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Abstract: A supersaturated design is a design whose run size is not enough for esti-
mating all the main effects. It is commonly used in screening experiments, where the
goals are to identify sparse and dominant active factors with low cost. In this paper, we
study a variable selection method via the Dantzig selector, proposed by Candes and Tao
(2007), to screen important effects. A graphical procedure and an automated proce-
dure are suggested to accompany with the method. Simulation shows that this method
performs well compared to existing methods in the literature and is more efficient at
estimating the model size.
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1 Introduction

As science and technology have advanced to a higher level nowadays, investigators are becoming
more interested in and capable of studying large-scale systems. Typically these systems have many
factors that can be varied during design and operation. The cost of probing and studying a large-
scale system can be extremely expensive. Building prototypes is time-consuming and costly, even
using the best computer system with the best algorithms. To address the challenges posed by this
technological trend, research in experimental design has lately focused on the class of supersaturated
designs for their run size economy and mathematical novelty.

The construction of supersaturated designs dates back to Satterthwaite (1959) and Booth and
Cox (1962). The former suggested the use of random balanced designs and the latter proposed an
algorithm to construct systematic supersaturated designs. Many methods have been proposed for
constructing supersaturated designs in the last 15 years, for examples, among others, Lin (1993,
1995), Wu (1993), Nguyen (1996), Cheng (1997), Li and Wu (1997), Tang and Wu (1997), Fang et
al. (2000), Butler et al. (2001), Bulutoglu and Cheng (2004), Liu and Dean (2004), Xu and Wu
(2005), Georgiou et al. (2006), Ai et al. (2007), Bulutoglu (2007), Liu, Liu and Zhang (2007), Liu,
Ruan and Dean (2007), Ryan and Bulutoglu (2007) and Tang et al. (2007).

A common application of supersaturated designs is factor screening. There are usually a large
number of factors to be investigated in a screening experiment, but it is believed that only a
few of them are active, or explicitly speaking, have significant impact on the response. This
phenomenon is commonly recognized as factor sparsity (Box and Meyer 1986). The purpose of
screening experiments is to identify the active factors correctly and economically. The inactive
factors will be discarded, while the active factors will be investigated further in some follow-up
experiments. Supersaturated designs are particularly useful in screening experimentation due to
their run-size economy (Lin 1999).

Some analysis methods were developed in recent years. Lin (1993) used stepwise regression for
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selecting active factors. Chipman et al. (1997) proposed a Bayesian variable-selection approach
for analyzing experiments with complex aliasing. Westfall et al. (1998) proposed an error control
skill in forward selection. Beattie et al. (2002) proposed a two-stage Bayesian model selection
strategy for supersaturated experiments. Li and Lin (2002, 2003) proposed a method based on
penalized least squares. Holcomb et al. (2003) proposed contrast-based methods. Lu and Wu
(2004) proposed a modified stepwise selection based on an idea of staged dimensionality reduction.
Zhang et al. (2007) proposed a method based on partial least squares.

In this paper, we consider searching active factors in supersaturated designs via the Dantzig
selector proposed by Candes and Tao (2007). The Dantzig selector chooses the best subset of
variables or active factors by solving a simple convex program, which can be recast as a convenient
linear program. Candes and Tao (2007) showed that the Dantzig selector has some remarkable
properties under some conditions and has been successfully used in biomedical imaging, analog to
digital conversion and sensor networks, where the goals are to recover some sparse signals from
some massive data. Our simulation also demonstrates that the Dantzig selector is powerful for
analyzing supersaturated designs.

This paper is organized as follows. In Section 2, we introduce the Dantzig selector and discuss
how to implement the Dantzig selector in practice. Section 3 suggests a graphical procedure using
a profile plot in analyzing the results from the Dantzig selector. Three real-life experiments are
used to examine the efficiency of the method. The results show that the profile plot is efficient
at identifying important factors in experiments, even if there are mixed-level factors. Section 4
suggests an automatic variable selection procedure to accompany the Dantzig selector method. A
new criterion modified from traditional AIC is suggested. Real-life experiments are used again to
show the efficiency of the numerical method. In Section 5, simulations are performed to show how
efficient the Dantzig selector method is when it is compared to existing methods in the literature.
Section 6 gives some concluding remarks.

