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1-1 The Engineering Method and 
Statistical Thinking 

Figure 1.1 The engineering method 



The field of statistics deals with the collection, 
presentation, analysis, and use of data to 

•  Make decisions 

•  Solve problems 

•  Design products and processes 

1-1 The Engineering Method and 
Statistical Thinking 



•  Statistical techniques are useful for describing and   
understanding variability. 

•  By variability, we mean successive observations of a 
system or phenomenon do not produce exactly the same 
result. 

•  Statistics gives us a framework for describing this 
variability and for learning about potential sources of 
variability. 

1-1 The Engineering Method and 
Statistical Thinking 



 Engineering Example 

An engineer is designing a nylon connector to be used in an 
automotive engine application. The engineer is considering 
establishing the design specification on wall thickness at 3/32 
inch but is somewhat uncertain about the effect of this decision 
on the connector pull-off force. If the pull-off force is too low, the 
connector may fail when it is installed in an engine. Eight 
prototype units are produced and their pull-off forces measured 
(in pounds): 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1. 

1-1 The Engineering Method and 
Statistical Thinking 



 Engineering Example 

• The dot diagram is a very useful plot for displaying a small 
body of data - say up to about 20 observations.  
•  This plot allows us to see easily two features of the data; the 
location, or the middle, and the scatter or variability. 

1-1 The Engineering Method and 
Statistical Thinking 



 Engineering Example 

•  The engineer considers an alternate design and eight prototypes 
are built and pull-off force measured. 
•  The dot diagram can be used to compare two sets of data 

Figure 1-3 Dot diagram of pull-off force for two 
wall thicknesses. 

1-1 The Engineering Method and 
Statistical Thinking 



 Engineering Example 

•  Since pull-off force varies or exhibits variability, it is a 
random variable. 

•  A random variable, X, can be model by 

X = µ + ε 

where µ is a constant and ε a random disturbance. 

1-1 The Engineering Method and 
Statistical Thinking 



1-1 The Engineering Method and 
Statistical Thinking 



Three basic methods for collecting data: 
–  A retrospective study using historical data 

•  May not be useful 
–  An observational study 

•  Cannot tell the cause-effect 
–  A designed experiment 

•  Make deliberate changes to observe response 
•  Can tell the cause-effect  

1-2 Collecting Engineering Data 



1-3 Mechanistic and Empirical Models 
A mechanistic model is built from our underlying 
knowledge of the basic physical mechanism that relates 
several variables. 

 Ohm’s Law:  Current = voltage/resistance 

I = E/R  or    I = E/R + ε 

An empirical model is built from our engineering and 
scientific knowledge of the phenomenon, but is not 
directly developed from our theoretical or first-
principles understanding of the underlying mechanism. 





Figure 1-15  Three-dimensional plot of the wire and pull 
strength data. 



1-3 Mechanistic and Empirical Models 

In general, this type of empirical model is called a 
regression model. 

The estimated regression line is given by 



Figure 1-16  Plot of the predicted values of pull strength 
from the empirical model. 



4-6 Normal Distribution 

Definition 



4-6 Normal Distribution 

Figure 4-10 Normal probability density functions 
for selected values of the parameters µ and σ2. 



4-6 Normal Distribution 

Definition : Standard Normal 



4-6 Normal Distribution 
Example 4-11 

Figure 4-13 Standard normal probability density 
function. 



4-6 Normal Distribution 

Standardizing 



4-6 Normal Distribution 
Example 4-13 



4-6 Normal Distribution 

Figure 4-15 Standardizing a normal random 
variable. 



4-6 Normal Distribution 

To Calculate Probability 



4-6 Normal Distribution 

Example 4-14 (continued)  



4-6 Normal Distribution 

Example 4-14 (continued)  

Figure 4-16 Determining the value of x to meet a 
specified probability. 



5-5 Linear Combinations of Random 
Variables 
Definition 

Mean of a Linear Combination 



5-5 Linear Combinations of Random 
Variables 

Variance of a Linear Combination 



5-5 Linear Combinations of Random 
Variables 

Example 5-33 



5-5 Linear Combinations of Random 
Variables 

Mean and Variance of an Average 



5-5 Linear Combinations of Random 
Variables 

Reproductive Property of the Normal Distribution 



5-5 Linear Combinations of Random 
Variables 

Example 5-34 



Some useful results to remember 

For any normal random variable 

– 3 x! ! – 2µ ! – ! ! ! +! ! + 2! ! + 3! !

68%

95%

99.7%

f (x)

MONTGOMERY: Applied Statistics, 3e
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6-1 Numerical Summaries 

Definition: Sample Mean 

Definition: Sample Range 



6-1 Numerical Summaries  
Example 6-1 



6-1 Numerical Summaries  

Figure 6-1 The sample mean as a balance point for a 
system of weights. 



6-1 Numerical Summaries  

Population Mean 

For a finite population with N (equally likely) 
measurements, the mean is 

The sample mean is a reasonable estimate of the 
population mean. 



6-1 Numerical Summaries  

Definition: Sample Variance 

•  n-1 is referred to as the degrees of freedom. 



6-1 Numerical Summaries  
How Does the Sample Variance Measure Variability? 

Figure 6-2 How the sample variance measures variability 
through the deviations           . xxi −



6-1 Numerical Summaries  
Example 6-2 



6-1 Numerical Summaries  

Computation of s2 



6-1 Numerical Summaries  

Population Variance 

When the population is finite and consists of N (equally 
likely) values, we may define the population variance as 

The sample variance is a reasonable estimate of the 
population variance. 



6-2 Stem-and-Leaf Diagrams  

Steps for Constructing a Stem-and-Leaf Diagram 



6-2 Stem-and-Leaf Diagrams  

Example 6-4 



6-2 Stem-and-Leaf Diagrams  



6-2 Stem-and-Leaf Diagrams  

Figure 6-4 Stem-and-
leaf diagram for the 
compressive strength 
data in Table 6-2.  



6-2 Stem-and-Leaf Diagrams  

Figure 6-6 Stem-
and-leaf diagram 
from Minitab.  



Data Features 

•  The median is a measure of central tendency that divides the 
data into two equal parts, half below the median and half above. If 
the number of observations is even, the median is halfway 
between the two central values. 

