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GENERALIZED MINIMUM ABERRATION FOR ASYMMETRICAL
FRACTIONAL FACTORIAL DESIGNS1�2

By Hongquan Xu and C. F. J. Wu

University of Michigan

By studying treatment contrasts and ANOVA models, we propose a
generalized minimum aberration criterion for comparing asymmetrical
fractional factorial designs. The criterion is independent of the choice of
treatment contrasts and thus model-free. It works for symmetrical and
asymmetrical designs, regular and nonregular designs. In particular, it re-
duces to the minimum aberration criterion for regular designs and the
minimum G2-aberration criterion for two-level nonregular designs. In ad-
dition, by exploring the connection between factorial design theory and
coding theory, we develop a complementary design theory for general sym-
metrical designs, which covers many existing results as special cases.

1. Introduction. A fundamental and practically important question for
factorial designs is the issue of optimal factor assignment to columns of the de-
sign matrix. For regular designs, the minimum aberration criterion proposed
by Fries and Hunter (1980) has become the standard criterion for optimal fac-
tor assignment. It includes the maximum resolution criterion as a special case
and has the advantage that it can rank-order any two designs. In the last 10-15
years research activities on minimum aberration designs have taken off. See,
among others, Chen and Wu (1991), Chen (1992), Chen, Sun and Wu (1993),
Tang and Wu (1996), Chen and Hedayat (1996), Suen, Chen and Wu (1997),
Cheng, Steinberg and Sun (1999) and Cheng and Mukerjee (1998). Because
this criterion is based on the defining contrast subgroup, it has no obvious
extension to nonregular designs. Tang and Deng (1999) recently proposed a
minimum G2-aberration criterion (and related criteria) to compare nonregu-
lar two-level designs. This criterion has no obvious extension for designs with
more than two levels. Therefore, it is of theoretical and practical interest to
develop a general criterion for nonregular designs.

The classification of an sn−m design with s > 2 needs some discussion. For
example, consider a regular 33−1 design with the defining relation C = AB.
As a regular design, it is understood that any two factorial effects are either
orthogonal or fully aliased. In particular, the interaction AB is fully aliased
with the main effect C. However, if all factors are quantitative, the linear
and quadratic contrasts are often used in analysis. Then the linear-by-linear
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and linear-by-quadratic interactions of A and B are partially aliased with the
main effects of C and are thus estimable in addition to the main effects of A,
B and C. This new point of view was given in Wu and Hamada [(2000), Section
5.6], who also wrote (in Section 7.2) that a 3n−m design should be treated as a
nonregular design if the linear and quadratic contrasts are used. This example
raises another issue, that is, whether the minimum aberration criterion is still
meaningful when the linear and quadratic contrasts or orthogonal polynomial
contrasts in general are used.

The purpose of this paper is to present an efficient and systematic method
for comparing and selecting general fractional factorial designs. With the pre-
vious questions in mind, we study treatment contrasts and ANOVA models for
general asymmetrical fractional factorial designs in Section 2. In Section 3 we
propose a generalized minimum aberration criterion and provide a statistical
justification. The connection between factorial design theory and coding theory
is explored and utilized to establish the relationship between the new criterion
and the minimum aberration in Section 4 and to develop a complementary de-
sign theory for general symmetrical designs in Section 5. Finally the proposed
criterion is applied to select designs for the commonly used 18-run orthogonal
arrays in Section 6.

The rest of this section is devoted to notation and definitions. Let wt�u� be
the number of nonzero elements of a vector u = �u1�    � un�, �s = �0�1�    � s−
1� be the integer ring with modulus s, �S� be the number of elements of a set S,
�C�2 = ∑

i�j �cij�2 be the squared norm of a matrix C = �cij�, 	u�x
 =
∑
ujxj

be the inner product of two vectors u = �u1�    � un� and x = �x1�    � xn�, and
δu�x be the Kronecker delta, which equals 1 if u = x and 0 otherwise.