2 The Dantzig Selector

Consider a linear regression model y = Xβ + ε where y is an n × 1 vector of observations, X is
an n × k model matrix, β is a k × 1 vector of unknown parameters, and ε is an n × 1 vector of
random errors. Assume that ε ∼ N(0, σ2In) is a vector of independent normal random variables.
Candes and Tao (2007) proposed a new estimator called the Dantzig selector to estimate the vector
of parameters β under the situation of supersaturated experiments (i.e., the number of variables
is greater than the number of observations). This estimator is the solution to the l1-regularization
problem

min
β̂∈Rk

‖β̂‖l1 subject to ‖Xtr‖l∞ ≤ δ (1)

where r is the residual vector r = y−Xβ̂, δ is a tuning parameter and for a vector a, ‖a‖l1 =
∑
|ai|

and ‖a‖l∞ = max |ai|. In other words, an estimator with minimum complexity measured by the
l1-norm is searched among all estimators that are consistent with the data.

According to Candes and Tao (2007), there are some reasons to restrict the correlated residual
vector Xtr rather than the size of the residual vector r. One of the reasons is that the estimation
procedure using the correlated residual vector is invariant with respect to orthonormal transfor-
mations applied to the data vector since the feasible region is invariant. Suppose an orthonormal
transformation is applied to the data, giving y′ = Uy, then (UX)t(Uy − UXβ̂) = Xt(y − Xβ̂),
which shows the invariant. This implies that the estimation of β does not depend upon U .
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The Dantzig selector can be recast as a linear program.

min
∑
i

ui subject to − u ≤ β̂ ≤ u and − δ1k ≤ Xt(y −Xβ̂) ≤ δ1k (2)

where the optimization variables are u, β̂ ∈ Rk and 1k is a vectors of k ones. This is equivalent to
the standard linear program

min ctx subject to Ax ≥ b and x ≥ 0 (3)

where

c =
(
1k
0k

)
, A =

 XtX −XtX
−XtX XtX

2Ik −Ik

 , b =

−Xty − δ1k
Xty − δ1k

0k

 , x =
(

u
u+ β

)
.

Candes and Tao (2007) showed that under certain conditions on the model matrix X which
roughly guarantee that the model is identifiable, the Dantzig selector can correctly identify the
active variables with large probability. Unfortunately, the conditions are too strong and most
supersaturated designs in the literature do not satisfy these conditions.

When the columns of X are orthogonal and have unit length, the Dantzig selector β̂ is the
l1-minimizer subject to the constraint ‖Xty − β̂‖l∞ ≤ δ. This implies that β̂ is simply the soft-
thresholded version of Xty at level δ, thus

β̂i =


(Xty)i − δ, if (Xty)i ≥ δ
(Xty)i + δ, if (Xty)i ≤ −δ
0, otherwise

where (Xty)i is the ith component of Xty. In other words, Xty is shifted toward the origin. For an
arbitrary X, the method continues to exhibit a soft-thresholding type of behavior and as a result,
may slightly underestimate the true value of the nonzero parameters.

There are several simple methods to correct for this bias and increase performance in practical
settings. Candes and Tao (2007) suggested a two-stage procedure. First, estimate I = {i : βi 6= 0}
with Î = {i : |β̂i| > γ} for some γ ≥ 0 with β̂ as in the solution to the l1-regularization problem
(1). Second, construct the estimator β̂Î = (Xt

Î
XÎ)

−1Xt
Î
y and set the other coordinates to zero,

where XÎ is the corresponding model matrix for model Î. Hence, we rely on the Dantzig selector
to estimate the model I by Î, and construct a new estimator by regressing y onto the model Î.
Candes and Tao (2007) referred to this estimator as the Gauss-Dantzig selector. This estimator
centralizes the estimates and generally yields higher statistical accuracy.

