Stats 100C: HW2 due Friday, 4/10/09 (in class)

Exercise 1 A new profit-sharing plan was introduced at an automobile parts manufacturing plant last year. Both management and union representatives were interested in determining how a worker's years of experience influence his or her productivity gains. After the plan had been in effect for a while, the data shown below were collected:

Years of	Number of units
experience (x)	daily (y)
15.1	110
7.0	105
18.6	115
23.7	127
11.5	98
16.4	103
6.3	87
15.4	108
19.9	112

For your convenience:

$$n = 9, \sum_{i=1}^{9} y_i = 965, \sum_{i=1}^{9} x_i = 133.9, \sum_{i=1}^{9} y_i^2 = 104469, \sum_{i=1}^{9} x_i^2 = 2258.73, \sum_{i=1}^{9} x_i y_i = 14801.2.$$

- a. Construct a scatterplot of the number of units manufactured daily on the years of experience on the assebly line.
- b. Find the least-squares regression line (round up to 2 decimals). Show your work (no computer output).
- c. Predict the number of units manufactured daily by an employee who has 10 years of experience on the assembly line.
- d. Find the fitted values and residuals (round up to 2 decimals).
- e. Find the LS estimate of σ^2 .
- f. Compute the standard error of $\hat{\beta}_1$.
- g. Construct a 95% confidence interval for β_1 .
- h. Test $H_0: \beta_1 = 1$ against $H_1: \beta_1 \neq 1$. Use $\alpha = 0.05$.

Exercise 2 Suppose in the model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where $i = 1, \dots, n$, $E(\epsilon_i) = 0$, $var(\epsilon_i) = \sigma^2$ the measurements x_i were in inches and we would like to write the model in centimeters, say, z_i . If one inch is equal to c centimeters (c is known), we can write the above model as follows $y_i = \beta_0^* + \beta_1^* z_i + \epsilon_i$.

- a. Suppose $\hat{\beta}_0$ and $\hat{\beta}_1$ are the least squares estimates of β_0 and β_1 of the first model. Find the estimates of β_0^* and β_1^* in terms of $\hat{\beta}_0$ and $\hat{\beta}_1$.
- b. Find the variance of $\hat{\beta}_1^*$.

Exercise 3 Consider the regression model

$$y_i = (\beta_0 + \beta_1 \bar{x}) + \beta_1 (x_i - \bar{x}) + \epsilon_i$$

This model is called the *centered* version of the regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ that was discussed in class. If we let $\gamma_0 = \beta_0 + \beta_1 \bar{x}$ we can rewrite the *centered* version as $y_i = \gamma_0 + \beta_1 (x_i - \bar{x}) + \epsilon_i$. Find the least squares estimates of γ_0 and β_1 .

Exercise 4 Consider the regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$. Show that $Cov(\bar{y}, \hat{\beta}_1) = 0$ where \bar{y} is the sample mean of the y values, and $\hat{\beta}_1$ is the estimate of β_1 .