An asymmetrical (or mixed-level) design of N runs, n factors and with
levels s1�    � sn is denoted by �N�s1 · · · sn�. An �N�s1 · · · sn�-design is a set of
N row vectors or an N × n matrix in which each row represents a run and
each column represents a factor. The jth column takes values from a set of
sj symbols, say, �0�1�    � sj − 1�. For example, an �N�s

n1
1 s

n2
2 �-design has n1

factors of s1 levels and n2 factors of s2 levels. In particular, an �N�sn�-design
is symmetrical. Two designs are isomorphic if one can be obtained from the
other through permutations of rows, columns and symbols in each column.

An asymmetrical (or mixed-level) orthogonal array of N runs, n factors,
strength t and with levels s1�    � sn, denoted by OA�N�s1 · · · sn� t�, is an
�N�s1 · · · sn�-design in which all possible level combinations for any t factors
appear equally often.

For a prime power s, a regular sn−m fractional factorial design D is an
�sn−m� sn�-design that is defined by some defining words. All the defining words
form a group, called the defining contrast subgroup. Let Aj�D� be the number
of degrees of freedom carried by distinct defining words of length j. We call
the vector �A1�D��    �An�D�� the wordlength pattern. Note that the Aj�D�
according to our definition are s − 1 times the Aj�D� as defined in the tra-
ditional literature in the regular case; vide Suen, Chen and Wu (1997). This
change helps in introducing our generalized minimum aberration while at the
same time it has no effect on the definitions of resolution or minimum aberra-
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tion in the regular case. The resolution is the smallest j such that Aj�D� > 0.
For two regular sn−m designs D1 and D2, D1 is said to have less aberration
than D2 if there exists an r, 1 ≤ r ≤ n, such that Ar�D1� < Ar�D2� and
Aj�D1� = Aj�D2� for j = 1�    � r − 1. D1 is said to have minimum aber-
ration if there is no other regular design with less aberration than D1. In
short, the minimum aberration criterion is to sequentially minimize Aj�D�
for j = 1�    � n.

For an �N�2n�-design D, define

Aj�D� = N−2 ∑

wt�u�=j

∣
∣Ju�D�∣∣2 for j = 1�    � n�(1)

where Ju�D� = ∑
x∈D�−1�	u�x
 and the summation is over all n-tuple binary

vectors [i.e., �0�1�-vectors] u with j nonzero elements. For u = �u1�    � un�,
Ju�D� does not depend on the kth column of D if uk = 0. The minimum
G2-aberration criterion proposed by Tang and Deng (1999) is to sequentially
minimize Aj�D� in (1) for j = 1�    � n. It reduces to minimum aberration for
two-level regular designs.

2. Treatment contrasts and ANOVA models. Let Gi = �0�1�    � si −
1� and H = G1×· · ·×Gn. For a full factorial s1×· · ·× sn experiment in which
the ith factor has si levels, consider the following general ANOVA model

E�Y�x�� = ∑

u∈H
χu�x�βu�(2)

where Y�x� is the response of treatment combination x ∈ H, βu are treatment
contrasts (or factorial effects) and χu�x� are contrast coefficients. For u ∈ H
with wt�u� = i, βu is an i-factor interactions. In particular, β0 = β�0��0� is
the general mean which has coefficients 1, that is, χ0�x� = χ�0��0��x� = 1 for
any x ∈ H. For convenience, the contrasts are said to be orthonormal if

∑

x∈H
χu�x�χv�x� = �H�δu�v for any u� v ∈ H�(3)

where χv�·� is the complex conjugate of χv�·�.
In this paper, as often done in practice, we only consider contrasts defined

by tensor products:

χu�x� =
n∏

i=1
χ
�si�
ui

�xi�
for u = �u1�    � un� ∈ H and x = �x1�    � xn� ∈ H�

(4)

where �χ�si�
ui

� ui ∈ Gi� are contrasts for the ith factor which has si levels. Then,
condition (3) is equivalent to the condition that for all i, �χ�si�

ui
� ui ∈ Gi� are

orthonormal, that is,
∑

xi∈Gi
χ
�si�
ui

�xi�χ�si�
vi �xi� = �Gi�δui�vi

for any ui� vi ∈ Gi.
Commonly used contrasts are from orthogonal polynomials, especially for

quantitative factors. Another class is the complex contrasts proposed by Bailey
(1982). The complex contrasts are of no meaning in practice but of great use in
theory. For an s-level factor, the complex contrasts are defined to be χ�s�

u �x� =
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ξu·x for u�x ∈ �s� where ξ is a primitive sth root of unity in �, say ξ = e2πi/s.
The original work of Bailey requires s to be a prime which is unnecessary. For
simplicity, we use i for both

√−1 and an index. The meaning of i should be
clear from the context.