From Fig. 6-6, the 40th and 41st values of strength as 160 and 
163, so the median is (160 + 163)/2 = 161.5. If the number of 
observations is odd, the median is the central value.  

The range is a measure of variability that can be easily computed 
from the ordered stem-and-leaf display. It is the maximum minus 
the minimum measurement. From Fig.6-6 the range is 245 - 76 = 
169. 

6-2 Stem-and-Leaf Diagrams  



Data Features 
• When an ordered set of data is divided into four equal parts, the 
division points are called quartiles.  

• The first or lower quartile, q1 , is a value that has approximately 
one-fourth (25%) of the observations below it and approximately 
75% of the observations above.  

• The second quartile, q2, has approximately one-half (50%) of 
the observations below its value. The second quartile is exactly 
equal to the median.  

• The third or upper quartile, q3, has approximately three-fourths 
(75%) of the observations below its value. As in the case of the 
median, the quartiles may not be unique.  

6-2 Stem-and-Leaf Diagrams  



Data Features 

•  The compressive strength data in Figure 6-6 contains 
n = 80 observations. Minitab software calculates the first and third 
quartiles as the(n + 1)/4 and 3(n + 1)/4 ordered observations and 
interpolates as needed. 

For example, (80 + 1)/4 = 20.25 and 3(80 + 1)/4 = 60.75.  

Therefore, Minitab interpolates between the 20th and 21st ordered 
observation to obtain q1 = 143.50 and between the 60th and 
61st observation to obtain q3 =181.00.  

6-2 Stem-and-Leaf Diagrams  



Data Features 

•  The interquartile range is the difference between the upper 
and lower quartiles, and it is sometimes used as a measure of 
variability. 

•  In general, the 100kth percentile is a data value such that 
approximately 100k% of the observations are at or below this 
value and approximately 100(1 -  k)% of them are above it. 

6-2 Stem-and-Leaf Diagrams  



6-4 Box Plots  

•  The box plot is a graphical display that 
simultaneously describes several important features of 
a data set, such as center, spread, departure from 
symmetry, and identification of observations that lie 
unusually far from the bulk of the data. 

•  Whisker 
•  Outlier 
•  Extreme outlier 



6-4 Box Plots  

Figure 6-13 Description of a box plot.  



6-4 Box Plots  

Example: The ordered data in Example 6-1 are 
       12.3, 12.6, 12.6, 12.9, 13.1, 13.4, 13.5, 13.6 



6-4 Box Plots  

Figure 6-14 Box plot for compressive strength 
data in Table 6-2.  



6-4 Box Plots  

Figure 6-15 
Comparative box 
plots of a quality index 
at three plants.  



6-3 Frequency Distributions and Histograms  

•  A frequency distribution is a more compact 
summary of data than a stem-and-leaf diagram.  

•  To construct a frequency distribution, we must divide 
the range of the data into intervals, which are usually 
called class intervals, cells, or bins. 

Constructing a Histogram (Equal Bin Widths): 



6-3 Frequency Distributions and Histograms  

Figure 6-7 Histogram of compressive strength for 80 
aluminum-lithium alloy specimens.  



6-3 Frequency Distributions and Histograms  

Figure 6-8 A histogram of the compressive strength data 
from Minitab with 17 bins.  



6-3 Frequency Distributions and Histograms  

Figure 6-11 Histograms for symmetric and skewed distributions.  



6-6 Probability Plots  

•  Probability plotting is a graphical method for 
determining whether sample data conform to a 
hypothesized distribution based on a subjective visual 
examination of the data.  

•  Probability plotting typically uses special graph 
paper, known as probability paper, that has been 
designed for the hypothesized distribution. Probability 
paper is widely available for the normal, lognormal, 
Weibull, and various chi-square and gamma 
distributions. 



6-6 Probability Plots  
Example 6-7 



6-6 Probability Plots  

Example 6-7 (continued) 



6-6 Probability Plots  

Figure 6-19 Normal 
probability plot for 
battery life.  



6-6 Probability Plots  

Figure 6-20 Normal 
probability plot 
obtained from 
standardized normal 
scores.  



6-6 Probability Plots  

Figure 6-21 Normal probability plots indicating a nonnormal 
distribution. (a) Light-tailed distribution. (b) Heavy-tailed 
distribution. (c ) A distribution with positive (or right) skew. 



6-5 Time Sequence Plots  

•  A time series or time sequence is a data set in 
which the observations are recorded in the order in 
which they occur.  
•  A time series plot is a graph in which the vertical 
axis denotes the observed value of the variable (say x) 
and the horizontal axis denotes the time (which could 
be minutes, days, years, etc.).  
•  When measurements are plotted as a time series, we 
often see 

• trends,  
• cycles, or  
• other broad features of the data 



6-5 Time Sequence Plots  

Figure 6-16 Company sales by year (a) and by quarter (b).  



6-5 Time Sequence Plots  

Figure 6-18 A digidot plot of chemical process concentration 
readings, observed hourly.  



Some Useful Comments 
•  Locations: mean and median 
•  Spreads: standard deviation (s.d.) and IQR 

–  Mean and s.d. are sensitive to extreme values (outliers) 
–  Median and IQR are resistant to extreme values and 

are better for skewed distributions 
–  Use mean and s.d. for symmetrical distributions without 

outliers 

•  Software has defaults, which may not be the best 
choice 
–  How many stems or bins? 
–  The reference line in a normal probability plot. 



Cramer-Rao Inequality  
Fisher Information 



7-1 Introduction 
•  The field of statistical inference consists of those 
methods used to make decisions or to draw 
conclusions about a population.  

•   These methods utilize the information contained 
in a sample from the population in drawing 
conclusions. 

•   Statistical inference may be divided into two major 
areas: 

•   Parameter estimation 

•   Hypothesis testing 



Definition 

7-1 Introduction 



7-1 Introduction 



7-1 Introduction 



7.2 Sampling Distributions and the 
Central Limit Theorem 

Statistical inference is concerned with making decisions about a 
population based on the information contained in a random 
sample from that population. 

Definitions: 



7.2 Sampling Distributions 

Figure 6-3 
Relationship between a 
population and a 
sample.  



Suppose X1, …, Xn are a random sample from a population 
with mean µ and variance σ2.  

(a) What are the mean and variance of the sample mean? 
(b) What is the sampling distribution of the sample mean if 

the population is normal. 

