
C H A P T E R 8

Estimation of Parameters
and Fitting of Probability
Distributions

8.1 Introduction
In this chapter, we discuss fitting probability laws to data. Many families of probability
laws depend on a small number of parameters; for example, the Poisson family de-
pends on the parameter λ (the mean number of counts), and the Gaussian family
depends on two parameters, µ and σ . Unless the values of parameters are known in
advance, they must be estimated from data in order to fit the probability law.

After parameter values have been chosen, the model should be compared to the
actual data to see if the fit is reasonable; Chapter 9 is concerned with measures and
tests of goodness of fit.

In order to introduce and illustrate some of the ideas and to provide a concrete
basis for later theoretical discussions, we will first consider a classical example—the
fitting of a Poisson distribution to radioactive decay. The concepts introduced in this
example will be elaborated in this and the next chapter.

8.2 Fitting the Poisson Distribution to Emissions
of Alpha Particles
Records of emissions of alpha particles from radioactive sources show that the num-
ber of emissions per unit of time is not constant but fluctuates in a seemingly random
fashion. If the underlying rate of emission is constant over the period of observation
(which will be the case if the half-life is much longer than the time period of obser-
vation) and if the particles come from a very large number of independent sources
(atoms), the Poisson model seems appropriate. For this reason, the Poisson distribu-
tion is frequently used as a model for radioactive decay. You should recall that the
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256 Chapter 8 Estimation of Parameters and Fitting of Probability Distributions

Poisson distribution as a model for random counts in space or time rests on three
assumptions: (1) the underlying rate at which the events occur is constant in space
or time, (2) events in disjoint intervals of space or time occur independently, and (3)
there are no multiple events.

Berkson (1966) conducted a careful analysis of data obtained from the National
Bureau of Standards. The source of the alpha particles was americium 241. The
experimenters recorded 10,220 times between successive emissions. The observed
mean emission rate (total number of emissions divided by total time) was .8392
emissions per sec. The clock used to record the times was accurate to .0002 sec.

The first two columns of the following table display the counts, n, that were
observed in 1207 intervals, each of length 10 sec. In 18 of the 1207 intervals, there
were 0, 1, or 2 counts; in 28 of the intervals there were 3 counts, etc.

n Observed Expected

0–2 18 12.2
3 28 27.0
4 56 56.5
5 105 94.9
6 126 132.7
7 146 159.1
8 164 166.9
9 161 155.6

10 123 130.6
11 101 99.7
12 74 69.7
13 53 45.0
14 23 27.0
15 15 15.1
16 9 7.9
17+ 5 7.1

1207 1207

In fitting a Poisson distribution to the counts shown in the table, we view the
1207 counts as 1207 independent realizations of Poisson random variables, each of
which has the probability mass function

πk = P(X = k) = λke−λ

k!

In order to fit the Poisson distribution, we must estimate a value for λ from the
observed data. Since the average count in a 10-second interval was 8.392, we take
this as an estimate of λ (recall that the E(X) = λ) and denote it by λ̂.

Before continuing, we want to mention some issues that will be explored in
depth in subsequent sections of this chapter. First, observe that if the experiment
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were to be repeated, the counts would be different and the estimate of λ would be
different; it is thus appropriate to regard the estimate of λ as a random variable which
has a probability distribution referred to as its sampling distribution. The situation
is entirely analogous to tossing a coin 10 times and regarding the number of heads
as a binomially distributed random variable. Doing so and observing 6 heads generates
one realization of this random variable; in the same sense 8.392 is a realization of a
random variable. The question thus arises: what is the sampling distribution? This is
of some practical interest, since the spread of the sampling distribution reflects the
variability of the estimate. We could ask crudely, to what decimal place is the estimate
8.392 accurate? Second, later in this chapter we will discuss the rationale for choosing
to estimate λ as we have done. Although estimating λ as the observed mean count is
quite reasonable on its face, in principle there might be better procedures.

We now turn to assessing goodness of fit, a subject that will be taken up in depth
in the next chapter. Consider the 16 cells into which the counts are grouped. Under
the hypothesized model, the probability that a random count falls in any one of the
cells may be calculated from the Poisson probability law. The probability that an
observation falls in the first cell (0, 1, or 2 counts) is

p1 = π0 + π1 + π2

The probability that an observation falls in the second cell is p2 = π3. The probability
that an observation falls in the 16th cell is

p16 =
∞∑

k=17

πk

Under the assumption that X1, . . . , X1207 are independent Poisson random variables,
the number of observations out of 1207 falling in a given cell follows a binomial
distribution with a mean, or expected value, of 1207pk , and the joint distribution of the
counts in all the cells is multinomial with n = 1207 and probabilities p1, p2, . . . , p16.
The third column of the preceding table gives the expected number of counts in each
cell; for example, because p4 = .0786, the expected count in the corresponding cell
is 1207 × .0786 = 94.9. Qualitatively, there is good agreement between the expected
and observed counts. Quantitative measures will be presented in Chapter 9.

8.3 Parameter Estimation
As was illustrated in the example of alpha particle emissions, in order to fit a probabil-
ity law to data, one typically has to estimate parameters associated with the probability
law from the data. The following examples further illustrate this point.

E X A M P L E A Normal Distribution
The normal, or Gaussian, distribution involves two parameters, µ and σ , where µ is
the mean of the distribution and σ 2 is the variance:

f (x |µ, σ ) = 1

σ
√

2π
e− 1

2
(x−µ)2

σ2 , −∞ < x < ∞
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F I G U R E 8.1 Gaussian fit of current flow across a cell membrane to a frequency
polygon.

The use of the normal distribution as a model is usually justified using some
version of the central limit theorem, which says that the sum of a large number of
independent random variables is approximately normally distributed. For example,
Bevan, Kullberg, and Rice (1979) studied random fluctuations of current across a
muscle cell membrane. The cell membrane contained a large number of channels,
which opened and closed at random and were assumed to operate independently. The
net current resulted from ions flowing through open channels and was therefore the
sum of a large number of roughly independent currents. As the channels opened and
closed, the net current fluctuated randomly. Figure 8.1 shows a smoothed histogram
of values obtained from 49,152 observations of the net current and an approximat-
ing Gaussian curve. The fit of the Gaussian distribution is quite good, although the
smoothed histogram seems to show a slight skewness. In this application, informa-
tion about the characteristics of the individual channels, such as conductance, was
extracted from the estimated parameters µ and σ 2. ■

E X A M P L E B Gamma Distribution
The gamma distribution depends on two parameters, α and λ:

f (x |α, λ) = 1
%(α)

λαxα−1e−λx , 0 ≤ x ≤ ∞

The family of gamma distributions provides a flexible set of densities for nonnegative
random variables.