The ANOVA model (2) is not unique because orthonormal contrasts are not
unique when some factors have more than two levels. As a consequence, it
is of little meaning to consider one particular model for a general factorial
design. We need some invariant measure to assess the goodness of a design.
In the next section we shall introduce the concept of a generalized minimum
aberration to tackle this problem.

3. Generalized minimum aberration and its statistical justification.
For an �N�s1 · · · sn�-design D, it is convenient to rewrite the ANOVA model
(2) in the following form

Y = X0α0 +X1α1 + · · · +Xnαn + ε�(5)

where Y is the vector of N observations, αj is the vector of all j-factor in-
teractions and Xj is the matrix of contrast coefficients for αj. Specifically,
Y = �Y�x��x∈D, αj = �βu�wt�u�=j and Xj = �χu�x��x∈D�wt�u�=j. Clearly, X0 is

the vector of ones. It is important to note that �XT

i Xj�2 is independent of
the choice of orthonormal contrasts [see Remark 2.3.1 of Dey and Mukerjee
(1999)].

For given orthonormal contrasts �χu�u ∈ H� satisfying (3) and (4), define

Aj�D� = N−2�XT

0Xj�2 = N−2 ∑

wt�u�=j

∣
∣χu�D�∣∣2 for j = 0�    � n�(6)

where χu�D� = ∑
x∈D χu�x� and the summation is over all u ∈ H with j

nonzero elements. Clearly A0�D� = 1. The value Aj�D� measures the overall
aliasing between all j-factor interactions and the general mean. For conve-
nience, the vector �A1�D��    �An�D�� is called the generalized wordlength
pattern. Then the generalized minimum aberration (GMA) criterion is to se-
quentially minimize Aj�D� in (6) for j = 1�    � n. It is independent of the
choice of orthonormal contrasts and thus model-free. Furthermore, isomorphic
designs are equivalent under GMA because they have the same generalized
wordlength pattern.

An underlying assumption for minimum aberration and GMA is the hierar-
chical ordering principle [Wu and Hamada (2000), Section 3.5]: (i) lower order
effects are more likely to be important than higher order effects, (ii) effects of
the same order are equally likely to be important.

It is evident that minimum G2-aberration is a special case of GMA. As
will be shown in the next section, the generalized wordlength pattern is the
same as the wordlength pattern for a regular design and thus GMA reduces
to minimum aberration for regular designs.

The GMA introduced here is different from the minimum aberration pro-
posed by Wu and Zhang (1993) for 4m2n designs because the former obeys
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the hierarchical ordering principle while the latter does not. Wu and Zhang
argued that interactions between four-level and two-level factors are less im-
portant than interactions between two two-level factors, which violates the
second part of the hierarchical principle.

Tang and Deng (1999) provided a statistical justification for minimum G2-
aberration. Here we extend their approach for GMA. Suppose the main effects
are of primary interest and a main-effect model is fitted, that is, assuming
αj = 0 in (5) for j ≥ 2. Then an unbiased estimate of the main effects α1 is

α̂1 = �XT

1X1�−1X
T

1Y = N−1X
T

1Y if D is an orthogonal array of strength 2.
However, under the full model (5),

E�α̂1� = α1 +C2α2 + · · · +Cnαn�

where Cj = N−1X
T

1Xj, which depend on D, are the aliasing matrices. The
value �Cj�2, which is independent of the choice of orthonormal contrasts, mea-
sures the contamination of non-negligible j-factor interactions on the estima-
tion of main effects. In the spirit of the hierarchical ordering principle, a good
design should sequentially minimize �Cj�2 for j = 2�    � n. The following
result on the relationship between Ai and �Cj�2 is important in this regard.