7.2 Sampling Distributions 



7.2 Sampling Distributions and the 
Central Limit Theorem 

If the population is normal, the sampling distribution of Z is exactly standard normal. 



7.2 Sampling Distributions and the 
Central Limit Theorem 

Figure 7-1 Distributions 
of average scores from 
throwing dice. [Adapted with 
permission from Box, Hunter, 
and Hunter (1978).] 

CLT Simulation 



7.2 Sampling Distributions and the 
Central Limit Theorem 
Example 7-1 



7.2 Sampling Distributions and the 
Central Limit Theorem 

Figure 7-2 Probability for Example 7-1 



7.2 Sampling Distributions and the 
Central Limit Theorem 

Approximate Sampling Distribution of a 
Difference in Sample Means 



7-3 General Concepts of Point Estimation  

7-3.1 Unbiased Estimators 

Definition 



Example 7-4 

7-3 General Concepts of Point Estimation  



Example 7-4 (continued) 

7-3 General Concepts of Point Estimation  



7-3.2 Variance of a Point Estimator 

Figure 7-5 The sampling 
distributions of two 
unbiased estimators             

.ˆˆ
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7-3.3 Standard Error: Reporting a Point Estimate 



7-3.3 Standard Error: Reporting a Point Estimate 

Example 7-5 



7-3.3 Standard Error: Reporting a Point Estimate 

Example 7-5 (continued) 



7-3.4 Mean Square Error of an Estimator 



7-3.4 Mean Square Error of an Estimator 

Figure 7-6 A biased estimator     that has smaller variance 
than the unbiased estimator 

1Θ̂
.ˆ 2Θ



7-4 Methods of Point Estimation  
•  Problem: To find p=P(heads) for a biased coin. 
•  Procedure: Flip the coin n times.  
•  Data (a random sample) : X1, X2, …,Xn 

–  where Xi=1 or 0 if the ith outcome is heads or tails. 

•  Question: How to estimate p using the data? 



7-4 Methods of Point Estimation  

Definition 

Definition 



7-4 Methods of Point Estimation  
Example 7-7: Consider normal distribution N(µ,σ2).  

Find the moment estimators of µ and σ2. 



7-4 Methods of Point Estimation  

7-4.2 Method of Maximum Likelihood 

Definition 



7-4 Methods of Point Estimation  

Example 7-9 



7-4 Methods of Point Estimation  
Example 7-9 (continued) 



7-4 Methods of Point Estimation  

The time to failure of an electronic module used in an automobile engine 
controller is tested at an elevated temperature to accelerate the failure 
mechanism. The time to failure is exponentially distributed. Eight 
units are randomly selected and tested, resulting in the following failure 
time (in hours): 11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38.  

Here X is exponentially distributed with parameter λ. 
(a) What is the moment estimate of λ? 
(b)  What is the MLE estimate of λ? 

Examples 7-6 and 7-11 



7-4 Methods of Point Estimation  

Figure 7-7 Log likelihood for the exponential distribution, using the 
failure time data. (a) Log likelihood with n = 8 (original data). (b) 
Difference in Log likelihood if n = 8, 20, and 40. 



7-4 Methods of Point Estimation  
Example 7-12 



7-4 Methods of Point Estimation  
Example 7-12 (continued) 



7-4 Methods of Point Estimation  
Cramer-Rao Inequality (extra!) 

€ 

  

€ 

Let X1,X2,,Xn  be a random sample with pdf f (x,θ).

If ˆ Θ  is an unbiased estimator of θ,  then 

                         var( ˆ Θ ) ≥ 1
nI(θ)

where 

I(θ) = E ∂
∂θ

ln f (X;θ )
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
2

= −E ∂2

∂θ2 ln f (X;θ )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

is the Fisher information.



7-4 Methods of Point Estimation  
Properties of the Maximum Likelihood Estimator 



7-4 Methods of Point Estimation  
The Invariance Property 



7-4 Methods of Point Estimation  

Complications in Using Maximum Likelihood Estimation 

•   It is not always easy to maximize the likelihood 
function because the equation(s) obtained from dL(θ)/
dθ = 0 may be difficult to solve. 

•   It may not always be possible to use calculus 
methods directly to determine the maximum of L(θ). 

•  See Example 7-14. 





8-1 Introduction 
•   In the previous chapter we illustrated how a parameter 
can be estimated from sample data.  However, it is 
important to understand how good is the estimate obtained. 

•   Bounds that represent an interval of plausible values for 
a parameter are an example of an interval estimate. 

•   Three types of intervals will be presented:  

•  Confidence intervals 

•  Prediction intervals 

•  Tolerance intervals 



8-2.1 Development of the Confidence Interval 
and its Basic Properties 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2.1 Development of the Confidence Interval 
and its Basic Properties 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2.1 Development of the Confidence Interval and its 
Basic Properties 

•   The endpoints or bounds l and u are called lower- and upper-
confidence limits, respectively. 

•  Since Z follows a standard normal distribution, we can write: 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2.1 Development of the Confidence Interval and its 
Basic Properties 

Definition 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



Example 8-1 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



Interpreting a Confidence Interval 

•   The confidence interval is a random interval 

•   The appropriate interpretation of a confidence interval 
(for example on µ) is: The observed interval [l, u] 
brackets the true value of µ, with confidence 100(1-α). 

•   Examine Figure 8-1 on the next slide. 

•   Simulation on CI 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 

Figure 8-1 Repeated construction of a confidence interval for µ.             



Confidence Level and Precision of Error  

The length of a confidence interval is a measure of the 
precision of estimation.  

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 

Figure 8-2 Error in estimating µ with    .             x



8-2.2 Choice of Sample Size  

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



Example 8-2  

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2.3 One-Sided Confidence Bounds  

Definition 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2.4 General Method to Derive a Confidence Interval  

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2.4 General Method to Derive a Confidence Interval  

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2.4 General Method to Derive a Confidence Interval  

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-2.5 A Large-Sample Confidence Interval for µ  

Definition 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



Example 8-4 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



Example 8-4 (continued) 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 

Figure 8-3 Mercury concentration in largemouth bass 
(a) Histogram. (b) Normal probability plot             



Example 8-4 (continued) 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



A General Large Sample Confidence Interval 

8-2 Confidence Interval on the Mean of a 
Normal Distribution, Variance Known 



8-3.1 The t distribution 

8-3 Confidence Interval on the Mean of a 
Normal Distribution, Variance Unknown 



8-3.1 The t distribution 

8-3 Confidence Interval on the Mean of a 
Normal Distribution, Variance Unknown 

Figure 8-4 Probability density functions of several t 
distributions.             