Figure 8.2 shows how the gamma distribution fits to the amounts of rainfall
from different storms (Le Cam and Neyman 1967). Gamma distributions were fit
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F I G U R E 8.2 Fit of gamma densities to amounts of rainfall for (a) seeded and
(b) unseeded storms.

to rainfall amounts from storms that were seeded and unseeded in an experiment to
determine the effects, if any, of seeding. Differences in the distributions between the
seeded and unseeded conditions should be reflected in differences in the parameters
α and λ. ■

As these examples illustrate, there are a variety of reasons for fitting probability
laws to data. A scientific theory may suggest the form of a probability distribution
and the parameters of that distribution may be of direct interest to the scientific inves-
tigation; the examples of alpha particle emission and Example A are of this character.
Example B is typical of situations in which a model is fit for essentially descriptive
purposes as a method of data summary or compression. A probability model may
play a role in a complex modeling situation; for example, utility companies interested
in projecting patterns of consumer demand find it useful to model daily temperatures
as random variables from a distribution of a particular form. This distribution may
then be used in simulations of the effects of various pricing and generation schemes.
In a similar way, hydrologists planning uses of water resources use stochastic models
of rainfall in simulations.
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We will take the following basic approach to the study of parameter estimation.
The observed data will be regarded as realizations of random variables X1, X2, . . . , Xn ,
whose joint distribution depends on an unknown parameter θ . Note that θ may be a
vector, such as (α, λ) in Example B. Usually the Xi will be modeled as independent
random variables all having the same distribution f (x |θ), in which case their joint dis-
tribution is f (x1|θ) f (x2|θ) · · · f (xn|θ). We will refer to such Xi as independent and
identically distributed, or i.i.d. An estimate of θ will be a function of X1, X2, . . . , Xn

and will hence be a random variable with a probability distribution called its sampling
distribution. We will use approximations to the sampling distribution to assess the
variability of the estimate, most frequently through its standard deviation, which is
commonly called its standard error.

It is desirable to have general procedures for forming estimates so that each new
problem does not have to be approached ab initio. We will develop two such proce-
dures, the method of moments and the method of maximum likelihood, concentrating
primarily on the latter, because it is the more generally useful.

The advanced theory of statistics is heavily concerned with “optimal estimation,”
and we will touch lightly on this topic. The essential idea is that given a choice of many
different estimation procedures, we would like to use that estimate whose sampling
distribution is most concentrated around the true parameter value.

Before going on to the method of moments, let us note that there are strong
similarities of the subject matter of this and the previous chapter. In Chapter 7 we were
concerned with estimating population parameters, such as the mean and total, and the
process of random sampling created random variables whose probability distributions
depended on those parameters. We were concerned with the sampling distributions
of the estimates and with assessing variability via standard errors and confidence
intervals. In this chapter we consider models in which the data are generated from a
probability distribution. This distribution usually has a more hypothetical status than
that of Chapter 7, where the distribution was induced by deliberate randomization. In
this chapter we will also be concerned with sampling distributions and with assessing
variability through standard errors and confidence intervals.

8.4 The Method of Moments
The kth moment of a probability law is defined as

µk = E(Xk)

where X is a random variable following that probability law (of course, this is defined
only if the expectation exists). If X1, X2, . . . , Xn are i.i.d. random variables from that
distribution, the kth sample moment is defined as

µ̂k = 1
n

n∑

i=1

Xk
i

We can view µ̂k as an estimate of µk . The method of moments estimates parameters
by finding expressions for them in terms of the lowest possible order moments and
then substituting sample moments into the expressions.
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Suppose, for example, that we wish to estimate two parameters, θ1 and θ2. If θ1

and θ2 can be expressed in terms of the first two moments as

θ1 = f1(µ1, µ2)

θ2 = f2(µ1, µ2)

then the method of moments estimates are

θ̂1 = f1(µ̂1, µ̂2)

θ̂2 = f2(µ̂1, µ̂2)

The construction of a method of moments estimate involves three basic steps:

1. Calculate low order moments, finding expressions for the moments in terms of the
parameters. Typically, the number of low order moments needed will be the same
as the number of parameters.

2. Invert the expressions found in the preceding step, finding new expressions for the
parameters in terms of the moments.

3. Insert the sample moments into the expressions obtained in the second step, thus
obtaining estimates of the parameters in terms of the sample moments.

To illustrate this procedure, we consider some examples.

E X A M P L E A Poisson Distribution
The first moment for the Poisson distribution is the parameter λ = E(X). The first
sample moment is

µ̂1 = X = 1
n

n∑

i=1

Xi

which is, therefore, the method of moments estimate of λ: λ̂ = X .
As a concrete example, let us consider a study done at the National Institute of

Science and Technology (Steel et al. 1980). Asbestos fibers on filters were counted
as part of a project to develop measurement standards for asbestos concentration.
Asbestos dissolved in water was spread on a filter, and 3-mm diameter punches were
taken from the filter and mounted on a transmission electron microscope. An operator
counted the number of fibers in each of 23 grid squares, yielding the following counts:

31 29 19 18 31 28
34 27 34 30 16 18
26 27 27 18 24 22
28 24 21 17 24

The Poisson distribution would be a plausible model for describing the variability
from grid square to grid square in this situation and could be used to characterize the
inherent variability in future measurements. The method of moments estimate of λ is
simply the arithmetic mean of the counts listed above, these or λ̂ = 24.9.

If the experiment were to be repeated, the counts—and therefore the estimate—
would not be exactly the same. It is thus natural to ask how stable this estimate is.
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A standard statistical technique for addressing this question is to derive the sampling
distribution of the estimate or an approximation to that distribution. The statistical
model stipulates that the individual counts Xi are independent Poisson random vari-
ables with parameter λ0. Letting S =

∑
Xi , the parameter estimate λ̂ = S/n is a

random variable, the distribution of which is called its sampling distribution. Now
from Example E in Section 4.5, the distribution of the sum of independent Poisson
random variables is Poisson distributed, so the distribution of S is Poisson (nλ0).
Thus the probability mass function of λ̂ is

P(λ̂ = v) = P(S = nv)

= (nλ0)
nve−nλ0

(nv)!

for v such that nv is a nonnegative integer.
Since S is Poisson, its mean and variance are both nλ0, so

E(λ̂) = 1
n

E(S) = λ0

Var(λ̂) = 1
n2

Var(S) = λ0

n
From Example A in Section 5.3, if nλ0 is large, the distribution of S is approximately
normal; hence, that of λ̂ is approximately normal as well, with mean and variance
given above. Because E(λ̂) = λ0, we say that the estimate is unbiased: the sampling
distribution is centered at λ0. The second equation shows that the sampling distribution
becomes more concentrated about λ0 as n increases. The standard deviation of this
distribution is called the standard error of λ̂ and is

σλ̂ =
√

λ0

n

Of course, we can’t know the sampling distribution or the standard error of λ̂ because
they depend on λ0, which is unknown. However, we can derive an approximation by
substituting λ̂ and λ0 and use it to assess the variability of our estimate. In particular,
we can calculate the estimated standard error of λ̂ as

sλ̂ =

√
λ̂

n

For this example, we find

sλ̂ =
√

24.9
23

= 1.04

At the end of this section, we will present a justification for using λ̂ in place of λ0.
In summary, we have found that the sampling distribution of λ̂ is approximately

normal, centered at the true value λ0 with standard deviation 1.04. This gives us
a reasonable assessment of the variability of our parameter estimate. For example,
because a normally distributed random variable is unlikely to be more than two
standard deviations away from its mean, the error in our estimate of λ is unlikely to
be more than 2.08. We thus have not only an estimate of λ0, but also an understanding
of the inherent variability of that estimate.
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In Chapter 9, we will address the question of whether the Poisson distribution
really fits these data. Clearly, we could calculate the average of any batch of numbers,
whether or not they were well fit by the Poisson distribution. ■

