CONSTRUCTION OF OPTIMAL
MULTI-LEVEL SUPERSATURATED DESIGNS

Hongquan Xu

UCLA Department of Statistics
E-mail: hgxu@stat.ucla.edu
http://www.stat.ucla.edu/~hqxu/

e Joint work with C. F. J. Wu
e Supported by NSF grants

e Accepted for publication in Annals of Statistics



Outline I

Introduction

Optimality criteria

Optimal results

Construction

Some small designs and comparison
Mixed-level designs

Summary



‘ Introduction I

A supersaturated design (SSD)

run size is not large enough for estimating all the main effects
can study more factors than number of runs

assuming effect sparsity principle [Box and Meyer (1986)]
early work: Satterthwaite (1959) and Booth and Cox (1962)

many recent work, e.g., Lin (1993, 1995), Wu (1993), Nguyen
(1996), Tang and Wu (1997), Cheng (1997), Li and Wu (1997),
etc.

Most work on 2-level SSDs.

Main question:

Optimality criteria and Construction



‘ Optimality Criteria'

Two-level designs [Booth and Cox (1962)]
e FE(s?): overall average correlation among columns
e max(s?): max correlation among columns
Multi-level and mixed-level designs
e ave(x?) and max(x?) statistic [Yamada and Lin (1999)]
e ave(f) and max(f) [Fang, Lin and Ma (2000)]
Criteria from nonregular designs

e generalized minimum aberration [Xu and Wu (2001)]
— minimum Gs-aberration [Tang and Deng (1999)]

— minimum generalized aberration [Ma and Fang (2001)]

e minimum moment aberration [Xu (2003)]



‘Generalized Minimum Aberration.

For a design D of N runs and m factors, consider
Y =1og+ X071 + -+ Xpam + €,
e Y is the vector of NV observations

e «; is the vector of all j-factor interactions

e X, is the matrix of orthonormal coeflicients for «;

If X; = [27)], let

Aj :N_2||ITXJH2 QZ (J)

The GMA criterion (Xu and Wu 2001, Annals of Statistics)

e to sequentially minimize Aq, Ao, As, .. ..



‘Example: A 2-Level Design.

X X5 X3

1 2 3|12 13 23 | 123

I [+ + +]+ + + | +
2 |+ - — |- - + |+
3 + + -1+ - - —
4 - - + |+ - — | +
5 -+ - - + - | +
6 |- - + |+ - — |+
Sum | 0 0 0| 2 -2 =2/ 4

e Ay = (02 +02%+02%)/6% =0,
o Ay =[2°+(-2)" +(-2)%]/6° = 1/3,
® A3 — 42/62 — 4/9



Minimum Moment Aberration.

For an N X m matrix D = [z;;], define the tth power moment to be

K,(D) = Bi<; [0;(D)]" = [N(N — 1)/2] Z 6:;(D)]"

where §,;(D) is # of coincidences between the ith and jth rows,

i.e., # of k’s such that z;; = ;1.
e The power moments measure the similarity among the rows.
e A good design should have small power moments.

The MMA criterion (Xu 2003, Statistica Sinica)

e to sequentially minimize K, Ko, K3, .. ..



An OA(27,13,3,2)

Example

Run 1 2 3 45 6 7 &8 9 10 11 12 13

O N—N—O—O

ON——ONN—O

ON——ONN—HO

O AN —ON—O N

O—ANNO—H—NO
O—N—ANONO—
O—AN—ANONO
O—ANO—ANO— N
O—ANO—ANO— N
OO — —
OO0 — AN
OO ——— AN
elelolololololole)
— NN <HFLOOD~-00D

—AONON—N—O

—ONAN—OO AN

OAN—H—=OANN—HO

—ON—ON—ON

—ANOO—ANANO—
—ANONO—HO AN
O—HAN—ANONOH
—ANO—NO—NO
COCr—IANO—ANO— AN
A OO ONANN
= ANANANO OO
OO AN
—

O—ANMNFLOOD~-00
—

AN—HO—ONON
AN—OON——OWN
OCAN—H—OANAN—HO

AN—HON—ON—O

ANO—H—ANOO N
ANO—O—AN—NO
O—HAN—ANONO
ANO—HANO—HNOH
O—IANO—HNO N
ANANN—H—— OO
ANNNOCOO—
OO NN
ANANANANANANANAN
28

— NN <FLOO D~
ANANANANANANAN




Example: An OA(27,13,3,2) (Cont.)

