=2C1=4,Cy =2 C3=0, and
Cy = 1. Definition (12) gives Ky = 28/27, which is greater than the lower bound; therefore, A is
not clear. Next consider column C. It is easy to verify that Co =0, C; =8, Co =0, C5 = 0, and
Cy = 1. Definition (12) gives Ky =38 /9, which is equal to the lower bound; therefore, C is clear.

For any two columns a and b, their 2fi componets ab and ab? correspond to column a + column
b (mod 3) and column a + 2x column b (mod 3). To determine whether or not 2fi component
ab is clear, augment column ab to the design matrix. For ¢ =0,...,n, let C; be the number of rows

with ¢ + 1 zero elements and the element of column ab being zero. Define
A~ n ~
Ky =N"1Y"i%C;. (14)
i=1
Theorem 4. For an s" % FF design,
Ky > [2(s = 1) +n(n+s—1)]/s>
The 2fi component ab is clear if and only if the lower bound is achieved.

The same procedure can be used to determine whether or not 2fi component ab? is clear.

Example 3. Consider the first design in Table 1. First consider whether or not C'D (i.e., the third
column in the second design) is clear. It is easy to verify that Co = 0, Cy = 6, Co =2, Cs = 0,
Cy =0, and C5 = 1. Definition (14) gives Ko = 13/9, which is equal to the lower bound in Theorem
4; therefore, C'D is clear. Next consider whether or not CD? (i.e., the fourth column in the second
design) is clear. It is easy to verify that Co = 4, Cy=0,Cy = 2, Cs=2,Cy = 0, and Cs = 1.
Definition (14) gives Ky = 17/9, which is greater than the lower bound in Theorem 4; therefore,

CD? is not clear.

4 Construction method

To obtain the complete catalogue, we take a sequential approach as CSW did. We review CSW'’s

construction method, point out some shortcomings of their method and then introduce our method.



Table 2: Generator matrix for 27-run designs

1234567389 10 11 12 13
alol1l1o010111 0 1 1
b0112001120 1 1 2
c000OO011111 2 2 2 2

4.1 Basic idea

Let 7 =n—k N =s"and m = (N —1)/(s — 1). An s" (") FF design can be viewed as n
columns of an N X m matrix H, where H is a saturated FF design with N runs, m factors and s
levels. Let G consist of all nonzero r-tuples (u1,...,u,)’ from GF(s) in which the first nonzero u;
is 1. Then G is called the generator matrix and H is formed by taking all linear combinations of
the rows of G. For example, for s = 3 and r = 3, the generator matrix G and design matrix H are
given in Tables 2 and 3, respectively.

Two designs are isomorphic if one can be obtained from the other by permuting the rows, the
columns and the levels of each column.

Let D,, be the set of nonisomorphic designs with n columns. CSW constructed D,41 from
D,, by adding an additional column. For each design in D, there are m — n ways to add a
column to produce a design with n + 1 columns. Let D, 41 be the set of these designs. Obviously,
|Dyi1| = (m —n)|Dy,|. CSW showed that D, is a subset of D, ;. However, some designs in
l~)n+1 are isomorphic and therefore it is necessary to eliminate these redundant designs to construct
Dyyq.

To identify nonisomorphic designs, CSW divided all designs into different categories according
to their wordlength patterns and letter patterns. The letter pattern counts the frequency of the
letters contained in the words of different lengths (Draper and Mitchell, 1970). Obviously, designs in
different categories are not isomorphic. However, designs in the same category are not necessarily
isomorphic; see Chen and Lin (1991) for a counter example. For designs in the same category,
CSW applied a complete isomorphism check procedure to determine whether or not two designs are
isomorphic. The complete isomorphism check considers all possible ways of choosing independent
columns and relabeling letters and words.

We observe that the use of wordlength patterns and letter patterns is not efficient in identifying
nonisomorphic designs for three-level FF designs. A close examination on the complexity shows

that letter pattern check might be more time consuming than complete isomorphism check. Indeed,
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Table 3: Design matrix for 27-run designs

Run 123456789 10 11 12 13

1000000O00OO0OO0 O O O

2000011111 2

2
1
2
1
0
1
0
2
1
0
2
0
2
1
2
1
0
2
1
0
1
0
2
0
2
1

2
1
1

2
1
1

30000222221

40112001120

0 O
2
2
1

5011211220 2

2
2
1

6 0112220011

70221002210

8 022111002 2

0 O

90221221101

101011010111

1
0
2
2
1
0
0
2
1
2
1
0
0
2
1
1
0
2

0
2
1
1

41120122010 0

11011121220
12101120200 2
131120011201

2
2
1
0
0
2
1
1
0
2
2
1

15112020012 2
212210211020 O

16 1 202012021

171 20212010 0

18120220121 2

19 202202022 2

202 022101001

212022212110

22210102101 2

232101102121

242101210200

256221002210 2

26 2210100211
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n—(n—r) nfr)

for s designs, the complexity of wordlength pattern and letter pattern check is O(ns
while the complexity of complete isomorphism check is O(n()r!(s — 1)"). The former is much
larger than the latter when n is large (for fixed s > 2 and r).