Lemma 1. For a symmetrical �N�sn�-design,
�Cj�2 = �j+1�Aj+1+j�s−2�Aj+�n−j+1��s−1�Aj−1 for j = 2�    � n

For an asymmetrical OA�N�s1 · · · sn� t�,
�Cj�2 = �j+ 1�Aj+1 for j = 2�    � t

The proof is given in the Appendix. Because A1 = A2 = 0 if D is an or-
thogonal array of strength 2 (see Theorem 4 below), Lemma 1 shows that
sequentially minimizing A3�A4�    is equivalent to sequentially minimizing
�C2�2� �C3�2�   . This leads to the following theorem, which generalizes Tang
and Deng’s (1999) result.

Theorem 1. The generalized minimum aberration criterion sequentially
minimizes the contamination of non-negligible j-factor interactions on the es-
timation of main effects for j = 2�    � e, where e equals the number of factors
for symmetrical designs and the strength for asymmetrical designs.

Note that the computation is cumbersome according to the definition (6).
In the next section we shall derive an alternative and simpler expression for
Aj�D� in (6) which exploits the connection between factorial design theory
and coding theory.

4. Connection with coding theory. This section studies the connection
between factorial design theory and coding theory. The relationship between
regular designs and linear codes was first observed by Bose (1961). To study
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the general relationship we need some recently developed results in coding
theory which can be found in MacWilliams and Sloane (1977), Roman (1992)
and van Lint (1999). For clarity, we shall consider symmetrical and asymmet-
rical designs separately.

First consider symmetrical designs. An �N�sn�-design D is a set of N row
vectors of length n. For two vectors a and b, the Hamming distance dH�a� b�
is the number of places where they differ. The distance distribution of D is
�B0�D��B1�D��    �Bn�D��, where

Bj�D� = N−1 ∣∣��a� b� � dH�a� b� = j� a ∈ D�b ∈ D�∣∣ for j = 0�    � n

The MacWilliams transforms of the distance distribution are defined as

B
′
j�D� = N−1

n∑

i=0
Bi�D�Pj�i�n� s� for j = 0�    � n�(7)

where Pj�x�n� s� =
∑j

i=0�−1�i�s−1�j−i(x
i

)(
n−x
j−i

)
are the Krawtchouk polynomi-

als. By the orthogonality of the Krawtchouk polynomials, it is easy to show
that

Bj�D� = Ns−n
n∑

i=0
B

′
i�D�Pj�i�n� s� for j = 0�    � n(8)

The equations (7) and (8) are known as the generalizedMacWilliams identities.
The connection is established through complex contrasts which are known

as characters in coding theory. For an �N�sn�-design, the complex contrasts
are χu�x� = ξ	u�x
 for u�x ∈ �n

s , where ξ = e2πi/s. The Delsarte theory shows
that

B
′
j�D� = N−2 ∑

wt�u�=j

∣
∣χu�D�∣∣2 for j = 0�    � n�

where u ∈ �n
s . By comparing B

′
j�D� with the definition of Aj�D� in (6), we

obtain the following result.

Theorem 2. For an �N�sn�-design D, the generalized wordlength pattern
is the MacWilliams transform of the distance distribution, that is, Aj�D� =
B

′
j�D� for j = 0�1�    � n.

It is well known that a regular design is a linear code and its defining
contrast subgroup is the dual code. For linear codes, the distance distribution
is the same as the weight distribution. The wordlength pattern of a regular
design D is the weight distribution of its dual code, which is the MacWilliams
transform of the weight distribution of D. Thus, we have the following result.

Theorem 3. For a regular design the generalized wordlength pattern is the
same as the wordlength pattern and hence generalized minimum aberration
reduces to minimum aberration for regular designs.
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It is worth noting that regular minimum aberration designs may not have
GMA when nonregular designs are also considered. For example, consider
�128�215�-designs. There is an OA�128�215�4� which is nonregular [see He-
dayat, Sloane and Stufken (1999)]; however, a regular minimum aberration
design only has strength 3.