e The coincidence matrix (d;;):

Run 1 2 3 4 5 6 --- 26 27
115 4 4 4 4 4 4 4

2 4 13 4 4 4 4 4 4

34 4 13 4 4 4 4 4

4 4 4 4 13 4 4 4 4

5 4 4 4 4 13 4 --- 4 4

6 4 4 4 4 4 13 --- 4 4

20 4 4 4 4 4 13 4

27 4 4 4 4 4 13

o Kt = Ez‘<j[(5z',j)t]-
® Kl — 4,K2 = 42,K3 — 43, etc.

Any OA(27,13,3,2) has the same coincidence matrix and moments.



Connection Among Optimality Criteria'

For balanced SSDs with N runs and m factors at s levels
e A1 =0, K1 =m(N —s)/[(N —1)s].
e Ko =[2NAs+ Nm(m+s—1)—m?s?]/[(N — 1)s?].
o E(s%) = N*Az/[m(m —1)/2]
o ave(x?) = NAy/[m(m —1)/2]

Min A, is equivalent to min E(s?), ave(x?) and Ko.



‘ Projected A, I

e A, measures the overall aliasing among columns.

e projected A measures the maximum aliasing among columns.
Let D = (c1,...,Cm).

For any pair of columns (¢;, ¢;), define the projected Ay as
AQ(C@, Cj) = Ag(d), where d = (CZ', Cj).

o A2(D) = Zl§i<j§m As(ci, cj).

e max projected A value is equivalent to max(s?) and max(x?).



‘Existing Lower Bounds'

Suppose D is an SSD(N, s™).
e A lower bound of E(s?) [Nguyen (1996); Tang and Wu (1997)]:

0. . N?*(m —N+1)
Bz oD 1)

e A lower bound of As [Xu (2003)]

m(s —1)(ms—m — N +1)

A2(D) 2 2(N — 1)

e achieved if and only if §;;(D) is constant for all ¢ < j.

e achievable when m is a multiple of (N —1)/(s —1).



‘A New Lower Bound.

Theorem 1: Suppose D is an SSD(N, s™).

m(s —1)(ms—m — N + 1) N (N — 1)s?n(1 —n)

A:(D) 2 2(N — 1) 2N ’

m(N —s)

where 7 is the fractional part of (N—T)s -

e achieved if and only if §;,(D) differs by at most one for all
i< .

e An SSD achieving the lower bound is optimal under GMA.

e achievable when m = q¢(N —1)/(s — 1) 4+ r for r = —1,0, 1.

e achievable for any m when N = s2.



‘ Juxtaposition Method I

Let Dy, Do, ..., Dy be OA(27,13,3,2).
e Note (SZJ(D) =4 for 1 < 7.

e Column juxtaposition of Dy, Do, ..., D) forms an optimal
SSD(27,313F).

e Removing or adding one column is still optimal.
e extension of Tang and Wu (1997).

May contain fully aliased columns!



Fraction Method I

Let D be an OA(27,13,3,2).
e Take any column as the branching column.

e Remove the branching column to obtain 3 one-third fractions
D17 D27 D3'

e Each fraction is an optimal SSD(9, 3'?)
e Row juxtaposition of D and D, is an optimal SSD(18, 3'2).
e extension of Lin (1993).

May contain fully aliased columns!
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Optimality Results I

Theorem 2: Suppose s is a prime power.

(i) An optimal SSD(s", s™) exists for any n and
m = k(s —1)/(s —1)+r where r = —1,0, 1.

(ii) An optimal SSD(ks™" 1, s™) exists for any n, k < s and
m=(s"—-1)/(s—1)—1.

(iii) An optimal SSD(s?, s™) exists for any m.