8-3.1 The t distribution 

8-3 Confidence Interval on the Mean of a 
Normal Distribution, Variance Unknown 

Figure 8-5 Percentage points of the t distribution.             



8-3.2 The t Confidence Interval on µ 

8-3 Confidence Interval on the Mean of a 
Normal Distribution, Variance Unknown 

One-sided confidence bounds on the mean are found by replacing  

tα/2,n-1 in Equation 8-18 with t α,n-1. 



Example 8-5 

8-3 Confidence Interval on the Mean of a 
Normal Distribution, Variance Unknown 



8-3 Confidence Interval on the Mean of a 
Normal Distribution, Variance Unknown 

Figure 8-6/8-7 Box and Whisker plot and Normal probability 
plot for the load at failure data in Example 8-5.             



Definition 

8-4 Confidence Interval on the Variance and 
Standard Deviation of a Normal Distribution 



8-4 Confidence Interval on the Variance and 
Standard Deviation of a Normal Distribution 

Figure 8-8 Probability 
density functions of 
several χ2 distributions.             



Definition 

8-4 Confidence Interval on the Variance and 
Standard Deviation of a Normal Distribution 



One-Sided Confidence Bounds 

8-4 Confidence Interval on the Variance and 
Standard Deviation of a Normal Distribution 



Example 8-6 

8-4 Confidence Interval on the Variance and 
Standard Deviation of a Normal Distribution 



Normal Approximation for Binomial Proportion 

8-5 A Large-Sample Confidence Interval 
For a Population Proportion 

The quantity                    is called the standard error of the point 
estimator     . 

npp /)1( −
P̂



8-5 A Large-Sample Confidence Interval 
For a Population Proportion 



Example 8-7 

8-5 A Large-Sample Confidence Interval 
For a Population Proportion 



Choice of Sample Size 

The sample size for a specified value E is given by 

8-5 A Large-Sample Confidence Interval 
For a Population Proportion 

An upper bound on n is given by 



Example 8-8 

8-5 A Large-Sample Confidence Interval 
For a Population Proportion 



One-Sided Confidence Bounds 

8-5 A Large-Sample Confidence Interval 
For a Population Proportion 



8-6 Guidelines for Constructing 
Confidence Intervals 



8-7.1 Prediction Interval for Future Observation 

8-7 Tolerance and Prediction Intervals 

The prediction interval for Xn+1 will always be longer than the 
confidence interval for µ. 



Example 8-9 

8-7 Tolerance and Prediction 
Intervals  



8-7 Tolerance and Prediction 
Intervals  

8-7.2 Tolerance Interval for a Normal Distribution 



Definition 

8-7 Tolerance and Prediction 
Intervals  

8-7.2 Tolerance Interval for a Normal Distribution 



8-7 Tolerance and Prediction 
Intervals  

Simulation on Tolerance Intervals 



9-3.4 Likelihood ratio test 
Neyman-Pearson lemma 



9-1 Hypothesis Testing 
9-1.1 Statistical Hypotheses 

Definition 

Statistical hypothesis testing and confidence interval 
estimation of parameters are the fundamental methods 
used at the data analysis stage of a comparative 
experiment, in which the engineer is interested, for 
example, in comparing the mean of a population to a 
specified value. 



9-1 Hypothesis Testing 
9-1.1 Statistical Hypotheses 

For example, suppose that we are interested in the 
burning rate of a solid propellant used to power aircrew 
escape systems.  

•   Now burning rate is a random variable that can be 
described by a probability distribution.  

•   Suppose that our interest focuses on the mean burning 
rate (a parameter of this distribution).  

•   Specifically, we are interested in deciding whether or 
not the mean burning rate is 50 centimeters per second.  



9-1 Hypothesis Testing 
9-1.1 Statistical Hypotheses 

null hypothesis 

alternative hypothesis 

One-sided Alternative Hypotheses 

Two-sided Alternative Hypothesis 



9-1 Hypothesis Testing 
9-1.1 Statistical Hypotheses 

Test of a Hypothesis  
•  A procedure leading to a decision about a particular 
hypothesis  

•  Hypothesis-testing procedures rely on using the information 
in a random sample from the population of interest.  

•  If this information is consistent with the hypothesis, then we 
will conclude that the hypothesis is true; if this information is 
inconsistent with the hypothesis, we will conclude that the 
hypothesis is false. 



9-1 Hypothesis Testing 
9-1.2 Tests of Statistical Hypotheses 

Figure 9-1 Decision criteria for testing H0:µ = 50 centimeters per 
second versus H1:µ ≠ 50 centimeters per second.             



9-1 Hypothesis Testing 
9-1.2 Tests of Statistical Hypotheses 

Sometimes the type I error probability is called the significance 
level, or the α-error, or the size of the test. 



9-1 Hypothesis Testing 
9-1.2 Tests of Statistical Hypotheses 
•  In the propellant burning rate example, a type I error will occur when  

when the true mean burning rate is µ = 50 centimeters per second.  

•  n=10. 

•  Suppose that the standard deviation of burning rate is σ = 2.5 centimeters per 
second and that the burning rate has a normal distribution, so the distribution 
of the sample mean is normal with mean µ = 50 and standard deviation  

•  The probability of making a type I error (or the significance level of our test) 
is equal to the sum of the areas that have been shaded in the tails of the normal 
distribution in Fig. 9-2. 

€ 

 x < 48.5 or x > 51.5

€ 

 σ
n

=
2.5
10

= 0.79



9-1 Hypothesis Testing 
9-1.2 Tests of Statistical Hypotheses 



9-1 Hypothesis Testing 



9-1 Hypothesis Testing 

Figure 9-3 The 
probability of type II 
error when  µ = 52 and 
n = 10.            



9-1 Hypothesis Testing 



9-1 Hypothesis Testing 

Figure 9-4 The 
probability of type II 
error when  µ = 50.5 
and n = 10.            



9-1 Hypothesis Testing 



9-1 Hypothesis Testing 

Figure 9-5 The 
probability of type II 
error when  µ = 52 and 
n = 16.            