E X A M P L E B Normal Distribution
The first and second moments for the normal distribution are

µ1 = E(X) = µ

µ2 = E(X 2) = µ2 + σ 2

Therefore,
µ = µ1

σ 2 = µ2 − µ2
1

The corresponding estimates of µ and σ 2 from the sample moments are

µ̂ = X

σ̂ 2 = 1
n

n∑

i=1

X 2
i − X

2 = 1
n

n∑

i=1

(Xi − X)2

From Section 6.3, the sampling distribution of X is N (µ, σ 2/n) and nσ̂ 2/σ 2 ∼
χ2

n−1. Furthermore, X and σ̂ 2 are independently distributed. We will return to these
sampling distributions later in the chapter. ■

E X A M P L E C Gamma Distribution
The first two moments of the gamma distribution are

µ1 = α

λ

µ2 = α(α + 1)

λ2

(see Example B in Section 4.5). To apply the method of moments, we must express
α and λ in terms of µ1 and µ2. From the second equation,

µ2 = µ2
1 + µ1

λ
or

λ = µ1

µ2 − µ2
1

Also, from the equation for the first moment given here,

α = λµ1 = µ2
1

µ2 − µ2
1

The method of moments estimates are, since σ̂ 2 = µ̂2 − µ̂2
1,

λ̂ = X
σ̂ 2
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F I G U R E 8.3 Gamma densities fit by the methods of moments and by the method of
maximum likelihood to amounts of precipitation; the solid line shows the method of
moments estimate and the dotted line the maximum likelihood estimate.

and

α̂ = X
2

σ̂ 2

As a concrete example, let us consider the fit of the amounts of precipitation
during 227 storms in Illinois from 1960 to 1964 to a gamma distribution (Le Cam and
Neyman 1967). The data, listed in Problem 42 at the end of Chapter 10, were gathered
and analyzed in an attempt to characterize the natural variability in precipitation
from storm to storm. A histogram shows that the distribution is quite skewed, so a
gamma distribution is a natural candidate for a model. For these data, X = .224 and
σ̂ 2 = .1338, and therefore α̂ = .375 and λ̂ = 1.674.

The histogram with the fitted density is shown in Figure 8.3. Note that, in order
to make visual comparison easy, the density was normalized to have a total area equal
to the total area under the histogram, which is the number of observations times the
bin width of the histogram, or 227 × .2 = 45.4. Alternatively, the histogram could
have been normalized to have a total area of 1. Qualitatively, the fit in Figure 8.3 looks
reasonable; we will examine it in more detail in Example C in Section 9.9. ■

We now turn to a discussion of the sampling distributions of α̂ and λ̂. In the previ-
ous two examples, we were able to use known theoretical results in deriving sampling
distributions, but it appears that it would be difficult to derive the exact forms of the
sampling distributions of λ̂ and α̂, because they are each rather complicated functions
of the sample values X1, X2, . . . , Xn . However, the problem can be approached by
simulation. Imagine for the moment that we knew the true values λ0 and α0. We could
generate many, many samples of size n = 227 from the gamma distribution with
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these parameter values, and from each of these samples we could calculate estimates
of λ and α. A histogram of the values of the estimates of λ, for example, should then
give us a good idea of the sampling distribution of λ̂.

The only problem with this idea is that it requires knowing the true parameter
values. (Notice that we faced a problem very much like this in Example A.) So we
substitute our estimates of λ and α for the true values; that is we draw many, many
samples of size n = 227 from a gamma distribution with parameters α = .375 and
λ = 1.674. The results of drawing 1000 such samples of size n = 227 are displayed
in Figure 8.4. Figure 8.4(a) is a histogram of the 1000 estimates of α so obtained and
Figure 8.4(b) shows the corresponding histogram for λ. These histograms indicate the
variability that is inherent in estimating the parameters from a sample of this size. For
example, we see that if the true value of α is .375, then it would not be very unusual
for the estimate to be in error by .1 or more. Notice that the shapes of the histograms
suggest that they might be approximated by normal densities.

The variability shown by the histograms can be summarized by calculating the
standard deviations of the 1000 estimates, thus providing estimated standard errors of
α̂ and λ̂. To be precise, if the 1000 estimates ofα are denoted byα∗

i , i = 1, 2, . . . , 1000,
the standard error of α̂ is estimated as

sα̂ =

√√√√ 1
1000

1000∑

i=1

(α∗
i − α)2

where α is the mean of the 1000 values. The results of this calculation and the
corresponding one for λ̂ are sα̂ = .06 and sλ̂ = .34. These standard errors are concise
quantifications of the amount of variability of the estimates α̂ = .375 and λ̂ = 1.674
displayed in Figure 8.4.
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and (b) λ.



266 Chapter 8 Estimation of Parameters and Fitting of Probability Distributions

Our use of simulation (or Monte Carlo) here is an example of what in statistics
is called the bootstrap. We will see more examples of this versatile method later.

E X A M P L E D An Angular Distribution
The angle θ at which electrons are emitted in muon decay has a distribution with the
density

f (x |α) = 1 + αx
2

, −1 ≤ x ≤ 1 and − 1 ≤ α ≤ 1

where x = cos θ . The parameter α is related to polarization. Physical considerations
dictate that |α| ≤ 1

3 , but we note that f (x |α) is a probability density for |α| ≤ 1.
The method of moments may be applied to estimate α from a sample of experimental
measurements, X1, . . . , Xn . The mean of the density is

µ =
∫ 1

−1
x

1 + αx
2

dx = α

3

Thus, the method of moments estimate of α is α̂ = 3X . Consideration of the sampling
distribution of α̂ is left as an exercise (Problem 13). ■

Under reasonable conditions, method of moments estimates have the desirable
property of consistency. An estimate, θ̂ , is said to be a consistent estimate of a
parameter, θ , if θ̂ approaches θ as the sample size approaches infinity. The following
states this more precisely.

D E F I N I T I O N

Let θ̂n be an estimate of a parameter θ based on a sample of size n. Then θ̂n is said
to be consistent in probability if θ̂n converges in probability to θ as n approaches
infinity; that is, for any ϵ > 0,

P(|θ̂n − θ | > ϵ) → 0 as n → ∞ ■

The weak law of large numbers implies that the sample moments converge in
probability to the population moments. If the functions relating the estimates to the
sample moments are continuous, the estimates will converge to the parameters as the
sample moments converge to the population moments.