Next consider asymmetrical designs. For simplicity, consider an �N�s
n1
1 s

n2
2 �-

design D. The extension to general asymmetrical designs is obvious. It is
convenient to split a row vector into two parts, for example, a = �a1� a2�,
where ai ∈ �

ni
si . For 0 ≤ j1 ≤ n1�0 ≤ j2 ≤ n2, define

Bj1�j2
�D� = N−1 ∣∣��a� b� � dH�a1� b1� = j1� dH�a2� b2� = j2�

a = �a1� a2� ∈ D�b = �b1� b2� ∈ D�∣∣
and

B
′
j1�j2

�D� = N−1
n1∑

i1=0

n2∑

i2=0
Bi1�i2

�D�Pj1
�i1�n1� s1�Pj2

�i2�n2� s2�

Again the connection is established through complex contrasts. In this case,
the complex contrasts are χu�x� = χu1

�x1�χu2
�x2� = ξ

	u1�x1

1 ξ

	u2�x2

2 for u =

�u1� u2�� x = �x1� x2� ∈ �
n1
s1 × �

n2
s2 , where ξ1 = e2πi/s1 and ξ2 = e2πi/s2 . Sloane

and Stufken (1996) showed that

B
′
j1�j2

�D� = N−2 ∑

wt�u1�=j1

∑

wt�u2�=j2
�χu�D��2�

where u = �u1� u2� ∈ �
n1
s1 × �

n2
s2 . Through these expressions, they showed that

D is an orthogonal array of strength t if and only if B
′
j1�j2

�D� = 0 for 1 ≤
j1 + j2 ≤ t. By comparing B

′
j1�j2

�D� with the definition of Aj�D� in (6), we
obtain the following result.

Theorem 4. (i) For an �N�s
n1
1 s

n2
2 �-design D, Aj�D� = ∑

j1+j2=j B
′
j1�j2

�D�
for 0 ≤ j ≤ n1 + n2�

(ii) D is an orthogonal array of strength t if and only if Aj�D� = 0 for
1 ≤ j ≤ t.

In the next two sections, we will use these formulas to develop a general
complementary design theory and to compute the generalized wordlength pat-
terns for the study of the commonly used 18-run orthogonal arrays.

5. Complementary designs. There has been increasing interest in the
characterization of designs in terms of their complementary designs. The tech-
nique is particularly powerful when the number of factors in the complemen-
tary design is much smaller than that in the original design. A theory has
been developed for two-level regular designs by Tang and Wu (1996), for gen-
eral regular designs by Suen, Chen and Wu (1997) and for general two-level
designs by Tang and Deng (1999). Here we develop a complementary design
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theory for general symmetrical designs, which covers the previous results as
special cases.

Suppose H is an �N�sp�-design. Call �D�D� a pair of complementary de-
signs from H if they are a column partition of H. Without loss of generality,
let D consist of the first n columns and D consist of the remaining n = p− n
columns. The complementary design problem is to express �At�D�� in terms
of �At�D��.

The general theory established here requires thatH is a saturated orthogo-
nal array of strength 2. The saturation imposes a condition on the parameters,
i.e., N − 1 = �s − 1�p. Nevertheless, this setting is more general than that
of Suen, Chen and Wu (1997) and Tang and Deng (1999). The combinatorial
approach of Tang and Deng (1999) is complicated even for the two-level case.
There seems to be no easy way to extend their approach to the general case.
On the other hand, the coding theory approach of Suen, Chen and Wu (1997)
is more general and has a clear extension. Here we adopt and extend their
approach to the general case. The basic idea is to consider distance distribu-
tions rather than weight distributions. With the connection established in the
previous section, we are ready to develop a general theory. A key observation
about saturated orthogonal arrays is the following lemma, which follows from
Lemma 1 of Mukerjee and Wu (1995).

Lemma 2. The Hamming distance between any two distinct rows of a sat-
urated OA�N�sp�2� is Ns−1.

Throughout this section, H is a saturated OA�N�sp�2� with N − 1 =
�s−1�p, D and D consist of the first n and respectively remaining n columns
of H with n+ n = p.