9-1 Hypothesis Testing 



9-1 Hypothesis Testing 



1.  The size of the critical region, and consequently the probability of a 
type I error α, can always be reduced by appropriate selection of the 
critical values. 

2.  Type I and type II errors are related. A decrease in the probability of 
one type of error always results in an increase in the probability of 
the other, provided that the sample size n does not change. 

3.  An increase in sample size reduces β, provided that α is held 
constant. 

4.  When the null hypothesis is false, β increases as the true value of the 
parameter approaches the value hypothesized in the null hypothesis. 
The value of β decreases as the difference between the true mean and 
the hypothesized value increases. 

9-1 Hypothesis Testing 



9-1 Hypothesis Testing 
Definition 

•   The power is computed as 1 - β, and power can be interpreted as 
the probability of correctly rejecting a false null hypothesis. We 
often compare statistical tests by comparing their power properties.  

•   For example, consider the propellant burning rate problem when 
we are testing H 0 : µ = 50 centimeters per second against H 1 : µ not 
equal 50 centimeters per second . Suppose that the true value of the 
mean is µ = 52. When n = 10, we found that β = 0.2643, so the 
power of this test is 1 - β = 1 - 0.2643 = 0.7357 when µ = 52. 



9-1 Hypothesis Testing 
9-1.3 One-Sided and Two-Sided Hypotheses 
  Two-Sided Test: 

  One-Sided Tests: 

Rejecting H0 is a strong conclusion. 



9-1 Hypothesis Testing 
Example 9-1 



9-1 Hypothesis Testing 
9-1.4 P-Values in Hypothesis Tests 

P-value = P (test statistic will take on a value that is at least as 
extreme as the observed value when the null hypothesis H0 is true) 

Decision rule: 
•  If P-value > α , fail to reject H0 at significance level α; 

•  If P-value < α , reject H0 at significance level α. 



9-1 Hypothesis Testing 
9-1.4 P-Values in Hypothesis Tests 



9-1 Hypothesis Testing 
9-1.4 P-Values in Hypothesis Tests 



9-1 Hypothesis Testing 
9-1.5 Connection between Hypothesis Tests and 
Confidence Intervals 



9-1 Hypothesis Testing 
9-1.6 General Procedure for Hypothesis Tests 

1. From the problem context, identify the parameter of interest. 

2. State the null hypothesis, H0 . 

3. Specify an appropriate alternative hypothesis, H1. 

4. Choose a significance level, α. 

5. Determine an appropriate test statistic. 

6. State the rejection region for the statistic. 

7. Compute any necessary sample quantities, substitute these into the 
equation for the test statistic, and compute that value. 

8. Decide whether or not H0 should be rejected and report that in the 
problem context. 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.1 Hypothesis Tests on the Mean 

We wish to test: 

The test statistic is: 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.1 Hypothesis Tests on the Mean 

 Reject H0 if the observed value of the test statistic z0 is 
either: 

    z0 > zα/2 or z0 < -zα/2  

 Fail to reject H0 if  
            -zα/2 < z0 < zα/2  



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

Example 9-2 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

Example 9-2 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

Example 9-2 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.1 Hypothesis Tests on the Mean 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.1 Hypothesis Tests on the Mean (Continued) 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.1 Hypothesis Tests on the Mean (Continued) 

The notation on p. 307 includes n-1, which is wrong. 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

P-Values in Hypothesis Tests 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.2 Type II Error and Choice of Sample Size 
Finding the Probability of Type II Error β 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.2 Type II Error and Choice of Sample Size 
Finding the Probability of Type II Error β 

β = P(type II error) = P(failing to reject H0 when it is false) 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.2 Type II Error and Choice of Sample Size 
Finding the Probability of Type II Error β 

Figure 9-7 The distribution of Z0 under H0 and H1 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.2 Type II Error and Choice of Sample Size 
Sample Size Formulas 

For a two-sided alternative hypothesis: 

For a one-sided alternative hypothesis: 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

Example 9-3 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.2 Type II Error and Choice of Sample Size 
Using Operating Characteristic Curves 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.2 Type II Error and Choice of Sample Size 
Using Operating Characteristic Curves 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

Example 9-4 



9-2 Tests on the Mean of a Normal 
Distribution, Variance Known 

9-2.3 Large Sample Test 



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

9-3.1 Hypothesis Tests on the Mean 
One-Sample t-Test 



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

9-3.1 Hypothesis Tests on the Mean 

Figure 9-9 The reference distribution for H0: µ = µ0 with critical 
region for (a) H1: µ ≠ µ0 , (b) H1: µ > µ0, and (c) H1: µ < µ0.  



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

Example 9-6 



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

Example 9-6 



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

Example 9-6 

Figure 9-10 
Normal probability 
plot of the 
coefficient of 
restitution data 
from Example 9-6. 



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

Example 9-6 



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

9-3.2 P-value for a t-Test 

The P-value for a t-test is just the smallest level of significance 
at which the null hypothesis would be rejected. 

Notice that t0 =  2.72 in Example 9-6, and that this is between two 
tabulated values, 2.624 and 2.977. Therefore, the P-value must be 
between 0.01 and 0.005. These are effectively the upper and lower 
bounds on the P-value. 



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

9-3.3 Type II Error and Choice of Sample Size 

The type II error of the two-sided alternative (for example) 
would be 

where T’0 denotes a noncentral t random variable. 



9-3 Tests on the Mean of a Normal 
Distribution, Variance Unknown 

Example 9-7 



9-3.4 Likelihood Ratio Test (extra!) 



9-3.4 Likelihood Ratio Test (extra!) 



9-3.4 Likelihood Ratio Test (extra!) 
•  Neyman-Pearson Lemma:  

Likelihood-ratio test is the most powerful test of a 
specified value α when testing two simple hypotheses.#

•  simple hypotheses #
H0: θ=θ0 and H1: θ=θ1 



9-3.4 Likelihood Ratio Test (extra!) 



9-3.4 Likelihood Ratio Test (extra!) 



9-3.4 Likelihood Ratio Test (extra!) 