The consistency of method of moments estimates can be used to provide a jus-
tification for a procedure that we used in estimating standard errors in the previous
examples. We were interested in the variance (or its square root—the standard error)
of a parameter estimate θ̂ . Denoting the true parameter by θ0, we had a relationship
of the form

σθ̂ = 1√
n
σ (θ0)

(In Example A, σλ̂ =
√

λ0/n, so that σ (λ) =
√

λ.) We approximated this by the
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estimated standard error

sθ̂ = 1√
n
σ (θ̂)

We now claim that the consistency of θ̂ implies that sθ̂ ≈ σθ̂ . More precisely,

lim
n→∞

sθ̂

σθ̂

= 1

provided that the function σ (θ) is continuous in θ . The result follows since if θ̂ → θ0,
then σ (θ̂) → σ (θ0). Of course, this is just a limiting result and we always have a
finite value of n in practice, but it does provide some hope that the ratio will be close
to 1 and that the estimated standard error will be a reasonable indication of variability.

Let us summarize the results of this section. We have shown how the method
of moments can provide estimates of the parameters of a probability distribution
based on a “sample” (an i.i.d. collection) of random variables from that distribution.
We addressed the question of variability or reliability of the estimates by observing
that if the sample is random, the parameter estimates are random variables having
distributions that are referred to as their sampling distributions. The standard deviation
of the sampling distribution is called the standard error of the estimate. We then faced
the problem of how to ascertain the variability of an estimate from the sample itself.
In some cases the sampling distribution was of an explicit form depending upon
the unknown parameters (Examples A and B); in these cases we could substitute
our estimates for the unknown parameters in order to approximate the sampling
distribution. In other cases the form of the sampling distribution was not so obvious,
but we realized that even if we didn’t know it explicitly, we could simulate it. By
using the bootstrap we avoided doing perhaps difficult analytic calculations by sitting
back and instructing a computer to generate random numbers.

8.5 The Method of Maximum Likelihood
As well as being a useful tool for parameter estimation in our current context, the
method of maximum likelihood can be applied to a great variety of other statistical
problems, such as curve fitting, for example. This general utility is one of the major
reasons for the importance of likelihood methods in statistics. We will later see that
maximum likelihood estimates have nice theoretical properties as well.

Suppose that random variables X1, . . . , Xn have a joint density or frequency
function f (x1, x2, . . . , xn|θ). Given observed values Xi = xi , where i = 1, . . . , n,
the likelihood of θ as a function of x1, x2, . . . , xn is defined as

lik(θ) = f (x1, x2, . . . , xn|θ)

Note that we consider the joint density as a function of θ rather than as a function of
the xi . If the distribution is discrete, so that f is a frequency function, the likelihood
function gives the probability of observing the given data as a function of the para-
meter θ . The maximum likelihood estimate (mle) of θ is that value of θ that max-
imizes the likelihood—that is, makes the observed data “most probable” or “most
likely.”
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If the Xi are assumed to be i.i.d., their joint density is the product of the marginal
densities, and the likelihood is

lik(θ) =
n∏

i=1

f (Xi |θ)

Rather than maximizing the likelihood itself, it is usually easier to maximize its natural
logarithm (which is equivalent since the logarithm is a monotonic function). For an
i.i.d. sample, the log likelihood is

l(θ) =
n∑

i=1

log[ f (Xi |θ)]

(In this text, “log” will always mean the natural logarithm.)
Let us find the maximum likelihood estimates for the examples first considered

in Section 8.4.

E X A M P L E A Poisson Distribution
If X follows a Poisson distribution with parameter λ, then

P(X = x) = λx e−λ

x!
If X1, . . . , Xn are i.i.d. and Poisson, their joint frequency function is the product of
the marginal frequency functions. The log likelihood is thus

l(λ) =
n∑

i=1

(Xi log λ − λ − log Xi !)

= log λ

n∑

i=1

Xi − nλ −
n∑

i=1

log Xi !
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F I G U R E 8.5 Plot of the log likelihood function of λ for asbestos data.
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Figure 8.5 is a graph of l(λ) for the asbestos counts of Example A in Section 8.4.
Setting the first derivative of the log likelihood equal to zero, we find

l ′(λ) = 1
λ

n∑

i=1

Xi − n = 0

The mle is then

λ̂ = X

We can check that this is indeed a maximum (in fact, l(λ) is a concave function
of λ; see Figure 8.5). The maximum likelihood estimate agrees with the method of
moments for this case and thus has the same sampling distribution. ■

E X A M P L E B Normal Distribution
If X1, X2, . . . , Xn are i.i.d. N (µ, σ 2), their joint density is the product of their marginal
densities:

f (x1, x2, . . . , xn|µ, σ ) =
n∏

i=1

1

σ
√

2π
exp

(
−1

2

[
xi − µ

σ

]2
)

Regarded as a function of µ and σ , this is the likelihood function. The log likelihood
is thus

l(µ, σ ) = −n log σ − n
2

log 2π − 1
2σ 2

n∑

i=1

(Xi − µ)2

The partials with respect to µ and σ are

∂l
∂µ

= 1
σ 2

n∑

i=1

(Xi − µ)

∂l
∂σ

= − n
σ

+ σ−3
n∑

i=1

(Xi − µ)2

Setting the first partial equal to zero and solving for the mle, we obtain

µ̂ = X

Setting the second partial equal to zero and substituting the mle for µ, we find that
the mle for σ is

σ̂ =

√√√√1
n

n∑

i=1

(Xi − X)2

Again, these estimates and their sampling distributions are the same as those obtained
by the method of moments. ■
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E X A M P L E C Gamma Distribution
Since the density function of a gamma distribution is

f (x |α, λ) = 1
%(α)

λαxα−1e−λx , 0 ≤ x < ∞

the log likelihood of an i.i.d. sample, Xi , . . . , Xn , is

l(α, λ) =
n∑

i=1

[α log λ + (α − 1) log Xi − λXi − log %(α)]

= nα log λ + (α − 1)

n∑

i=1

log Xi − λ

n∑

i=1

Xi − n log %(α)

The partial derivatives are

∂l
∂α

= n log λ +
n∑

i=1

log Xi − n
%′(α)

%(α)

∂l
∂λ

= nα

λ
−

n∑

i=1

Xi

Setting the second partial equal to zero, we find

λ̂ = nα̂
n∑

i=1

Xi

= α̂

X

But when this solution is substituted into the equation for the first partial, we obtain
a nonlinear equation for the mle of α:

n log α̂ − n log X +
n∑

i=1

log Xi − n
%′(α̂)

%(α̂)
= 0

This equation cannot be solved in closed form; an iterative method for finding the
roots has to be employed. To start the iterative procedure, we could use the initial
value obtained by the method of moments.

For this example, the two methods do not give the same estimates. The mle’s
are computed from the precipitation data of Example C in Section 8.4 by an iterative
procedure (a combination of the secant method and the method of bisection) using the
method of moments estimates as starting values. The resulting estimates are α̂ = .441
and λ̂ = 1.96. In Example C in Section 8.4, the method of moments estimates were
found to be α̂ = .375 and λ̂ = 1.674. Figure 8.3 shows fitted densities from both
types of estimates of α and λ. There is clearly little practical difference, especially if
we keep in mind that the gamma distribution is only a possible model and should not
be taken as being literally true.