The tuning parameter (δ) in the l1-regularization problem (1) has a significant impact on the
results of the estimates. If δ is set to be too high, or in other words, we allow a large range of
residuals to take part in the regression equation, the residuals are able to explain all the variations
of the response themselves without considering any changes in the predictors. This leads to the
insignificance of all predictors towards the change in response, so we drop all of the predictors.
On the other hand, if δ is set to be too low, or in other words, we minimize the variation of the
residuals, the variation of the response has to be explained by the predictors, so some inactive
factors with small magnitudes of coefficients are falsely included to help explaining the variation of
the response. Therefore, an appropriate value of δ is essential in identification of the active factors.
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3 A Procedure for Analyzing Supersaturated Designs

A proper choice of the tuning parameter δ is crucial for the Dantzig selector. Candes and Tao
(2007) suggested the choice of δ = λσ when X is unit length normalized, where λ =

√
2 log k and

σ is the standard deviation of the random error. However, we do not know σ in practice and it
is a difficult task itself to estimate σ accurately for supersaturated designs. Furthermore, even if
we know σ (as in simulation), this choice of δ does not always lead to the best performance. Cai
and Lv (2007) argued that it might be possible that λ =

√
2 log k overshrinks the k × 1 vector of

unknown parameters β and underestimates the nonzero coordinates when k is much larger than n.
One can borrow ideas from ridge regression or other shrinkage methods. A popular practice in

ridge regression is to determine the tuning parameter by inspection of the ridge trace (Hoerl and
Kennard 1970). Adopting this we suggest the following procedure for screening important effects
for supersaturated designs.

1. Standardize data so that y has mean 0 and columns of X have equal lengths. Compute
δ0 = max |xtiy|, where xi is the ith column of X.

2. Solve the linear program (2) or (3) to obtain the Dantzig selector β̂ for some values of δ
ranging from 0 to δ0.

3. Make a profile plot of the estimates by plotting β̂ against δ.

4. Identify important effects by inspection of the profile plot.

It follows from (1) that all of the estimates β̂i are 0 if δ ≥ δ0. Thus it is sufficient to choose δ from
the interval [0, δ0] in step 2. For convenience, we use up to hundreds evenly spaced δ to make a
profile plot, which is very fast in computation. Then we rank and identify important effects by
examining relative magnitudes of the effects as well as how slowly they decay to zero. A long lasting
effect ought to be viewed as important. This procedure does not require a precise choice of δ and
also allows other information to be used to determine the significance of the effects (see Example 1
below for an example). However, the effects identified as important should be treated as tentative
and, as a precaution, follow-up experiments are recommended to validate the results.

We illustrate the procedure on three real data in the literature.

Example 1. Consider the cast fatigue experiment (Wu and Hamada 2000, section 7.1), a real data
set consisting of 7 two-level factors. The design matrix and the response data are given in Table
1. We first consider the main effects model, where each column corresponds to a two-level factor.
Figure 1 shows the profile plot of the estimates. Note that the trajectories are parallel lines because
the columns of X are orthogonal. All estimates are 0 when δ > δ0 = 5.5. If δ is chosen between
3.1 and 5.5, only F is nonzero; and if δ is chosen between 1.9 and 3.0, both F and D are nonzero.
The conclusion is that F and possibly D are important. This is consistent to the analysis using
half-normal plot in Wu and Hamada (2000, Figure 8.1).