(iv) An optimal SSD(ks,s™) exists for any m < s and k < s.

e All optimal SSD achieve the lower bound in Theorem 1.



Optimality Results (Cont.) I

Given N and s, let as(m) = min{As(D) : D is an SSD(N, s™)}.

Theorem 3: Suppose a saturated OA(N,t,s,2) exists with
t=(N —1)/(s —1). Then there exists a positive integer mg such
that for m > mg, as(m +t) = as(m) + m(s —1).

e A, optimal SSDs are periodic when m is large enough.

e Optimal SSDs containing fully aliased columns are not useful

in practice.
Question:

e How to construct optimal SSDs without fully aliased columns?



Construction: Idea I

e Addelman and Kempthorne (1961) constructed
OA(2s™,m,s,2) for any prime power s, any n and
m=2(s"—-1)/(s—1)—1.

e Such arrays can be naturally decomposed into two arrays.
e Each array is an SSD(s™,s™).

Key idea:
e columns are labeled as functions over Fy = GF'(s).

e use both linear and quadratic functions.



OA(18,7,3,2)
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e Half of the array is an optimal SSD(9, 37).



Example: SSD(9,3")

e Columns are labeled as linear and quadratic functions.
X1, Xo, X1+ X0,2X 1+ Xo, X7+ Xo, X7+X1+Xo, X74+2X1+ X5

e Evaluating X; and X5 at F? yields an optimal SSD(9,3")

Rin 1 2 3 4 5 6 7
1 0 o0 0 0 O 0 O
2 0 1 1 1 1 1 1
3 0 2 2 2 2 2 2
4 1 0 1 2 1 2 0
5 1 1 2 0 2 0 1
6 1 2 0 1 0 1 2
7 2 0 2 1 1 0 2
s 2 1 0 2 2 1 O
9 2 2 1 O 0 2 1

e Note 5ij :1f0ri<j.

e Any projection design is also optimal.



‘ Construction: Notation I

Let X1,..., X, be n variables over Fy; = GF(s).

H(Xq1,...,.Xn) = {aXi+-+cepXy ¢ €Fs,

not all ¢; are 0 and the last nonzero ¢; is 1}
QI (X1,....X,) = {X?{+aXi+h:a€F,,he HX,,...,X,)}
Q1(X1,...,Xn) = {X1}UuQi(X1,..., X,).

e Both H(X4,...,X,) and Q1(Xq,...,X,) are saturated
OA(s",(s™—1)/(s —1),s,2) when evaluated at F".

e H(Xy,...,X,) is a regular fractional factorial design.
e Q1(X1,...,X,) is isomorphic to H(X1,...,X,,) when n = 2.

o ()1(X1,...,X,) is NOT isomorphic to H(X4,...,X,) when
n > 2 and s > 2.



‘ Main Results I

Theorem 4: Column juxtaposition of H(X,...,X,) and
QT(Xl, .« o ey Xn) 18

e an optimal SSD(s", s™) with m =2(s" —1)/(s—1) — 1.
e an overall A, = s" — s.

e X, is orthogonal to all other columns.

e no fully aliased columns if s > 2.

e s(s™ —s)/(s—1) pairs of non-orthogonal columns with
projected Ay = (s — 1)/s for s odd.

e s — s pairs of non-orthogonal columns with projected A, =1

for s even.



‘Main Results (Cont.)'

Can construct Qp(Xq,...,X,) for each h € H(X1,...,X,).

Theorem 6: For k < (s” —1)/(s — 1), column juxtaposition of k
Qh(Xla c. ,Xn) 18

an optimal SSD(s™,s™) with m = k(s™ —1)/(s —1).

overall Ay = (S)(s” —1).

no fully aliased columns if s is odd or s > 4.

For s odd, (g) 2s pairs with projected Ay = (s — 1)/s,

(g) s? pairs with projected A, = (s — 1)?/s%, and

(g) s?(s™ — s?)/(s — 1) pairs with projected Ay = (s — 1)/s2.
For s even, possible projected A, values are 0, 1,2 and 3.
For s =4, (g) pairs with projected A = 3 and (g) (4™ —4)
pairs with projected A; = 1.