Our algorithm differs from CSW’s in the way in which designs are categorized. We divide all
designs into different categories according to their coincidence distributions and moment projection
patterns (to be defined next). The use of coincidence distributions is equivalent to the use of
wordlength patterns in terms of distinguishing designs but is more efficient in terms of computation.
The use of moment projection patterns is proven to be more efficient than the use of letter patterns

in terms of both distinguishing designs and computation. For designs in the same category, we

apply the complete isomorphism check as CSW did.

4.2 Moment projection patterns

The idea of moment projection patterns comes from some recent work on the isomorphism check of
nonregular designs. It is quite often that nonregular designs have the same (generalized) wordlength
pattern but different projection properties. The approach taken here is inspired by Clark and Dean
(2001) and Ma, Fang, and Lin (2001), who proposed algorithms for identifying nonisomorphic
designs by examining some properties of their projection designs. See also Xu and Deng (2002) for
a related procedure.

For an s"~ (") FF design, consider its projection designs. For each projection design, we can
compute the power moments as in (6) for any t. For given p (1 < p < n), there are (Z) projection
designs with p columns. The frequency distribution of K;-values of these projection designs is
called the p-dimensional K;-value distribution. It is evident that isomorphic designs have the same
p-dimenionsonal K;-value distribution for all positive integers t and 1 < p < n. Whenever two
designs have different p-dimensional K;-value distributions for some ¢ and p, these two designs
must be nonisomorphic.

In the implementation, we fix ¢ arbitrarily at ¢ = 10 and let p take on valuesn—1,n—2,...,n—q,
where ¢ is a pre-chosen number. The choice of ¢ does not make a difference provided ¢ > 5 in most
cases. The complexity of moment projection pattern check is O(n?s%"). Recall that the complexity
of complete isomorphism check is O(n(")r!(s — 1)") or O(n"*1) for fixed s and r. Therefore, we
should choose ¢ < r. We find the choice of ¢ = 2 or 3 works well for s =3 and r = 4,5, 6.

As an experimentation, we compared the real computer time on identifying all nonisomorphic

31511 designs from nonisomorphic 314719 designs with different choices of q. The algorithm took

12



more than 67 hours with ¢ = 0 and about one hour (62-66 minutes) with ¢ = 1,2,3 on a 1GHz Mac
Xserve. The numbers clearly indicate that the use of moment projection pattern check speeds up the
algorithm significantly. We note that with ¢ = 3, nonisomorphic designs have different coincidence
distributions or moment projection patterns; therefore, the complete isomorphism check could be
omitted and the time reduced to 14 minutes. Indeed, with ¢ = 3, all 81-run designs have different
coincidence distributions or moment projection patterns; therefore, the complete isomorphism check

can be omitted.

5 A catalogue of selected designs

We apply the above construction method to obtain the complete collections of designs with 27
and 81 runs. The number of 243-run and 729-run designs is so large that our algorithm fails to
produce all designs. Nevertheless, we have obtained the complete collections of 243-run designs
with resolution IV or higher and 729-run designs with resolution V or higher. Once all designs are
obtained, we rank the designs according to the minimum moment aberration criterion. If two or
more designs are equivalent under the minimum moment aberration criterion, which happens when
they have the same coincidence distribution (and wordlength pattern), their rankings are arbitrary.
Then we compute part of the wordlength pattern (As, A4, A5, Ag) according to (8)—(11) and find
clear effects according to Section 3.3.

The catalogue shows the ranked design, selected columns, wordlength pattern (WLP), the
number of clear main effects (C1), the number of clear 2fi’s (C2), the number of clear 2fi components
(CC), clear main effects (CME) and clear 2fi’s if any. A 3" % FF design is labeled as n-k.i, where i
denotes the rank under the minimum moment aberration criterion. The first design n-k.1 is always
a minimum aberration (MA) 3"~* design. An entry such as a:b under the column of clear 2fi’s
represents the a x b interaction.