We further investigate potential active two-factor interactions. We consider a model with 7
main effects and all 21 two-factor interactions so that the model is supersaturated. The profile
plot (Figure 2) suggests two or three important effects that decay slowly towards 0. Among the
three effects, AE is less significant than F and FG, which agrees with the result in Westfall et al.
(1998). Note that the significance of AE without its parent main effects violates the effect heredity
principle (Wu and Hamada 2000, section 3.5), so one might accept a model with F and FG only,
which is recommended by Wu and Hamada (2000, Section 8.4).
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Example 2. Consider the blood glucose experiment (Wu and Hamada 2000, section 7.1), a real
data set consisting of 1 two-level and 7 three-level factors. The design matrix and the response
data are given in Table 2. We first apply the Dantzig selector to a model with 15 terms. The
first column corresponds to the two-level factor A. The next 7 columns correspond to the linear
contrasts of the 7 three-level factors from B to H. The last 7 columns correspond to the quadratic
contrasts of the 7 three-level factors. The coding of linear and quadratic contrasts is:

Linear Contrast:
(
0 1 2

)
→
(
+1 0 −1

)
Quadratic Contrast:

(
0 1 2

)
→
(
+1 −2 +1

)
The model matrix X is then normalized to have unit length for each column. Figure 3 shows the
profile plot, where the trajectories are parallel lines as expected. The big gap between the two
leading effects and the rest suggests that Eq and Fq are the only two important effects. The result
is consistent to the analysis using half-normal plot in Wu and Hamada (2000, Figure 8.2).

We also include two-factor interaction terms in the analysis and consider a model with 15 linear
and quadratic terms and 98 two-factor interaction terms. The model matrix X is normalized to have
unit length for each column. The profile plot (Figure 4) suggests two long lasting effects, (BH)lq
(the interaction between the linear contrast of B and the quadratic contrast of H) and (BH)qq (the
interaction between the quadratic contrasts of B and H), which are most significant. However, it is
not obvious whether (AH)lq should be viewed as significant. Using a Bayesian approach, Chipman
et al. (1997, Table 7) identified top 10 models; see also Wu and Hamada (2000, Table 8.3). All 10
models include (BH)lq and (BH)qq, and one of the models includes (AH)lq.

Example 3. In this example, we apply the Dantzig selector to a supersaturated design demon-
strated first by Lin (1993). The original dataset has 24 factors but two factors (13 and 16) are
identical. As Beattie et al. (2002), we delete factor 13 and rename factors 14–24 as 13–23. The
design matrix and response data are given in Table 3. The profile plot (Figure 5) suggests that
only X14 appears to be important in this data.

The same data were previously analyzed by several authors. Westfall et al. (1998) highlighted
X14, X12, X19, X4, X10 and X11 as important, among which X14 is the only significant variable
at 5% significance level and X4 is marginally significant. Beattie et al. (2002) compared several
model selection methods; only X14 is identified as important in every method. Both Li and Lin
(2003) and Zhang et al. (2007) suggested X14, X12, X19 and X4 as active factors.

The difference is not surprising when we look at the trajectories of β̂ in Figure 5. Almost all
effects, except X14, are noisy and the magnitudes are small enough to be considered within the
noise level. We agree with Abraham et al. (1999) that it is not clear the correct answers on which
the active factors are. Different approaches may provide different answers on the list of active
factors and X14 is probably the only common active factor found in different approaches.

4 Automatic Variable Selection

The preceding graphical procedure is simple and easy to use. Nevertheless, it is sometimes desirable,
for instance in simulation, to have a procedure for choosing the tuning parameter δ automatically.
Here we propose a general procedure for choosing δ based on a model selection criterion. First we
obtain the Dantzig selector β̂ for some values of δ ranging from 0 to δ0 as in step 2 of the previous
section. Then for a fixed γ ≥ 0, we obtain a list of models Î = {i : |β̂i| > γ}, compare these models
according to a criterion and choose a δ that yields the best model.
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Akaike information criterion (AIC) is popular for model selection. For linear models, it is
defined as

AIC = n log(RSS/n) + 2p

where RSS =
∑n

i=1(yi − ŷi)2 is the residual sum of squares and p is the number of parameters in
the model. It is known that AIC tends to overfit the model when the sample size is small. Hurvich
and Tsai (1989) proposed a bias correction by adding an additional penalty term to AIC. Their
modified AIC is defined as

cAIC = AIC + 2(p+ 1)(p+ 2)/(n− p− 2).