‘Main Results (Cont.)'

All quadratic functions form another class of SSDs, which have
projected As = (s —1)/s for s odd.

Theorem 7: Suppose s is odd. For k < (s —1)/(s — 1), column
juxtaposition of all quadratic functions in k Qp(X1,...,X,,) is
e an SSD(s",s™) with m = k(s" —s)/(s — 1).

e overall Ay = (S)(s” — 25+ 1).

e optimal when k= (s" —1)/(s—1)—1or (s"—1)/(s—1).
e no fully aliased columns.
o (g) s pairs with projected A, = (s — 1)?/s?, and

(5)s2(s™ — 52)/(s — 1) pairs with projected Ay = (s — 1)/s2.



‘Example: s=3and n =2 I

Note H(Xl,XQ) — {Xl,XQ,Xl -+ XQ, 2X1 + XQ}

Qx,(X1,X2) = {X1, X7+ X2, X7+ X1 + X2, X7 +2X1 + Xo},
Qx,(X1,X) = {Xo, X5+ X1, X3+ Xo+ X1, X5 +2X5 + X3},
Qx,+x,(X1, Xs) (X1 + Xo, (X1 + X2)* + X1,
(X1 + X2)® +2X1 + Xo, (X1 + Xo)® + 2X,},
Qox,+x,(X1,X2) = {2X1+ X, (2X1 + X2)? + X1,
(2X1 + X2)? + Xo, (2X1 + X2)* +2X; + 2Xo}.

e The 16 columns together form an optimal SSD(9,31%) with an
overall A; = 48 and max projected A = 2/3.

e The 12 quadratic columns together form an optimal
SSD(9,3'2) with an overall Ay = 24 and max projected
Ay =4/9.



‘Main Results (Cont.)'

Fractions of H(X1,...,X,):

Theorem 8: k/s fractions with any branching column
e an optimal SSD(ks" ! s™) with m = (s — s)/(s — 1).
e overall As = (s" — s)(s — k)/(2k).
e no fully aliased columns for 1 < k£ < s.

e (s" — s)/2 pairs of nonorthogonal columns with projected

Ao = (5 — k) /K.



‘Main Results (Cont.)'

Fractions of Q7 (X1,...,X,):

Theorem 9: k/s fractions with branching column X7 + X5

an optimal SSD(ks" ™!, s™) with m = (s — s)/(s — 1).
overall Ay = (s" — s)(s — k)/(2k).

no fully aliased columns for 1 < k£ < s.

max projected As = (s — k)/k for s odd.

max projected As < max{(s — k)/k,1} for s even.

exact frequency for projected As for s odd or s = 4.



Some Optimal 3-Level SSDSI

Projected A, Values

N m 1/6 2/9 4/9 1/2 2/3 Source
6 3 3 Th. 8, n=2k =2
9 7 9 Th. 4, n =
9 12 54 Th. 7, n =2,k = 4
9 16 54 36 Th.6,n=2Fk=
18 12 12 Th. 8, n =3k =
18 12 27 3 Th. 9, n =3,k =2
27 25 36 Th.4, n=3
27 26 81 9 6 Th.6 n=23k=2
27 156 6318 702 Th. 7, n=3,k=13
27 169 6318 702 468 Th. 6, n =3,k =13
54 39 39 Th. 8, n=4,k=2
54 39 108 3 Th. 9, n=4k=2

~




Some Optimal 4-Level SSDSI

Projected Ay Values

N m 1/9 1/3 1 Source

S 4 6 Th. 8, n=2k =2
12 4 6 Th. 8, n=2k=3
16 9 12  Th.4,n=2

16 15 45  Th. 6% n=2Fk=>5
32 20 30  Th.8 n=3k=2
48 20 30 Th. 8, n =3,k =3
8 20 72 6 Th. 9, n =3,k =3
64 41 60  Th. 4, n =3

64 231 3465  Th. 6% n =3 k= 21

® The design is obtained by removing fully aliased columns.