For 81, 243 and 729 runs, there are too many designs for all to be listed. The concept of
admissibility (Sun, Wu and Chen, 1997) is useful in selecting designs of interest. For a given
number of criteria, a design d; is called to be inadmissible if there exists another design do such
that do is better than or equal to di for all the criteria and strictly better than d; for at least one
of the criteria. Otherwise, d; is admissible.

We use C1, C2 and CC to define the admissibility and compile a list of admissible designs with
81, 243 and 729 runs. When two or more admissible designs have the same C1, C2 and CC, only

13



the design with lowest rank is given. In most cases, the first three designs ranked by the minimum

moment aberration criterion are also given.

5.1 Designs of 27 runs

A 27-run FF design has up to 13 columns and Table 2 shows the generator matrix. The independent
columns (in boldface) are 1, 2 and 5.

Table 8 gives the complete collection of 27-run designs. There is only one nonisomorphic design
for n = 1,2, 11 and 12; therefore, no designs are given. A complete collection of 27-run designs was
previously given by CSW. Our rankings are exactly the same as theirs except that we include two
more designs 3-0.2 and 4-1.3. These two designs are degenerate and have only nine distinct runs,
indicated by an asterisk in the table. Table 8 provides more information than CSW’s table. We
include C1, C2, CC and the actual clear effects whereas CSW report only C2.

Observe that nonisomorphic designs have different wordlength patterns; therefore, wordlength
pattern (indeed As alone) completely determines a 27-run FF design. Since designs are constructed
sequentially, we have the following interesting observation. If we arrange the columns in the fol-
lowing order:

125841261113 310 12,

then the first n columns form the MA 37~ (7=3) design forn=1,...,13.

Example 4. Look at 3°~2 designs. The first design 5-2.1 in Table 8 consists of columns 1,2, 5, 8,4
(of the design matrix given in Table 3). To find the defining words, label the five columns as A,
B, C, D, and E. The generator matrix in Table 2 shows that column 8 is the sum of columns 1,
2,and 5 (mod 3) and column 4 = column 1+ 2 X column 2 (mod 3); therefore, D = ABC and
E = AB?. According to Table 8, this design has one word of length 3 and three words of length 4
(WLP=(1,3,0)), two clear main effects (C1=2), no clear 2fi (C2=0) and one clear 2fi component
(CC=1). The two clear main effects are C' and D, which are given as 5 and 8 under CME. Note

that design 5-2.1 is indeed the first design given in Table 1.

5.2 Designs of 81 runs

An 81-run FF design has up to 40 columns and Table 4 shows the generator matrix. The inde-
pendent columns (in boldface) are 1, 2, 5 and 14. We apply the algorithm to obtain the complete

collection of designs up to 20 columns. This collection also completely classifies all designs with
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Table 4: Generator matrix for 81-run designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a 1 01 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1
bo 1 1 2 0 01 1 2 01 1 2 0 01 1 2 00
c 00 O0O0O0OT1 1 1 1 1 2 2 2 2 0 00 0 0 11
d 0OOOOOOOOO0OOO0OO0OO0O 1T 1 1 1 1 11
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
a 0111011 1 011 01 0 1 1 1 0 11
b1 1 2 o0 1 1 2 01 1 2 00 1 1 2 0 1 1 2
c 1 1 1 2 2 2 2 00 0 0 1 1 1 1 1 2 2 2 2
d 1111 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Table 5: Number of nonisomorphic 81-run designs
n 123456 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# of designs 1 1 2 4 6 12 23 47 94 201 402 807 1505 2659 4304 6472 8846 11127 12723 13358

more than 20 columns. For example, a set of 21 columns corresponds to a unique set of 19 remain-
ing columns (i.e, complementary design). Therefore, by taking the complement of all designs with
19 columns, we obtain all designs with 21 columns. See Suen, Chen and Wu (1997), Xu and Wu
(2001) and Xu (2003) for characterizing MA designs in terms of their complements.

Table 5 shows the number of nonisomorphic designs for n=1-20. Here we treat any 27-run
design as a (degenerate) 81-run design; therefore, the number of nonisomorphic designs with n
columns, 20 < n < 40, is equal to the number of nonisomorphic designs with 40 — n columns.

Table 9 lists selected 81-run designs for n=5-20 columns. It includes all designs with resolution
IV or higher. There is only one resolution V design, namely design 5-1.1. Resolution IV designs
exist for n=5-10 columns. The maximum resolution is III when n > 11.