9-4 Hypothesis Tests on the Variance and 
Standard Deviation of a Normal Distribution 

9-4.1 Hypothesis Test on the Variance 



9-4 Hypothesis Tests on the Variance and 
Standard Deviation of a Normal Distribution 

9-4.1 Hypothesis Test on the Variance 



9-4 Hypothesis Tests on the Variance and 
Standard Deviation of a Normal Distribution 

9-4.1 Hypothesis Test on the Variance 



9-4 Hypothesis Tests on the Variance and 
Standard Deviation of a Normal Distribution 

9-4.1 Hypothesis Test on the Variance 



9-4 Hypothesis Tests on the Variance and 
Standard Deviation of a Normal Distribution 

Example 9-8 



9-4 Hypothesis Tests on the Variance and 
Standard Deviation of a Normal Distribution 

Example 9-8 



9-4 Hypothesis Tests on the Variance and 
Standard Deviation of a Normal Distribution 

9-4.2 Type II Error and Choice of Sample Size 

Operating characteristic curves are provided in 

•  Charts VII(i) and VII(j) for the two-sided alternative 

•  Charts VII(k) and VII(l) for the upper tail alternative 

•  Charts VII(m) and VII(n) for the lower tail alternative  



9-4 Hypothesis Tests on the Variance and 
Standard Deviation of a Normal Distribution 

Example 9-9 



9-5 Tests on a Population Proportion 
9-5.1 Large-Sample Tests on a Proportion 

Many engineering decision problems include hypothesis testing 
about p. 

An appropriate test statistic is 



9-5 Tests on a Population Proportion 
Example 9-10 



9-5 Tests on a Population Proportion 
Example 9-10 



9-5 Tests on a Population Proportion 

Another form of the test statistic Z0 is  

or 

Think about: What are the distribution of Z0 under H0 and H1? 



9-5 Tests on a Population Proportion 
9-5.2 Type II Error and Choice of Sample Size 

For a two-sided alternative 

If the alternative is p < p0 

If the alternative is p > p0 



9-5 Tests on a Population Proportion 
9-5.3 Type II Error and Choice of Sample Size 

For a two-sided alternative 

For a one-sided alternative 



9-5 Tests on a Population Proportion 

Example 9-11 



9-5 Tests on a Population Proportion 

Example 9-11 



9-7 Testing for Goodness of Fit  
•   The test is based on the chi-square distribution. 

•   Assume there is a sample of size n from a population whose 
probability distribution is unknown. 

•  Arrange n observations in a frequency histogram. 

•   Let Oi be the observed frequency in the ith class interval. 

•   Let Ei be the expected frequency in the ith class interval. 

The test statistic is 

which has approximately chi-square distribution with df=k-p-1.  



Example 9-12 

9-7 Testing for Goodness of Fit  



9-7 Testing for Goodness of Fit  
Example 9-12 



9-7 Testing for Goodness of Fit  
Example 9-12 



9-7 Testing for Goodness of Fit  

Example 9-12 



9-7 Testing for Goodness of Fit  

Example 9-12 



9-7 Testing for Goodness of Fit  

Example 9-12 



9-8 Contingency Table Tests  

Many times, the n elements of a sample from a 
population may be classified according to two different 
criteria. It is then of interest to know whether the two 
methods of classification are statistically independent; 



9-8 Contingency Table Tests  



9-8 Contingency Table Tests  



9-8 Contingency Table Tests  

Example 9-14 



9-8 Contingency Table Tests  
Example 9-14 



9-8 Contingency Table Tests  
Example 9-14 



9-8 Contingency Table Tests  
Example 9-14 





10-1 Introduction 



Figure 10-1 Two independent populations.             

10-1 Introduction 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 

Assumptions 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 
10-2.1 Hypothesis Tests for a Difference in Means,  
Variances Known 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 

Example 10-1 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 

Example 10-1 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 

Example 10-1 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 

10-2.2 Type II Error and Choice of Sample Size 
•  Use of Operating Characteristic Curves 
•  Chart VII(a)-(d) 
•  Identical to 9-2.2 except 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 
10-2.3 Confidence Interval on a Difference in Means,  
Variances Known 
Definition 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 

Example 10-4 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 

Example 10-4 



10-2 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Known 
One-Sided Confidence Bounds 

Upper Confidence Bound 

Lower Confidence Bound 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 
10-3.1 Hypotheses Tests for a Difference  in Means, 
Variances Unknown 

We wish to test:  

Case 1: 

Case 2:   



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 

The pooled estimator of σ2:  

Case 1:   

The pooled estimator is an unbiased estimator of  σ2  



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 

Case 1:   



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 
Definition: The Two-Sample or Pooled t-Test* 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 

Example 10-5 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 



Figure 10-2 Normal probability plot and comparative box plot for 
the catalyst yield data in Example 10-5.  (a) Normal probability 
plot, (b) Box plots.             

10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 

Example 10-5 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 

Example 10-5 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 

Case 2:   

is distributed approximately as t with degrees of freedom given by   



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 
Example 10-6 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 
Example 10-6 (Continued) 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 
Example 10-6 (Continued) 

Figure 10-3 Normal 
probability plot of the 
arsenic concentration 
data from Example 10-6. 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 
Example 10-6 (Continued) 



10-3 Inference for a Difference in Means  
of Two Normal Distributions, Variances 
Unknown 
Example 10-6 (Continued) 



10-3.3 Confidence Interval on the Difference in Means, 
Variance Unknown 

Case 1:   



10-3.3 Confidence Interval on the Difference in Means, 
Variance Unknown 

Case 2:   



•  A special case of the two-sample t-tests of Section 
10-3 occurs when the observations on the two 
populations of interest are collected in pairs. 

•  Each pair of observations, say (X1j , X2j ), is taken 
under homogeneous conditions, but these conditions 
may change from one pair to another. 

•  The test procedure consists of analyzing the 
differences between two observations from each pair. 

10-4 Paired t-Test 



 The Paired t-Test 

10-4 Paired t-Test 



 Example 10-9 

10-4 Paired t-Test 



 Example 10-9 

10-4 Paired t-Test 



 Example 10-9 

10-4 Paired t-Test 



 Paired Versus Unpaired Comparisons 

10-4 Paired t-Test 



 A Confidence Interval for µD 

10-4 Paired t-Test 



10-5.1 The F distribution 



11-1 Empirical Models 
•  Many problems in engineering and science involve 
exploring the relationships between two or more 
variables.  

•  Regression analysis is a statistical technique that is 
very useful for these types of problems.  

•  For example, in a chemical process, suppose that the 
yield of the product is related to the process-operating 
temperature.  