Because the maximum likelihood estimates are not given in closed form,
obtaining their exact sampling distribution would appear to be intractable. We thus
use the bootstrap to approximate these distributions, just as we did to approximate
the sampling distributions of the method of moments estimates. The underlying ratio-
nale is the same: If we knew the “true” values, α0 and λ0, say, we could approximate
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F I G U R E 8.6 Histograms of 1000 simulated maximum likelihood estimates of (a) α

and (b) λ.

the sampling distribution of their maximum likelihood estimates by generating many,
many samples of size n = 227 from a gamma distribution with parameters α0 and
λ0, forming the maximum likelihood estimates from each sample, and displaying the
results in histograms. Since, of course, we don’t know the true values, we let our
maximum likelihood estimates play their role: We generated 1000 samples each of
size n = 227 of gamma distributed random variables with α = .471 and λ = 1.97.
For each of these samples, the maximum likelihood estimates of α and λ were calcu-
lated. Histograms of these 1000 estimates are shown in Figure 8.6; we regard these
histograms as approximations to the sampling distribution of the maximum likelihood
estimates α̂ and λ̂.

Comparison of Figures 8.6 and 8.4 is interesting. We see that the sampling dis-
tributions of the maximum likelihood estimates are substantially less dispersed than
those of the method of moments estimates, which indicates that in this situation, the
method of maximum likelihood is more precise than the method of moments. The
standard deviations of the values displayed in the histograms are the estimated stan-
dard errors of the maximum likelihood estimates; we find sα̂ = .03 and sλ̂ = .26.
Recall that in Example C of Section 8.4 the corresponding estimated standard errors
for the method of moments estimates were found to be .06 and .34. ■

E X A M P L E D Muon Decay
From the form of the density given in Example D in Section 8.4, the log likelihood is

l(α) =
n∑

i=1

log(1 + αXi ) − n log 2

Setting the derivative equal to zero, we see that the mle of α satisfies the following
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nonlinear equation:
n∑

i=1

Xi

1 + α̂Xi
= 0

Again, we would have to use an iterative technique to solve for α̂. The method of
moments estimate could be used as a starting value. ■

In Examples C and D, in order to find the maximum likelihood estimate, we
would have to solve a nonlinear equation. In general, in some problems involving
several parameters, systems of nonlinear equations must be solved to find the mle’s.
We will not discuss numerical methods here; a good discussion is found in Chapter 6
of Dahlquist and Bjorck (1974).

8.5.1 Maximum Likelihood Estimates of Multinomial
Cell Probabilities
The method of maximum likelihood is often applied to problems involving multino-
mial cell probabilities. Suppose that X1, . . . , Xm , the counts in cells 1, . . . , m, follow
a multinomial distribution with a total count of n and cell probabilities p1, . . . , pm .
We wish to estimate the p’s from the x’s. The joint frequency function of X1, . . . , Xm

is

f (x1, . . . , xm |p1, . . . , pm) = n!
m∏

i=1

xi !

m∏

i=1

pxi
i

Note that the marginal distribution of each Xi is binomial (n, pi ), and that since
the Xi are not independent (they are constrained to sum to n), their joint frequency
function is not the product of the marginal frequency functions, as it was in the
examples considered in the preceding section. We can, however, still use the method
of maximum likelihood since we can write an expression for the joint distribution.
We assume n is given, and we wish to estimate p1, . . . , pm with the constraint that
the pi sum to 1. From the joint frequency function just given, the log likelihood is

l(p1, . . . , pm) = log n! −
m∑

i=1

log xi ! +
m∑

i=1

xi log pi

To maximize this likelihood subject to the constraint, we introduce a Lagrange mul-
tiplier and maximize

L(p1, . . . , pm, λ) = log n! −
m∑

i=1

log xi ! +
m∑

i=1

xi log pi + λ

(
m∑

i=1

pi − 1

)

Setting the partial derivatives equal to zero, we have the following system of
equations:

p̂ j = − x j

λ
, j = 1, . . . , m
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Summing both sides of this equation, we have

1 = −n
λ

or

λ = −n

Therefore,

p̂ j = x j

n
which is an obvious set of estimates. The sampling distribution of p̂ j is determined
by the distribution of x j , which is binomial.

In some situations, such as frequently occur in the study of genetics, the multi-
nomial cell probabilities are functions of other unknown parameters θ ; that is, pi =
pi (θ). In such cases, the log likelihood of θ is

l(θ) = log n! −
m∑

i=1

log xi ! +
m∑

i=1

xi log pi (θ)

E X A M P L E A Hardy-Weinberg Equilibrium
If gene frequencies are in equilibrium, the genotypes AA, Aa, and aa occur in a
population with frequencies (1 − θ)2, 2θ(1 − θ), and θ2, according to the Hardy-
Weinberg law. In a sample from the Chinese population of Hong Kong in 1937,
blood types occurred with the following frequencies, where M and N are erythrocyte
antigens:

Blood Type

M MN N Total
Frequency 342 500 187 1029

There are several possible ways to estimate θ from the observed frequencies. For ex-
ample, if we equate θ2 with 187/1029, we obtain .4263 as an estimate of θ . Intuitively,
however, it seems that this procedure ignores some of the information in the other
cells. If we let X1, X2, and X3 denote the counts in the three cells and let n = 1029,
the log likelihood of θ is (you should check this):

l(θ) = log n! −
3∑

i=1

log Xi ! + X1 log(1 − θ)2 + X2 log 2θ(1 − θ) + X3 log θ2

= log n! −
3∑

i=1

log Xi ! + (2X1 + X2) log(1 − θ)

+ (2X3 + X2) log θ + X2 log 2

In maximizing l(θ), we do not need to explicitly incorporate the constraint that the cell
probabilities sum to 1 since the functional form of pi (θ) is such that

∑3
i=1 pi (θ) = 1.
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Setting the derivative equal to zero, we have

−2X1 + X2

1 − θ
+ 2X3 + X2

θ
= 0

Solving this, we obtain the mle:

θ̂ = 2X3 + X2

2X1 + 2X2 + 2X3

= 2X3 + X2

2n

= 2 × 187 + 500
2 × 1029

= .4247

How precise is this estimate? Do we have faith in the accuracy of the first, second,
third, or fourth decimal place? We will address these questions by using the boot-
strap to estimate the sampling distribution and the standard error of θ̂ . The bootstrap
logic is as follows: If θ were known, then the three multinomial cell probabilities,
(1 − θ)2, 2θ(1 − θ), and θ2, would be known. To find the sampling distribution of θ̂ ,
we could simulate many multinomial random variables with these probabilities and
n = 1029, and for each we could form an estimate of θ . A histogram of these estimates
would be an approximation to the sampling distribution. Since, of course, we don’t
know the actual value of θ to use in such a simulation, the bootstrap principle tells us
to use θ̂ = .4247 in its place. With this estimated value of θ the three cell probabilities
(M , MN, N ) are .331, .489, and .180. One thousand multinomial random counts, each
with total count 1029, were simulated with these probabilities (see problem 35 at the
end of the chapter for the method of generating these random counts). From each of
these 1000 computer “experiments,” a value θ∗ was determined. A histogram of the
estimates (Figure 8.7) can be regarded as an estimate of the sampling distribution of
θ̂ . The estimated standard error of θ̂ is the standard deviation of these 1000 values:
sθ̂ = .011. ■

8.5.2 Large Sample Theory for Maximum Likelihood Estimates
In this section we develop approximations to the sampling distribution of maximum
likelihood estimates by using limiting arguments as the sample size increases. The
theory we shall sketch shows that under reasonable conditions, maximum likelihood
estimates are consistent. We also develop a useful and important approximation for
the variance of a maximum likelihood estimate and argue that for large sample sizes,
the sampling distribution is approximately normal.