In all cases, MA 81-run designs are unique up to isomorphism. From Table 9, we have the
following result. For n=3-11, the first n columns of

12514229243134393
form an MA design; for n=12-20, the first n columns of
12514229243132513376187 3512381516
form an MA design. For n=21-37, MA designs can be determined via the complementary design

theory. Previously, MA designs for n < 10 were given by Franklin (1984) and Wu and Hamada
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Table 6: Number of nonisomorphic 243-run designs with resolution IV or higher

n 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# of designs 5 8 19 46 137 356 844 1532 2020 1778 1019 337 90 20 9

(2000, Table 5A.3). These designs are equivalent to MA designs given here.

It is interesting to note that designs with maximum C2 (or CC) are often different from MA
designs. For n=6-10, maximum C2 (or CC) designs have resolution III while MA designs have
resolution IV. For n=10-14, maximum C2 (or CC) designs have a special structure: Column 14
does not appear in any defining words; therefore, column 14 and any 2fi’s involving it are clear.
For n > 15, no design has clear effects (i.e., C1=C2=CC=0).

As Franklin (1984) noted, designs given by National Bureau of Standards (Connor and Zelen,
1959) may not have MA. Connor and Zelen (1959) chose resolution IV designs having maximum CC.
From Table 9, we observe that there are two cases where MA designs are different from maximum
CC resolution IV designs. They recommended design 7-3.2 (plan 27.7.3 in their notation) and
design 8-4.2 (plan 81.8.3). These two designs have more clear 2fi components than the competing

MA designs 7-3.1 and 8-4.1.

5.3 Designs of 243 runs

A 243-run FF design has up to 121 columns. Let G = (y1,¥2,-..,%121) be the generator matrix

whose columns are defined as

Yi = y Yitd1 = y Yit+81 = ) for i = 17 s >401
0 1 2

and y41 = (0,0,0,0,1)7, where z; is the ith column of the generator matrix for 81-run designs given
in Table 4. The independent columns are 1, 2, 5, 14, and 41.

For 243 runs, resolution IV designs have at most 20 columns. Table 6 shows the number of
nonisomorphic designs with resolution IV or higher for n=6-20. Note that any 81-run design with
resolution IV or higher is a (degenerate) 243-run design.

Table 10 lists the selected 243-run designs with resolution IV or higher for n=6-20 columns.
Because all main effects are clear for resolution IV designs, C1 and clear main effects are omitted
in the table.

The most interesting result is that MA 243-run designs are not unique. There are two MA
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Table 7: Number of nonisomorphic 729-run designs with resolution V or higher

n 78 9 10 11 12 13 14
# of designs 4 6 11 22 37 38 6 1

designs for n = 14, 16, 19 and 20; nine MA designs for n = 17; and five MA designs for n = 18.
For n <13 or n = 15, MA designs are unique.

For n < 11, MA designs have resolution V or VI; therefore, no resolution IV designs is given.
For n=7-11, resolution V designs are unique. The MA 36 design 11-6.1 is saturated for a model
with all main effects and all 2fi’s. Any 7-11 columns of this design form an MA design. For
n=12-15, MA designs do not have maximum C2; for n=12-18, MA designs do not have maximum
CC.

Previously, Connor and Zelen (1959) gave designs for n=6-10 and Franklin (1984) gave MA

designs for n=7-11. All these designs are isomorphic to MA designs given here.

5.4 Designs of 729 runs

A 729-run FF design has up to 364 columns. Let G = (21, 22, ..., 2364) be the generator matrix

whose columns are defined as

Yi Yi Yi )
Zi = )y Zi4122 = , Zi4243 = , fori=1,...,121,
0 1 2

and z192 = (0,0,0,0,0,1)”, where y; is the ith column of the generator matrix for 243-run FF
designs given in Section 5.3. The independent columns are 1, 2, 5, 14, 41, and 122.

For 729 runs, resolution V designs have at most 14 columns. Table 7 shows the number of
nonisomorphic designs with resolution V or higher for n=7-14. Again, any 243-run design with
resolution V or higher is a (degenerate) 729-run design.

Table 11 lists the selected 729-run designs with resolution V or higher for n=7-14 columns.
Because all main effects and 2fi’s are clear for resolution V designs, C1, C2, CC and clear effects
are omitted in the table.