The cAIC typically chooses a smaller model than AIC. However, it still tends to overfit the model
for supersaturated designs.

Factor sparsity is an important assumption for the use of supersaturated designs and the Dantzig
selector. Based on this assumption we impose a heavy penalty on the model complexity and propose
a new modified AIC for supersaturated designs as follows:

mAIC = n log(RSS/n) + 2p2. (4)

The difference between our modified AIC and AIC or cAIC is the penalty of model complexity p.
The penalty on p in mAIC is quadratic whereas that in AIC is linear; therefore, mAIC chooses
more parsimonious model than AIC. The penalty in cAIC is complicated. It is nearly quadratic
on p when p is close to n and nearly linear when p is close to n/2. As will be seen later, this
modification in (4) works well for our examples and simulations. It remains to be seen whether it
works for other situations.

The parameter γ can be viewed as a threshold between signal and noise and a relatively small γ
should be chosen. One can choose γ according to the profile plot or information on the magnitude
of effects or noise. It is recommended that the procedure be repeated with a few choices of γ. When
the signal and noise ratio is large, the choice of γ is not crucial. On the other hand, if the result
is sensitive to the choice of γ, one should be cautious about the procedure and the result. In the
simulation, we do a coarse grid search for γ. We find that the modified AIC defined in (4) tends
to produce more robust results against different choices of γ than AIC or cAIC.

Example 4. We illustrate the automatic procedure with the cast fatigue experiment in Example 1.
We fix γ = 0 and choose δ according to the three information criteria. When entertaining the main
effects only, AIC chooses a 2-factor model (F,D) while both cAIC and mAIC choose a 1-factor
model (F ). When entertaining the two-factor interactions, AIC chooses a model with 9 terms
(F, FG,AE,D,EF,AD,DG,A,AB), cAIC chooses a model with 5 terms (F, FG,AE,D,EF ) and
mAIC chooses a model with 2 terms (F, FG). Table 4 lists RSS, R2, and the AIC, cAIC and
mAIC values for these 5 models and an additional model with 3 terms (F, FG,AE). The model
with 3 terms (F, FG,AE) has a slightly larger mAIC value than the model with 2 terms (F, FG).
It is evident here that mAIC performs the best among the three criteria. The mAIC works well
with other choices of γ. For instance, with γ = 0.1 (roughly 25% of max |β̂i|), both AIC and
cAIC choose the 5-term model while mAIC still chooses the 2-term model when entertaining the
two-factor interactions.

5 Simulation

In this section, we investigate the performance of the Dantzig selector approach via simulation. Ex-
ample 5 compares the performance of the Dantzig selector method with four different approaches
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suggested in the literature, and they are (i) SSVS, the Bayesian variable selection procedure pro-
posed by George and McMulloch (1993) and extended for supersaturated designs by Chipman et
al. (1997); (ii) SSVS/IBF, the two stage Bayesian procedure by Beattie et al. (2002); (iii) SCAD,
the penalized least squares approach proposed by Li and Lin (2003); and (iv) PLSVS, the partial
least square regression technique by Zhang et al. (2007). Our simulations are conducted in R using
package “lpSolve”.