The rigorous development of this large sample theory is quite technical; we will
simply state some results and give very rough, heuristic arguments for the case of
an i.i.d. sample and a one-dimensional parameter. (The arguments for Theorems A
and B may be skipped without loss of continuity. Rigorous proofs may be found in
Cramér (1946).)
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F I G U R E 8.7 Histogram of 1000 simulated maximum likelihood estimates of θ

described in Example A.

For an i.i.d. sample of size n, the log likelihood is

l(θ) =
n∑

i=1

log f (xi |θ)

We denote the true value of θ by θ0. It can be shown that under reasonable conditions
θ̂ is a consistent estimate of θ0; that is, θ̂ converges to θ0 in probability as n approaches
infinity.

T H E O R E M A

Under appropriate smoothness conditions on f , the mle from an i.i.d. sample is
consistent.

Proof
The following is merely a sketch of the proof. Consider maximizing

1
n

l(θ) = 1
n

n∑

i=1

log f (Xi |θ)
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As n tends to infinity, the law of large numbers implies that

1
n

l(θ) → E log f (X |θ)

=
∫

log f (x |θ) f (x |θ0) dx

It is thus plausible that for large n, the θ that maximizes l(θ) should be close
to the θ that maximizes E log f (X |θ). (An involved argument is necessary to
establish this.) To maximize E log f (X |θ), we consider its derivative:

∂

∂θ

∫
log f (x |θ) f (x |θ0) dx =

∫ ∂
∂θ

f (x |θ)

f (x |θ)
f (x |θ0) dx

If θ = θ0, this equation becomes
∫

∂

∂θ
f (x |θ0) dx = ∂

∂θ

∫
f (x |θ0) dx = ∂

∂θ
(1) = 0

which shows that θ0 is a stationary point and hopefully a maximum. Note that
we have interchanged differentiation and integration and that the assumption of
smoothness on f must be strong enough to justify this. ■

We will now derive a useful intermediate result.

L E M M A A

Define I (θ) by

I (θ) = E
[

∂

∂θ
log f (X |θ)

]2

Under appropriate smoothness conditions on f, I (θ) may also be expressed as

I (θ) = −E
[

∂2

∂θ2
log f (X |θ)

]

Proof
First, we observe that since

∫
f (x |θ) dx = 1,

∂

∂θ

∫
f (x |θ) dx = 0

Combining this with the identity

∂

∂θ
f (x |θ) =

[
∂

∂θ
log f (x |θ)

]
f (x |θ)
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we have

0 = ∂

∂θ

∫
f (x |θ) dx =

∫ [
∂

∂θ
log f (x |θ)

]
f (x |θ) dx

where we have interchanged differentiation and integration (some assumptions
must be made in order to do this). Taking second derivatives of the preceding
expressions, we have

0 = ∂

∂θ

∫ [
∂

∂θ
log f (x |θ)

]
f (x |θ) dx

=
∫ [

∂2

∂θ2
log f (x |θ)

]
f (x |θ) dx +

∫ [
∂

∂θ
log f (x |θ)

]2

f (x |θ) dx

From this, the desired result follows. ■

The large sample distribution of a maximum likelihood estimate is approximately
normal with mean θ0 and variance 1/[nI (θ0)]. Since this is merely a limiting result,
which holds as the sample size tends to infinity, we say that the mle is asymptot-
ically unbiased and refer to the variance of the limiting normal distribution as the
asymptotic variance of the mle.

T H E O R E M B

Under smoothness conditions on f , the probability distribution of
√

nI (θ0)(θ̂− θ0)

tends to a standard normal distribution.

Proof
The following is merely a sketch of the proof; the details of the argument are
beyond the scope of this book. From a Taylor series expansion,

0 = l ′(θ̂) ≈ l ′(θ0) + (θ̂ − θ0)l ′′(θ0)

(θ̂ − θ0) ≈ −l ′(θ0)

l ′′(θ0)

n1/2(θ̂ − θ0) ≈ −n−1/2l ′(θ0)

n−1l ′′(θ0)

First, we consider the numerator of this last expression. Its expectation is

E[n−1/2l ′(θ0)] = n−1/2
n∑

i=1

E
[

∂

∂θ
log f (Xi |θ0)

]

= 0
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as in Theorem A. Its variance is

Var[n−1/2l ′(θ0)] = 1
n

n∑

i=1

E
[

∂

∂θ
log f (Xi |θ0)

]2

= I (θ0)

Next, we consider the denominator:

1
n

l ′′(θ0) = 1
n

n∑

i=1

∂2

∂θ2
log f (xi |θ0)

By the law of large numbers, the latter expression converges to

E
[

∂2

∂θ2
log f (X |θ0)

]
= −I (θ0)

from Lemma A.
We thus have

n1/2(θ̂ − θ0) ≈ n−1/2l ′(θ0)

I (θ0)

Therefore,

E[n1/2(θ̂ − θ0)] ≈ 0

Furthermore,

Var[n1/2(θ̂ − θ0)] ≈ I (θ0)

I 2(θ0)

= 1
I (θ0)

and thus

Var(θ̂ − θ0) ≈ 1
nI (θ0)

The central limit theorem may be applied to l ′(θ0), which is a sum of i.i.d.
random variables:

l ′(θ0) =
n∑

i=1

∂

∂θ0
log f (Xi |θ) ■

Another interpretation of the result of Theorem B is as follows. For an i.i.d. sam-
ple, the maximum likelihood estimate is the maximizer of the log likelihood function,

l(θ) =
n∑

i=1

log f (Xi |θ)

The asymptotic variance is

1
nI (θ0)

= − 1
El ′′(θ0)



8.5 The Method of Maximum Likelihood 279

when El ′′(θ0) is large, l(θ) is, on average, changing very rapidly in a vicinity of θ0

and the variance of the maximizer is small.
A corresponding result can be proved from the multidimensional case. The vector

of maximum likelihood estimates is asymptotically normally distributed. The mean
of the asymptotic distribution is the vector of true parameters, θ0. The covariance of
the estimates θ̂i and θ̂ j is given by the i j entry of the matrix n−1 I −1(θ0), where I (θ)

is the matrix with i j component

E
[

∂

∂θi
log f (X |θ)

∂

∂θ j
log f (X |θ)

]
= −E

[
∂2

∂θi∂θ j
log f (X |θ)

]

Since we do not wish to delve deeply into technical details, we do not specify the
conditions under which the results obtained in this section hold. It is worth mentioning,
however, that the true parameter value, θ0, is required to be an interior point of the set of
all parameter values. Thus the results would not be expected to apply in Example D of
Section 8.5 if α0 = 1, for example. It is also required that the support of the density
or frequency function f (x |θ) [the set of values for which f (x |θ) > 0] does not depend
on θ . Thus, for example, the results would not be expected to apply to estimating θ from
a sample of random variables that were uniformly distributed on the interval [0, θ ].