Lemma 3. The distance distributions �Bi�D�� and �B′
i�D�� satisfy the fol-

lowing equations:

(i) Bi�D� = 0� for i > min�Ns−1� n��
(ii) Bi�D� = 0� for i > min�Ns−1� n��
(iii) Bi�D� = BNs−1−i�D� + δ0�i − δNs−1�i� for i = 0�    �Ns−1

Proof. For a pair of row vectors �a� b� of H = �D�D�, let a = �a1� a2�
and b = �b1� b2� such that a1� b1 ∈ D and a2� b2 ∈ D. Then dH�a� b� =
dH�a1� b1� + dH�a2� b2�. From Lemma 2, dH�a� b� = Ns−1 if a and b are dis-
tinct and dH�a� b� = 0 otherwise. Then the lemma follows from the definition
of the distance distribution. ✷

Lemma 4. The generalized wordlength patterns �Ai�D�� and �Ai�D�� sat-
isfy the following equations:

Ak�D� = Ck +
n∑

j=0
CkjAj�D� for k = 0�    � n�
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where Ck = N−1�Pk�0�n� s� − Pk�Ns−1�n� s�� and Ckj = s−n
∑n

i=0Pk�Ns−1 −
i�n� s�Pi�j�n� s� for j = 0�    � n.

Given Theorem 2 and Lemma 3, the proof is analogous to that of Theorem
1 of Suen, Chen and Wu (1997). The next lemma follows from the proofs of
Theorem 2 and Corollary 1 of Suen, Chen and Wu (1997).

Lemma 5. The coefficients Ckj in Lemma 4 are the following�
(i) Ckj = 0 for k < j�
(ii) Ckj = ∑

t+u+v=k−j
(
n−Ns−1

t

)(
Ns−1−n

u

)(
n−j
v

)�−1�u+j�s− 2�v�s− 1�t for k ≥ j�
(iii) Ck�k−1 = �−1�k�1+ �s− 2��k− 1��� and
(iv) Ckk = �−1�k.

For s = 2, Ckj = �−1�k−��k−j�/2�( n−N/2
��k−j�/2�

)
for k ≥ j, where �x� is the largest

integer less than or equal to x, and Ck�k−1 = Ckk = �−1�k.

The next theorem follows from Lemmas 4 and 5.

Theorem 5. The generalized wordlength patterns �Ai�D�� and �Ai�D��
satisfy the following equations:

Ak�D� = �Ck +Ck0� +
k−2∑

j=3
CkjAj�D� + �−1�k�1+ �s− 2��k− 1��Ak−1�D�

+�−1�kAk�D��
for k = 0�    � n, where Ckj and Ck are given in Lemmas 4 and 5.

Clearly these identities include as special cases the results derived by Tang
and Wu (1996), Suen, Chen and Wu (1997) and Tang and Deng (1999). In
addition, explicit expressions given in Theorem 5 are not available in Tang
and Deng (1999).

From Theorem 5, we have the following general relation:

Ak�D� = �−1�kAk�D� + lower order terms

Therefore, the general rules given in Suen, Chen and Wu (1997) still work for
nonregular symmetrical designs. However, the situation for nonregular de-
signs is more complicated than that of regular designs, which was also noted
by Tang and Deng (1999). For a given run size there are many non-isomorphic
saturated orthogonal arrays. For example, Lam and Tonchev (1996) showed
that there are 68 non-isomorphicOA�27�313�2�’s, among which only one is reg-
ular. It is computationally intensive to enumerate all subdesigns from them.
Nevertheless, some general results can still be obtained through the com-
plementary design theory. For instance, all subdesigns of 12 (or 11) columns
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from any of these saturated orthogonal arrays have the same generalized
wordlength pattern.

Finally it is of theoretical and practical interest to develop a complementary
design theory for asymmetrical designs. It seems feasible to follow the current
approach; however, the details are much more complicated.