Example 5. To compare the performance of the Dantzig selector method with that of the four
methods by simulation, we consider the same models as Li and Lin (2003) and Zhang et al. (2007).
We generate data from the linear model

y = Xβ + ε (5)

where X is the 14× 23 matrix given in Table 3 and the random error ε ∼ N(0, 1). We consider the
following three cases for β:

Case I: One active factor, β1 = 10, and all other components of β equal 0;
Case II: Three active factors, β1 = −15, β5=8, β9 = −2, and all other components of β equal 0;
Case III: Five active factors, β1 = −15, β5=12, β9 = −8, β13 = 6, β17 = −2, and all other

components of β equal 0.
We run the simulations 1,000 times by fixing γ = 1 (corresponding to 10% or 6.7% of max |βi|)

and choosing δ automatically using mAIC. Table 5 compares the Dantzig selector method with the
other four methods. In this table, “TMIR” stands for True Model Identified Rate, “SEIR” stands
for Smallest Effect Identified Rate, and “Median” and “Mean” are the median and mean sizes of
the models.

The Dantzig selector method identifies the true model with the highest probabilities among all
five methods. In case I, the Dantzig selector shares 100% perfect identification rates with SCAD
and PLSVS in identifying the smallest effect. In cases II and III, the probability of getting the
smallest effect with the Dantzig selector method is less than that of SCAD and PLSVS. In terms
of the model size, the Dantzig selector method performs the best. The average model size is closer
to the true model size than those resulted from the other methods. In this sense our method is
more efficient.

We also evaluate the performance of the Dantzig selector with different choices of γ and different
criteria. Table 6 summarizes simulation results using AIC, cAIC and mAIC with γ = 1.25, 1.00,
0.75, and 0.50. It is evident that mAIC performs the best and AIC performs the worst among all
cases; mAIC produces the most stable and accurate results with different choices of γ.

In the next example, we randomly generate some models and evaluate the performance of the
Dantzig selector via simulations.

Example 6. As in Example 5, we generate data from (5) where X is the 14 × 23 matrix given
in Table 3 and ε ∼ N(0, 1). We consider five cases for β. There are i active factors for case i,
1 ≤ i ≤ 5. For each case, we generate 500 models where the selection of active factors is random
without replacement, the signs of the active factors are randomly selected from either positive
or negative, and the magnitudes are randomly selected from 2 to 10 with replacement. For each
model, we generate data 100 times according model (5) and obtain the true model identification rate
(TMIR) and the average model size. Table 7 gives the summary statistics of these two quantities
among 500 models. In the simulations we fix γ = 1 and choose δ according to mAIC.

The Dantzig selector method is very effective in identifying 1 active factor; the TIMR ranges
from 96% to 100% and the average model size ranges from 1 to 1.04. The method is still effective in
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identifying 2 active factors; the TMIR ranges from 78% to 100% and the average model size ranges
from 1.86 to 2.08. The method is less effective in identifying 3 or more active factors. The median
TMIR values are still very high and the median model sizes are still accurate for 3 or 4 active
factors. However, the minimum TMIR values are 0%, suggesting that the method fails to identify a
few models. The situation becomes worse for 5 active factors; although the median TMIR is 86%.

The Dantzig selector method does an excellent job in identifying one active factor in both
simulations. This is supported by the theory developed by Candes and Tao (2007), which roughly
says that the probability of correctly identifying one active factor is high when the correlations
between the variables are small. However, their theory says nothing about the performance of
the Dantzig selector when there are more than one active factors, because the supersaturated
design does not meet the required uniform uncertainty condition. This partially explains why the
method fails to identify some models with 3 or more active factors, where factor sparsity would be
questionable with 23 factors and only 14 runs.

6 Concluding Remarks

This paper studies the Dantzig selector for selecting active effects in supersaturated designs. We
propose a graphical procedure and an automatic variable selection method to accompany with the
Dantzig selector. The graphical procedure is recommended in practice and the automatic method,
like other automatic methods, should be used with caution. Simulation shows that the Dantzig
selector method performs well compared to existing methods in the literature and is more efficient
at estimating the model size.

A modified AIC is proposed for model selection. It works well for the examples and simulations
conducted here, but may not work well for other situations. Nevertheless, it demonstrates that
supersaturated designs are useful when properly analyzed and that the Dantzig selector is a good
tool.