Some Optimal 5-Level SSDSI

Projected A, Values

i5 1 16 35 3 5 5 Source
10 Th.8,n =2k
10 Th. 8, n = 2, k
10 Th. 8, n =2,k
25 Th. 4, n = 2
375 Th. 7. n =2,k = 6
375 150 Th. 6, n =2,k = 6
60 Th.8 n=3k=2
250 10 Th. 9, n =3,k =2
60 Th. 8, n =3,k =3
250 10 Th. 9, n =3,k =3

~

~



Comparison in terms of ave(f)

m Th.6 Th.7 FLM LS AG

N s

9 3 8 2.57 3.00 2.57 2.57 2.43
9 3 12 3.27 3.27 3.27 3.27 3.06
9 3 16 3.60 3.60 3.60

9 3 28 4.00

16 4 10 6.04 4.36 4.84 4.93
16 4 15 6.86 5.60 6.23 6.27
16 4 20 6.25 6.95

16 4 40 7.87

25 5 12 8.33 9.55 6.42 8.06 7.45
25 5 18 10.78 10.98 8.41 10.42 9.52
25 5 24 11.96 11.67 10.20 11.66 10.86
25 5 30 12.64  12.07 12.33 11.33
25 5 36 13.10 12.73

27 3 26 3.66 3.77 3.78 4.26
27 3 39 4.81 4.81 5.27 5.63
27 3 52 5.38 5.97 5.98 6.32
27 3 65 5.71 6.28 6.73
27 3 156 6.49 6.97

27 3 169 6.53

Fang et al, (2000); Lu and Sun (2001); Aggarwal and Gupta (2004).



Comparison in terms of max( f)

N s m Th.6 Th. 7 FLM LS AG
9 3 8 6 4 6 6 8
9 3 12 6 4 6 6 8
9 3 16 6 6 6
9 3 28 6
16 4 10 16 12 12 12
16 4 15 16 12 12 14
16 4 20 16 12
16 4 40 16
25 5 12 20 14 22 18 24
25 5 18 20 14 24 20 24
25 5 24 20 14 30 20 32
25 5 30 20 14 22 32
25 5 36 20 22
27 3 26 18 12 16 16
27 3 39 18 12 18 16
27 3 52 18 12 18 16
27 3 65 18 12 16
27 3 156 18 12
27 3 169 18

Fang et al, (2000); Lu and Sun (2001); Aggarwal and Gupta (2004).



Summary of Comparisons'

e Our SSDs are competitive in terms of max(f) but less

competitive in terms of ave(f).

e For N =9,25,27, SSDs based on Theorem 7 are better than
existing ones in terms of both max(x?) and max(f).

e In terms of ave(f), our SSDs are worse than existing ones for
N =9, 25 but better for N = 27.

e For NV = 16, our SSDs are less competitive.
Advantages of algebraic methods over algorithmic methods:
e not limited to small run sizes.

e more efficient in control of max aliasing among columns (for
large N).



‘ Mixed-Level Designs I

GMA criterion works for mixed-level SSDs.
Theorem 9: For an SSD(N, s152- - Sm),

(Zsk—m)(Zsk—m—NJrl).

>
Az = 2(N — 1)

e is equivalent to the lower bound of ave(x?) [Yamada and
Matsui (2002)]

e is equivalent to the lower bound of Ks [Xu (2003)].



‘Mixed-Level Designs: Construction I

Method of Replacement
e An SSD(81,919) (n =2, s =9 and k = 10 in Th. 6)
— overall A = 3600 and maximum projected As = 8/9.
e Replace a 9-level column with an OA(9,4, 3, 2).
e SSD(81,91997134) for 1 <4 < 100
— overall A, = 3600 and projected As < 8/9.

— achieve the lower bound of A5 in Theorem 9.



‘ Summary I

e General optimality results

e Explicit algebraic construction of optimal SSDs.
— Half Addelman-Kempthorne arrays
— Juxtaposition of saturated OAs

— Fractions of saturated OAs

e Design properties are studied analytically.

Tables of SSDs and manuscript are available at

http://www.stat.ucla.edu/~hqgxu/