6. Application: GMA designs from 18-run orthogonal arrays. In this
section we apply the GMA to study the commonly used 18-run orthogonal
arrays given in Table 7C.2 of Wu and Hamada (2000). First consider an
OA�18�37�2� given by columns 2 to 8 in their table. For three factors, there are
three non-isomorphic subdesigns according to Wang and Wu (1995). Following
their notation, let design 18-3.1 consist of columns �3�4�5�, design 18-3.2 of
columns �2�3�8�, and design 18-3.3 of columns �2�4�5�, respectively. Design
18-3.1 has 17 degrees of freedom for estimating factorial effects while designs
18-3.2 and 18-3.3 have 14 and 8 degrees of freedom, respectively. It is easy to
verify that the generalized wordlength patterns (or wordlength patterns for
short) are �0�0�05�, �0�0�1� and �0�0�2� respectively. Hence, design 18-3.1
has less aberration than design 18-3.2, which in turn has less aberration than
design 18-3.3. This is consistent with the ordering made in Wang and Wu. For
four factors, there are four non-isomorphic subdesigns according to Wang and
Wu. Let design 18-4.1 consist of columns �3�4�5�6�, design 18-4.2 of columns
�2�3�4�7�, design 18-4.3 of columns �2�3�4�5� and design 18-4.4 of columns
�2�3�6�8�. The wordlength patterns are �0�0�2�15�, �0�0�25�1�, �0�0�35�0�
and �0�0�35�0� respectively. Hence, design 18-4.1 has less aberration than de-
sign 18-4.2, which in turn has less aberration than designs 18-4.3 and 18-4.4.
Note that designs 18-4.3 and 18-4.4 have the same wordlength pattern though
they are not isomorphic. For five factors, the number of non-isomorphic sub-
designs is unknown in the literature due to the complexity of verifying design
isomorphism. There is no efficient method to verify design isomorphism. Nev-
ertheless, it is easy to verify that there are four subdesigns having different
wordlength patterns. The GMA calculations show that any five columns not
containing column 2 form a GMA design. For six factors, columns 3 to 8 form a
GMA design. In summary, we reach an interesting conclusion that any design
not containing column 2 has GMA.

Next consider an OA�18�2137�2� given by columns 1 to 8 in Table 7C.2 of
Wu and Hamada (2000). There is only one choice for the two-level column.
The situation is complicated by the presence of the two-level column. For
example, the number of non-isomorphic subdesigns with 3 to 7 factors is not
known due to the complexity of verifying design isomorphism. However, we can
easily calculate the wordlength patterns for all possible subdesigns. There are
2�6�5�5 and 2 different wordlength patterns for n = 3�4�5�6 and 7 factors,
respectively. Table 1 lists a GMA design for each n.

Finally consider an OA�18�6136�2� given by columns 1′ and 3 to 8 in Table
7C.2 of Wu and Hamada (2000). There is only one choice for the six-level
column. The GMA calculations show that all subdesigns of n factors have the
same wordlength pattern for n = 3�4�5�6.
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Table 1

GMA Designs from OA�18�2137�2�
n Columns

3 1 3 6
4 1 3 6 7
5 1 2 3 6 7
6 1 2 3 4 6 7
7 1 3 4 5 6 7 8

APPENDIX

Proof of Lemma 1. We use complex contrasts for the proof because both
�Cj�2 andAj are invariant with respect to the choice of orthonormal contrasts.
For an �N�sn�-designD, the complex contrasts are χu�x� = ξ	u�x
 for u�x ∈ �n

s ,

where ξ = e2πi/s. Clearly χu�x�χv�x� = χv−u�x�. The elements of X
T

1Xj are
∑

x∈D χu�x�χv�x� =
∑

x∈D χv−u�x� = χv−u�D�, where wt�u� = 1 and wt�v� = j.
Then

�Cj�2 = N−2�XT

1Xj�2 = N−2 ∑

wt�u�=1

∑

wt�v�=j
�χv−u�D��2

The summation can be split into three parts according to wt�v−u� = j+ 1� j
or j−1. Given any v−u such that wt�v−u� = j+1 (j and j−1, respectively),
there are j+ 1 [j�s− 2� and �n− j+ 1��s− 1�, respectively] possible ways of
choosing u and v such that wt�u� = 1 and wt�v� = j. Thus the first statement
follows from the definition of Aj in (6). With a similar argument, it can be
shown that for an �N�s

n1
1 s

n2
2 �-design,

�Cj�2 = �j+ 1� ∑

j1+j2=j+1
B

′
j1�j2

+ ∑

j1+j2=j
B

′
j1�j2

�j1�s1 − 2� + j2�s2 − 2��

+ ∑

j1+j2=j−1
B

′
j1�j2

��n1 − j1��s1 − 1� + �n2 − j2��s2 − 1��

Then the second statement follows from Theorem 4. ✷
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