Stats 100C: HW1 due Friday, April 3, 2009 (in class)

Exercise 1

For the regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, the residuals are defined as $e_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$, where $\hat{\beta}_0$ and $\hat{\beta}_1$ are the least squares estimates.

a. show that the least squares estimate of the slope $\hat{\beta}_1$ is also equal to

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

b. show that the least squares estimate of the slope $\hat{\beta}_1$ is also equal to

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}) y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

c. show that the sum of the residuals is always equal to zero, i.e $\sum_{i=1}^{n} e_i = 0$.

Exercise 2

Suppose that $y_i = \mu + \epsilon_i$, where i = 1, 2, ..., n, μ is an unknown parameter and the ϵ_i are independent errors with mean 0 and variance σ^2 . Show that \bar{y} is the least squares estimate of μ .

Exercise 3

The coefficient of variation for a sample of values x_1, x_2, \dots, x_n is defined by $C.V. = \frac{s}{\bar{x}}$, where s is the sample standard deviation and \bar{x} is the sample mean. This term gives the standard deviation as a proportion of the mean, and it is sometimes an informative quantity. For example a value of s = 10 has little meaning unless we can compare it with something else. If s = 10 and $\bar{x} = 1000$ the amount of variation is small relative to the mean. However, if s = 10 and $\bar{x} = 5$ then the variation is quite large relative to the mean. If we were studying the precision (variation in repeated measurements) of a measuring instrument, the first case $C.V. = \frac{10}{1000}$ might give quite acceptable precision but the second case $C.V. = \frac{10}{5}$ would be quite unacceptable. Let x_1, x_2, \dots, x_{10} denote a random sample of size 10 from a normal distribution with mean 0 and variance σ^2 .

- a. Find the distribution of $\frac{10\bar{x}^2}{s^2}$.
- b. Find the distribution of $\frac{s^2}{10\pi^2}$.
- c. Find the number c such that $P(-c < \frac{s}{\bar{x}} < c) = 0.95$.

Exercise 4

Suppose $y_i = \beta x_i + \epsilon_i$. In this equation x_i is non-random, β is an unknown parameter, ϵ_i are independent errors, and $\epsilon_i \sim N(0, \sigma^2)$.

- a. Find the mean and variance of y_i .
- b. What distribution does y_i follow? Write down the probability density function.
- c. Write down the likelihood function based on n observations of y_i and x_i .
- d. Show that the maximum likelihood estimate of β is

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

- e. Show that the estimate of part (d) is an unbiased estimator of β , i.e., $E(\hat{\beta}) = \beta$.
- f. Find the variance of this estimate.