The advantages of the Dantzig selector are as follows. First, the Dantzig selector has a profound
theory. Candes and Tao (2007) proved that the Dantzig selector is able to perform an ideal model
selection when some uniform uncertainty conditions are fulfilled. Second, the Dantzig selector is
relatively fast, easy and simple to use. It is basically a linear program, which is widely considered
as a fast and efficient algorithm to perform massive computation. Linear programming algorithms
are available in many software and packages, like R, Matlab, Mathematica, etc., making it easy to
program and use the Dantzig selector. Third, the Dantzig selector is able to handle a large number
of factors in two-level, multi-level and mixed-level experiments. Candes and Tao (2007) applied the
Dantzig selector to an experiment with up to 200 active factors among 5,000 binary factors and
1,000 observations.
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Figure 1: Profile plot for the cast fatigue experiment without interactions. The model includes 7
main effects.
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Figure 2: Profile plot for the cast fatigue experiment with interactions. The model contains 7 main
effects and 21 two-factor interactions.
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Figure 3: Profile plot for the blood glucose experiment without interactions. The model contains
15 linear and quadratic terms.
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Figure 4: Profile plot for the blood glucose experiment with interactions. The model contains 15
linear and quadratic terms and 98 two-factor interaction terms.
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Figure 5: Profile plot for the Lin (1993) data. The model contains 23 main effects.
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Table 1: Design Matrix and Response Data, Cast Fatigue Experiment.
Run A B C D E F G Response

1 + + − + + + − 6.058
2 + − + + + − − 4.733
3 − + + + − − − 4.625
4 + + + − − − + 5.899
5 + + − − − + − 7.000
6 + − − − + − + 5.752
7 − − − + − + + 5.682
8 − − + − + + − 6.607
9 − + − + + − + 5.818
10 + − + + − + + 5.917
11 − + + − + + + 5.863
12 − − − − − − − 4.809

Table 2: Design Matrix and Response Data, Blood Glucose Experiment.
Run A B C D E F G H Response

1 0 0 0 0 0 0 0 0 97.94
2 0 1 1 1 1 1 0 1 83.40
3 0 2 2 2 2 2 0 2 95.88
4 0 0 0 1 1 2 1 2 88.86
5 0 1 1 2 2 0 1 0 100.58
6 0 2 2 0 0 1 1 1 89.57
7 0 0 1 0 2 1 2 2 91.98
8 0 1 2 1 0 2 2 0 98.41
9 0 2 0 2 1 0 2 1 87.56
10 1 0 1 2 1 1 0 0 88.11
11 1 1 2 0 2 2 0 1 83.81
12 1 2 0 1 0 0 0 2 98.27
13 1 0 2 2 0 2 1 1 115.52
14 1 1 0 0 1 0 1 2 94.89
15 1 2 1 1 2 1 1 0 94.70
16 1 0 2 1 2 0 2 1 121.62
17 1 1 0 2 0 1 2 2 93.86
18 1 2 1 0 1 2 2 0 96.10
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Table 3: A Two-level Supersaturated Design (Lin 1993).
Factors Response

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Y

1 + + + − − − + + + + + − − − + + − − + − − − + 133
2 + − − − − − + + + − − − + + + − + − − + + − − 62
3 + + − + + − − − − + − + + + + + − − − − + + − 45
4 + + − + − + − − − + + − − + + − + + + − − − − 52
5 − − + + + + − + + − − − − + + + − − + − + + + 56
6 − − + + + + + − + + + − + + − + + + + + + − − 47
7 − − − − + − − + − + − + + − + + + + + + − − + 88
8 − + + − − + − + − + − − − − − − − + − + + + − 193
9 − − − − − + + − − − + + − + − + + − − − − + + 32
10 + + + + − + + + − − − + + + − + − + − + − − + 53
11 − + − + + − − + + − + − + − − − + + − − − + + 276
12 + − − − + + + − + + + + − − + − − + − + + + + 145
13 + + + + + − + − + − − + − − − − + − + + − + − 130
14 − − + − − − − − − − + + + − − − − − + − + − − 127
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Table 4: Comparison of information criteria in Example 4
Model Terms p RSS R2 AIC cAIC mAIC