The following sections will apply these results in several examples.

8.5.3 Confidence Intervals from Maximum
Likelihood Estimates
In Chapter 7, confidence intervals for the population mean µ were introduced. Re-
call that the confidence interval for µ was a random interval that contained µ with
some specified probability. In the current context, we are interested in estimating the
parameter θ of a probability distribution. We will develop confidence intervals for θ

based on θ̂ ; these intervals serve essentially the same function as they did in Chapter 7
in that they express in a fairly direct way the degree of uncertainty in the estimate θ̂ . A
confidence interval for θ is an interval based on the sample values used to estimate θ .
Since these sample values are random, the interval is random and the probability that
it contains θ is called the coverage probability of the interval. Thus, for example, a
90% confidence interval for θ is a random interval that contains θ with probability .9.
A confidence interval quantifies the uncertainty of a parameter estimate.

We will discuss three methods for forming confidence intervals for maximum
likelihood estimates: exact methods, approximations based on the large sample prop-
erties of maximum likelihood estimates, and bootstrap confidence intervals. The con-
struction of confidence intervals for parameters of a normal distribution illustrates the
use of exact methods.

E X A M P L E A We found in Example B of Section 8.5 that the maximum likelihood estimates of µ

and σ 2 from an i.i.d. normal sample are

µ̂ = X

σ̂ 2 = 1
n

n∑

i=1

(Xi − X)2
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A confidence interval for µ is based on the fact that
√

n(X − µ)

S
∼ tn−1

where tn−1 denotes the t distribution with n − 1 degrees of freedom and

S2 = 1
n − 1

n∑

i=1

(Xi − X)2

(see Section 6.3). Let tn−1(α/2) denote that point beyond which the t distribution with
n − 1 degrees of freedom has probability α/2. Since the t distribution is symmetric
about 0, the probability to the left of −tn−1(α/2) is also α/2. Then, by definition,

P
(

−tn−1(α/2) ≤
√

n(X − µ)

S
≤ tn−1(α/2)

)
= 1 − α

The inequality can be manipulated to yield

P
(

X − S√
n

tn−1(α/2) ≤ µ ≤ X + S√
n

tn−1(α/2)

)
= 1 − α

According to this equation, the probability that µ lies in the interval X ± Stn−1(α/2)/√
n is 1 − α. Note that this interval is random: The center is at the random point X

and the width is proportional to S, which is also random.
Now let us turn to a confidence interval for σ 2. From Section 6.3,

nσ̂ 2

σ 2
∼ χ2

n−1

where χ2
n−1 denotes the chi-squared distribution with n − 1 degrees of freedom. Let

χ2
m(α) denote the point beyond which the chi-square distribution with m degrees of

freedom has probability α. It then follows by definition that

P
(

χ2
n−1(1 − α/2) ≤ nσ̂ 2

σ 2
≤ χ2

n−1(α/2)

)
= 1 − α

Manipulation of the inequalities yields

P
(

nσ̂ 2

χ2
n−1(α/2)

≤ σ 2 ≤ nσ̂ 2

χ2
n−1(1 − α/2)

)
= 1 − α

Therefore, a 100(1 − α)% confidence interval for σ 2 is
(

nσ̂ 2

χ2
n−1(α/2)

,
nσ̂ 2

χ2
n−1(1 − α/2)

)

Note that this interval is not symmetric about σ̂ 2—it is not of the form σ̂ 2 ± c, unlike
the previous example.

A simulation illustrates these ideas: The following experiment was done on a
computer 20 times. A random sample of size n = 11 from normal distribution with
mean µ = 10 and variance σ 2 = 9 was generated. From the sample, X and σ̂ 2 were
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F I G U R E 8.8 20 confidence intervals for µ (left panel) and for σ 2 (right panel) as
described in Example A. Horizontal lines indicate the true values.

calculated and 90% confidence intervals for µ and σ 2 were constructed, as described
before. Thus at the end there were 20 intervals for µ and 20 intervals for σ 2. The 20
intervals for µ are shown as vertical lines in the left panel of Figure 8.8 and the
20 intervals for σ 2 are shown in the right panel. Horizontal lines are drawn at the
true values µ = 10 and σ 2 = 9. Since these are 90% confidence intervals, we expect
the true parameter values to fall outside the intervals 10% of the time; thus on the
average we would expect 2 of 20 intervals to fail to cover the true parameter value.
From the figure, we see that all the intervals for µ actually cover µ, whereas four of
the intervals of σ 2 failed to contain σ 2. ■

Exact methods such as that illustrated in the previous example are the exception
rather than the rule in practice. To construct an exact interval requires detailed knowl-
edge of the sampling distribution as well as some cleverness. A second method of
constructing confidence intervals is based on the large sample theory of the previous
section. According to the results of that section, the distribution of

√
nI (θ0)(θ̂ − θ0)

is approximately the standard normal distribution. Since θ0 is unknown, we will use
I (θ̂) in place of I (θ0); we have employed similar substitutions a number of times
before—for example, in finding an approximate standard error in Example A of Sec-
tion 8.4. It can be further argued that the distribution of

√
nI (θ̂)(θ̂ − θ0) is also

approximately standard normal. Since the standard normal distribution is symmetric
about 0,

P
(

−z(α/2) ≤
√

nI (θ̂)(θ̂ − θ0) ≤ z(α/2)

)
≈ 1 − α

Manipulation of the inequalities yields

θ̂ ± z(α/2)
1√

nI (θ̂)
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as an approximate 100(1−α)% confidence interval. We now illustrate this procedure
with an example.

E X A M P L E B Poisson Distribution
The mle of λ from a sample of size n from a Poisson distribution is

λ̂ = X

Since the sum of independent Poisson random variables follows a Poisson distribution,
the parameter of which is the sum of the parameters of the individual summands,
nλ̂ =

∑n
i=1 Xi follows a Poisson distribution with mean nλ. Also, the sampling

distribution of λ̂ is known, although it depends on the true value of λ, which is
unknown. Exact confidence intervals for λ may be obtained by using this fact, and
special tables are available (Pearson and Hartley 1966).