•  Regression analysis can be used to build a model to 
predict yield at a given temperature level. 



11-1 Empirical Models  



11-1 Empirical Models  

Based on the scatter diagram, it is probably reasonable to 
assume that the mean of the random variable Y is related to x by 
the following straight-line relationship: 

where the slope and intercept of the line are called regression 
coefficients. 
The simple linear regression model is given by 

where ε is the random error term. 



11-1 Empirical Models  

We think of the regression model as an empirical model. 

Suppose that the mean and variance of ε are 0 and σ2, 
respectively, then 

The variance of Y given x is  



11-1 Empirical Models  

•  The true regression model is a line of mean values: 

where β1 can be interpreted as the change in the 
mean of Y for a unit change in x. 
•  Also, the variability of Y at a particular value of x is 
determined by the error variance, σ2. 
•  This implies there is a distribution of Y-values at 
each x and that the variance of this distribution is the 
same at each x. 



11-1 Empirical Models  

Figure 11-2 The distribution of Y for a given value of 
x for the oxygen purity-hydrocarbon data.             



11-2 Simple Linear Regression  

•  The case of simple linear regression considers 
a single regressor or predictor x and a 
dependent or response variable Y. 

•  The expected value of Y at each level of x is a 
random variable: 

•  We assume that each observation, Y, can be 
described by the model 



11-2 Simple Linear Regression  

•  Suppose that we have n pairs of observations 
(x1, y1), (x2, y2), …, (xn, yn). 

Figure 11-3 
Deviations of the 
data from the 
estimated 
regression model.             



11-2 Simple Linear Regression  

•  The method of least squares is used to 
estimate the parameters, β0 and β1 by minimizing 
the sum of the squares of the vertical deviations in 
Figure 11-3. 

Figure 11-3 
Deviations of the 
data from the 
estimated 
regression model.             



11-2 Simple Linear Regression  

•  Using Equation 11-2, the n observations in the 
sample can be expressed as 

•  The sum of the squares of the deviations of the 
observations from the true regression line is 



11-2 Simple Linear Regression  



11-2 Simple Linear Regression  



11-2 Simple Linear Regression  



11-2 Simple Linear Regression  



11-2 Simple Linear Regression  

Notation 



11-2 Simple Linear Regression  
Example 11-1 



11-2 Simple Linear Regression  

Example 11-1 



11-2 Simple Linear Regression  

Example 11-1 

Figure 11-4 Scatter 
plot of oxygen 
purity y versus 
hydrocarbon level x 
and regression 
model ŷ = 74.20 + 
14.97x.             





11-2 Simple Linear Regression  

Estimating σ2 
The error sum of squares is 

It can be shown that the expected value of the 
error sum of squares is E(SSE) = (n – 2)σ2. 



11-2 Simple Linear Regression  

Estimating σ2 
An unbiased estimator of σ2 is 

where SSE can be easily computed using 

€ 

where SST = (yi − y 
i=1

n

∑ )2 = yi
2 − ny 2 = Syy

i=1

n

∑



11-3 Properties of the Least Squares 
Estimators  

•  Slope Properties 

•  Intercept Properties 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.1 Use of t-Tests 

Suppose we wish to test 

An appropriate test statistic would be 



11-4 Hypothesis Tests in Simple Linear 
Regression  

Assumptions: 
To test hypotheses about the slope and intercept of the regression 
model, we must make the additional assumption that the error 
component in the model, ε, is normally distributed.  

Thus, the complete assumptions are that the errors are normally 
and independently distributed with mean zero and variance σ2, 
abbreviated NID(0, σ2). 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.1 Use of t-Tests 

We would reject the null hypothesis if 

The test statistic could also be written as: 



11-4.1 Use of t-Tests 

Suppose we wish to test 

An appropriate test statistic would be 

We would reject the null hypothesis if 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.1 Use of t-Tests 
An important special case of the hypotheses of 
Equation 11-18 is 

These hypotheses relate to the significance of regression. 

Failure to reject H0 is equivalent to concluding that there 
is no linear relationship between x and Y. 



11-4 Hypothesis Tests in Simple Linear 
Regression  

Figure 11-5 The hypothesis H0: β1 = 0 is not rejected.             



11-4 Hypothesis Tests in Simple Linear 
Regression  

Figure 11-6 The hypothesis H0: β1 = 0 is rejected.             



11-4 Hypothesis Tests in Simple Linear 
Regression  

Example 11-2 



> dat=read.table("table11-1.txt", h=T)!
> g=lm(y~x, dat)!
> summary(g)!
Coefficients:!
            Estimate Std. Error t value Pr(>|t|)    !
(Intercept)   74.283      1.593   46.62  < 2e-16 ***!
x             14.947      1.317   11.35 1.23e-09 ***!

Residual standard error: 1.087 on 18 degrees of freedom!
Multiple R-Squared: 0.8774, !Adjusted R-squared: 0.8706 !
F-statistic: 128.9 on 1 and 18 DF,  p-value: 1.227e-09 !

> anova(g)!
Analysis of Variance Table!

Response: y!
          Df  Sum Sq Mean Sq F value    Pr(>F)    !
x          1 152.127 152.127  128.86 1.227e-09 ***!
Residuals 18  21.250   1.181                      !

R commands and outputs 
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10-5.1 The F Distribution 

The lower-tail percentage points f 1-α,u,ν can be found as follows. 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.2 Analysis of Variance Approach to Test 
Significance of Regression 

The analysis of variance identity is 

Symbolically, 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.2 Analysis of Variance Approach to Test 
Significance of Regression 

If the null hypothesis, H0: β1 = 0 is true, the statistic 

follows the F1,n-2 distribution and we would reject if 
f0 > fα,1,n-2. 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.2 Analysis of Variance Approach to Test 
Significance of Regression 

The quantities, MSR and MSE are called mean squares. 

Analysis of variance table: 



11-4 Hypothesis Tests in Simple Linear 
Regression  

Example 11-3 



11-4 Hypothesis Tests in Simple Linear 
Regression  



11-5 Confidence Intervals  

11-5.1 Confidence Intervals on the Slope and Intercept 

Definition 



11-6 Confidence Intervals  

Example 11-4 



11-5 Confidence Intervals  

11-5.2 Confidence Interval on the Mean Response 

Definition 



11-5 Confidence Intervals  

Example 11-5 



11-5 Confidence Intervals  



11-5 Confidence Intervals  

Example 11-5 

Figure 11-7 
Scatter diagram of 
oxygen purity data 
from Example 11-1 
with fitted 
regression line and 
95 percent 
confidence limits 
on µY|x0.             