1 F 1 3.132 44.5% −14.12 −12.79 −14.12
2 F,D 2 2.333 58.7% −15.65 −12.65 −11.65
3 F, FG 2 0.6066 89.3% −31.82 −28.82 −27.82
4 F, FG,AE 3 0.2673 95.3% −39.65 −33.94 −27.65
5 F, FG,AE,D,EF 5 0.03568 99.4% −59.82 −43.02 −19.82
6 F, FG,AE,D,EF 9 0.001167 99.98% −92.86 127.14 51.14

AD,DG,A,AB

Table 5: Comparison of simulation results in Example 5
Case Method TMIR SEIR Median Mean

I SSVS(1/10,500) 40.5% 99.0% 2 3.1
SSVS(1/10,500)/IBF 61.0% 98.0% 1 2.5
SCAD 75.6% 100% 1 1.7
PLSVS (m=1) 61.0% 100% 1 1.5
Dantzig Selector (γ = 1) 99.4% 100% 1 1.0

II SSVS(1/10,500) 8.6% 30.0% 3 4.7
SSVS(1/10,500)/IBF 8.0% 28.0% 3 4.2
SCAD 75.6% 98.5% 3 3.3
PLSVS (m=1) 76.4% 100% 3 3.3
Dantzig Selector (γ = 1) 84.4% 85.3% 3 2.9

III SSVS(1/10,500) 36.4% 84.0% 6 8.0
SSVS(1/10,500)/IBF 40.7% 75.0% 5 5.6
SCAD 69.7% 99.4% 5 5.4
PLSVS (m=1) 73.6% 95.0% 5 5.2
Dantzig Selector (γ = 1) 79.1% 91.2% 5 5.1

Table 6: Summary of simulation results in Example 5
TMIR Average Size

Case γ AIC cAIC mAIC AIC cAIC mAIC
I 1.25 99.9% 99.9% 100% 1.001 1.001 1.000

1.00 99.0% 99.1% 99.4% 1.010 1.009 1.006
0.75 90.2% 91.3% 94.7% 1.105 1.091 1.054
0.50 43.9% 50.7% 71.8% 1.843 1.701 1.310

II 1.25 68.9% 68.9% 69.1% 2.769 2.768 2.721
1.00 79.8% 81.4% 84.4% 3.036 3.015 2.901
0.75 64.8% 74.9% 85.6% 3.418 3.274 3.012
0.50 21.3% 42.8% 69.6% 4.538 3.857 3.086

III 1.25 69.4% 79.8% 81.2% 5.263 5.037 4.967
1.00 54.7% 77.1% 79.1% 5.709 5.263 5.143
0.75 32.2% 59.9% 63.9% 6.342 5.550 5.372
0.50 8.1% 32.2% 37.1% 7.573 6.131 5.743
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Table 7: Summary of simulation results in Example 6
Case Min 1st Quartile Median Mean 3rd Quartile Max

I TMIR 96% 99% 100% 99.5% 100% 100%
Size 1.00 1.00 1.00 1.005 1.01 1.04

II TMIR 78% 99% 100% 99.3% 100% 100%
Size 1.86 2.00 2.00 2.004 2.01 2.08

III TMIR 0% 99% 100% 95.6% 100% 100%
Size 2.22 3.00 3.00 3.001 3.01 3.83

IV TMIR 0% 88% 98% 84.0% 100% 100%
Size 1.36 3.97 4.00 3.850 4.01 4.94

V TMIR 0% 8.8% 86% 64.0% 98% 100%
Size 1.23 4.05 4.89 4.395 5.00 6.29
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