For n=7-14, MA designs are unique. For n=8-12, there is one unique resolution VI design, i.e.,
the MA design. Previously, Connor and Zelen (1959) gave designs for n=7-9, and Franklin (1984)
gave MA designs for n=8-12. All these designs are isomorphic to MA designs given here except
for one case. For n = 8, the design given in Connor and Zelen (1959) is isomorphic to design 8-2.2

which has resolution V while the MA design 8-2.1 has resolution VI.
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6 Concluding remarks

Based on coding theory, we use minimum moment aberration and moment projection pattern to
classify and rank FF designs, and use power moments to compute wordlength patterns and find
clear effects. By modifying CSW’s algorithm, we obtain complete collections of 3-level FF designs
with 27 and 81 runs, 243 runs with resolution IV or higher and 729 runs with resolution V or higher.
Selected designs of interest are given. For easy reference, the complete catalogue is available at the
author’s web site (http://www.stat.ucla.edu/ hgxu/pub/£f£d3/). The online catalogue includes
the actual clear 2fi components ab and ab?.

One interesting result is that 243-run MA designs are not unique. This is the smallest case
known so far where MA designs are not unique. Chen (1992) showed that MA 2" designs are
unique for k = 1,2, 3,4. The catalogue of CSW shows that MA designs are unique for 16, 32 and 64
runs. One interesting question is whether 2-level MA designs are unique. The answer is negative.
Bouyukliev and Jaffe (2001) showed that there are exactly seven [43,7,20] linear codes (that is,
seven 2*3=7 designs with resolution 20 or higher). According to their complete enumeration, MA
243=7 designs have wordlength pattern Asy = 84, Aoy = 35, Agsg = 7, Asg = 1 and other A; = 0; and

there are two nonisomorphic designs having this wordlength pattern.
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Table 8: Complete catalogue of 27-run designs

Design Columns WLP Cl C2 CC CME Clear 2fi’s
3-01 125 0 3 3 6 all all
3-0.2% 123 1 0 O 0
4-1.1 1258 01 4 0 6 all
4-12 1253 10 1 3 6 5 1:5 2:5 5:3
4-1.3%* 1234 40 0 O 0
5-2.1 125814 130 2 0 1 58
9-2.2 12583 211 0 O 4
5-23 12534 400 1 4 8 5 1:5 2:5 5:3 54
6-3.1 1258412 2902 0 O 0
6-3.2 125846 3631 0 0 O
6-33 125836 4360 0 0 O
6-34 125843 5332 0 0 O
7-41 12584126 51598 0 O 0
7-4.2 1258467 611154 0 O 0
7-43 1258463 710129 0 0 O
7-44 12584123 89914 0 0 0
8-5.1 1258412611 8 30 24 32 0 O 0
852 125841267 10 23 32 30 0 O 0
853 125841263 11 21 30 38 0 O 0
9-6.1 125841261113 1254 54 96 0 0 0
962 12584126113 15 42 69 96 0 O 0
963 1258412673 16 39 69 106 0 O 0
10-71 1258412611133 2172135240 0 O 0
10-72 125841261137 2268138250 0 O 0
Note: Designs with n = 1,2,11 or 12 are unique and not listed. An asterisk (*) indicates a

degenerate design.
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Table 11: Selected 729-run designs with resolution V or higher

Design Columns WLP
7-1.1 1251441122185 0000
7-1.2 125144112263 0001
7-1.3 125144112222 0010
8-2.1 1251441122 63 149 0004
8-2.2 1251441122185 27 0012
8-2.3 1251441122 185 23 0020
9-3.1 125144112263 149 201 00012
9-3.2 125144112263 149 166 0027
9-3.3 1251441122 185 27 206 0034
10-4.1 125 14 41 122 63 149 201 236 00030
10-4.2 1251441 122 63 149 201 36 00517
10-4.3 12514 41 122 63 149 166 188 00614
11-5.1 125 14 41 122 63 149 201 236 315 00066
11-5.2 125 14 41 122 63 149 201 236 36 00939
11-5.3 12514 41 122 63 149 201 36 54 0012 33
12-6.1 125 14 41 122 63 149 201 236 315 336 000132
12-6.2 12514 41 122 63 149 201 236 315 36 001581
12-6.3 125 14 41 122 63 149 201 236 36 105 002166

13-7.1 125 14 41 122 63 149 166 188 78 213 354 003991
13-7.2 125 1441 122 63 149 201 236 36 173 115 00 44 86
13-7.3 1251441 122 63 149 166 188 54 242 105 0045 80

14-8.1 12514 41 122 63 149 166 188 54 242 105 212 0 0 70 140

Note: All main effects and 2fi’s are clear.

25