For large samples, confidence intervals may be derived as follows. First, we
need to calculate I (λ). Let f (x |λ) denote the probability mass function of a Poisson
random variable with parameter λ. There are two ways to do this. We may use the
definition

I (λ) = E
[

∂

∂λ
log f (X |λ)

]2

We know that

log f (x |λ) = x log λ − λ − log x!

and thus

I (λ) = E
(

X
λ

− 1
)2

Rather than evaluate this quantity, we may use the alternative expression for I (λ)

given by Lemma A of Section 8.5.2:

I (λ) = −E
[

∂2

∂λ2
log f (X |λ)

]

Since
∂2

∂λ2
log f (X |λ) = − X

λ2

I (λ) is simply

E(X)

λ2
= 1

λ

Thus, an approximate 100(1 − α)% confidence interval for λ is

X ± z(α/2)

√
X
n

Note that the asymptotic variance is in fact the exact variance in this case. The
confidence interval, however, is only approximate, since the sampling distribution of
X is only approximately normal.
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As a concrete example, let us return to the study that involved counting asbestos
fibers on filters, discussed earlier. In Example A in Section 8.4, we found λ̂ = 24.9.
The estimated standard error of λ̂ is thus (n = 23)

sλ̂ =

√
λ̂

n
= 1.04

An approximate 90% confidence interval for λ is

λ̂ ± 1.65sλ̂

or (23.2, 26.6). This interval gives a good indication of the uncertainty inherent in
the determination of the average asbestos level using the model that the counts in the
grid squares are independent Poisson random variables. ■

In a similar way, approximate confidence intervals can be obtained for parameters
estimated from random multinomial counts. The counts are not i.i.d., so the variance
of the parameter estimate is not of the form 1/[nI (θ)]. However, it can be shown that

Var(θ̂) ≈ 1
E[l ′(θ0)2]

= − 1
E[l ′′(θ0)]

and the maximum likelihood estimate is approximately normally distributed. Exam-
ple C illustrates this concept.

E X A M P L E C Hardy-Weinberg Equilibrium
Let us return to the example of Hardy-Weinberg equilibrium discussed in Example A
in Section 8.5.1. There we found θ̂ = .4247. Now,

l ′(θ) = −2X1 + X2

1 − θ
+ 2X3 + X2

θ

In order to calculate E[l ′(θ)2], we would have to deal with the variances and covari-
ances of the Xi . This does not look too inviting; it turns out to be easier to calculate
E[l ′′(θ)].

l ′′(θ) = −2X1 + X2

(1 − θ)2
− 2X3 + X2

θ2

Since the Xi are binomially distributed, we have

E(X1) = n(1 − θ)2

E(X2) = 2nθ(1 − θ)

E(X3) = nθ2

We find, after some algebra, that

E[l ′′(θ)] = − 2n
θ(1 − θ)

Since θ is unknown, we substitute θ̂ in its place and obtain the estimated standard
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error of θ̂ :

sθ̂ = 1√
−I ′′(θ̂)

=

√
θ̂(1 − θ̂)

2n
= .011

An approximate 95% confidence interval for θ is θ̂ ± 1.96sθ̂ , or (.403, .447). (Note
that this estimated standard error of θ̂ agrees with that obtained by the bootstrap in
Example 8.5.1A.) ■

Finally, we describe the use of the bootstrap for finding approximate confidence
intervals. Suppose that θ̂ is an estimate of a parameter θ—the true, unknown value
of which is θ0—and suppose for the moment that the distribution of * = θ̂ − θ0 is
known. Denote the α/2 and 1 − α/2 quantiles of this distribution by δ and δ; i.e.,

P(θ̂ − θ0 ≤ δ) = α

2
P(θ̂ − θ0 ≤ δ) = 1 − α

2
Then

P(δ ≤ θ̂ − θ0 ≤ δ) = 1 − α

and from manipulation of the inequalities,

P(θ̂ − δ ≤ θ0 ≤ θ̂ − δ) = 1 − α

The preceding assumed that the distribution of θ̂ − θ0 was known, which is
typically not the case. If θ0 were known, this distribution could be approximated
arbitrarily well by simulation: Many, many samples of observations could be randomly
generated on a computer with the true value θ0; for each sample, the difference θ̂ − θ0

could be recorded; and the two quantiles δ and δ could, consequently, be determined
as accurately as desired. Since θ0 is not known, the bootstrap principle suggests using
θ̂ in its place: Generate many, many samples (say, B in all) from a distribution with
value θ̂ ; and for each sample construct an estimate of θ , say θ∗

j, j = 1, 2, . . . , B. The
distribution of θ̂ −θ0 is then approximated by that of θ∗ − θ̂ , the quantiles of which are
used to form an approximate confidence interval. Examples may make this clearer.

E X A M P L E D We first apply this technique to the Hardy-Weinberg equilibrium problem; we will
find an approximate 95% confidence interval based on the bootstrap and compare the
result to the interval obtained in Example C, where large-sample theory for maxi-
mum likelihood estimates was used. The 1000 bootstrap estimates of θ of Example A
of Section 8.5.1 provide an estimate of the distribution of θ∗; in particular the 25th
largest is .403 and the 975th largest is .446, which are our estimates of the .025 and
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.975 quantiles of the distribution. The distribution of θ∗ − θ̂ is approximated by sub-
tracting θ̂ = .425 from each θ∗

i , so the .025 and .975 quantiles of this distribution are
estimated as

δ = .403 − .425 = −.022

δ = .446 − .425 = .021

Thus our approximate 95% confidence interval is

(θ̂ − δ, θ̂ − δ) = (.404, .447)

Since the uncertainty in θ̂ is in the second decimal place, this interval and that found
in Example C are identical for all practical purposes. ■

E X A M P L E E Finally, we apply the bootstrap to find approximate confidence intervals for the
parameters of the gamma distribution fit in Example C of Section 8.5. Recall that
the estimates were α̂ = .471 and λ̂ = 1.97. Of the 1000 bootstrap values of
α∗, α∗

1 , α
∗
2 , . . . , α

∗
1000, the 50th largest was .419 and the 950th largest was .538; the

.05 and .95 quantiles of the distribution of α∗ − α̂ are approximated by subtracting α̂

from these values, giving

δ = .419 − .471 = −.052

δ = .538 − .471 = .067

Our approximate 90% confidence interval for α0 is thus

(α̂ − δ, α̂ − δ) = (.404, .523)

The 50th and 950th largest values of λ∗ were 1.619 and 2.478, and the corresponding
approximate 90% confidence interval for λ0 is (1.462, 2.321). ■

We caution the reader that there are a number of different methods of using the
bootstrap to find approximate confidence intervals. We have chosen to present the
preceding method largely because the reasoning leading to its development is fairly
direct. Another popular method, the bootstrap percentile method, uses the quantiles
of the bootstrap distribution of θ̂ directly. Using this method in the previous example,
the confidence interval for α would be (.419, .538). Although this direct equation
of quantiles of the bootstrap sampling distribution with confidence limits may seem
initially appealing, its rationale is somewhat obscure. If the bootstrap distribution is
symmetric, the two methods are equivalent (see Problem 38).

8.6 The Bayesian Approach
to Parameter Estimation
A preview of the Bayesian approach was given in Example E of Section 3.5.2, which
should be reviewed before continuing.