11-6 Prediction of New Observations  

If x0 is the value of the regressor variable of interest, 

is the point estimator of the new or future value of the 
response, Y0. 



11-6 Prediction of New Observations  

Definition 



11-6 Prediction of New Observations  
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11-6 Prediction of New Observations  

Example 11-6 



11-6 Prediction of New Observations  

Example 11-6 

Figure 11-8 Scatter 
diagram of oxygen 
purity data from 
Example 11-1 with 
fitted regression line, 
95% prediction limits 
(outer lines) , and 
95% confidence 
limits on µY|x0.             



11-7 Adequacy of the Regression Model  

•  Fitting a regression model requires several 
assumptions. 

1.  Errors are uncorrelated random variables with 
mean zero; 

2.  Errors have constant variance; and, 

3.  Errors be normally distributed. 

•  The analyst should always consider the validity of 
these assumptions to be doubtful and conduct 
analyses to examine the adequacy of the model 



11-7 Adequacy of the Regression Model  

11-7.1 Residual Analysis 

•   The residuals from a regression model are ei = yi - ŷi , where yi 
is an actual observation and ŷi is the corresponding fitted value 
from the regression model.  

•   Analysis of the residuals is frequently helpful in checking the 
assumption that the errors are approximately normally distributed 
with constant variance, and in determining whether additional 
terms in the model would be useful. 



11-7 Adequacy of the Regression Model  

11-7.1 Residual Analysis 

Figure 11-9 Patterns 
for residual plots. (a) 
satisfactory, (b) 
funnel, (c) double 
bow, (d) nonlinear.  

[Adapted from 
Montgomery, Peck, 
and Vining (2001).]             



11-7 Adequacy of the Regression Model  
Example 11-7 



11-7 Adequacy of the Regression Model  

Example 11-7 

Figure 11-10 Normal 
probability plot of 
residuals, Example 
11-7.             



11-7 Adequacy of the Regression Model  

Example 11-7 

Figure 11-11 Plot of 
residuals versus 
predicted oxygen 
purity, ŷ, Example 
11-7.             



11-7 Adequacy of the Regression Model  

11-7.2 Coefficient of Determination (R2) 

•  The quantity 

  is called the coefficient of determination and is often 
used to judge the adequacy of a regression model. 

•  0 ≤ R2 ≤ 1; 

•  We often refer (loosely) to R2 as the amount of 
variability in the data explained or accounted for by the 
regression model. 



11-7 Adequacy of the Regression Model  

11-7.2 Coefficient of Determination (R2) 

•  For the oxygen purity regression model,  

    R2 = SSR/SST  

       = 152.13/173.38  

       = 0.877 

•   Thus, the model accounts for 87.7% of the 
variability in the data. 



11-9 Transformation and Logistic Regression 



11-9 Transformation and Logistic 
Regression 

Example 11-9 

Table 11-5 Observed Values   
and Regressor Variable    for 
Example 11-9.             

iy
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11-9 Transformation and Logistic 
Regression 





12-1 Multiple Linear Regression Models 

•  Many applications of regression analysis involve 
situations in which there are more than one 
regressor variable.  

•  A regression model that contains more than one 
regressor variable is called a multiple regression 
model.  

12-1.1 Introduction 



12-1 Multiple Linear Regression Models 

•   For example, suppose that the effective life of a cutting 
tool depends on the cutting speed and the tool angle. A 
possible multiple regression model could be 

where 

Y – tool life 

x1 – cutting speed 

x2 – tool angle 

12-1.1 Introduction 



12-1 Multiple Linear Regression Models 

Figure 12-1 (a) The regression plane for the model E(Y) 
= 50 + 10x1 + 7x2. (b) The contour plot             

12-1.1 Introduction 



12-1 Multiple Linear Regression Models 

12-1.1 Introduction 



12-1 Multiple Linear Regression Models 

Figure 12-2 (a) Three-dimensional plot of the 
regression model E(Y) = 50 + 10x1 + 7x2 + 5x1x2.  

(b) The contour plot 

12-1.1 Introduction 



12-1 Multiple Linear Regression Models 

Figure 12-3 (a) 3-D plot of the regression model  

E(Y) = 800 + 10x1 + 7x2 – 8.5x1
2 – 5x2

2 + 4x1x2.  

(b) The contour plot 

12-1.1 Introduction 



12-1 Multiple Linear Regression Models 

12-1.2 Least Squares Estimation of the Parameters 



12-1 Multiple Linear Regression Models 

12-1.2 Least Squares Estimation of the Parameters 

•  The least squares function is given by 

•  The least squares estimates must satisfy 



12-1 Multiple Linear Regression Models 

12-1.2 Least Squares Estimation of the Parameters 

•  The solution to the normal Equations are the least 
squares estimators of the regression coefficients. 

•  The least squares normal Equations are 



12-1 Multiple Linear Regression Models 

12-1.3 Matrix Approach to Multiple Linear Regression 

Suppose the model relating the regressors to the 
response is 

In matrix notation this model can be written as 



12-1 Multiple Linear Regression Models 

12-1.3 Matrix Approach to Multiple Linear Regression 

where 



12-1 Multiple Linear Regression Models 

12-1.3 Matrix Approach to Multiple Linear Regression 

We wish to find the vector of least squares 
estimators that minimizes: 

The resulting least squares estimate is 



12-1 Multiple Linear Regression Models 

12-1.3 Matrix Approach to Multiple Linear Regression 



12-1 Multiple Linear Regression Models 

Example 12-2 



12-1 Multiple Linear Regression Models 

Figure 12-4 Matrix of scatter plots (from Minitab) for the 
wire bond pull strength data in Table 12-2. 



Example 12-2 



12-1 Multiple Linear Regression Models 

Example 12-2 



12-1 Multiple Linear Regression Models 

Example 12-2 



12-1 Multiple Linear Regression Models 

Example 12-2 



12-1 Multiple Linear Regression Models 

Example 12-2 





12-1 Multiple Linear Regression Models 

Estimating σ2 

An unbiased estimator of σ2 is 



12-1 Multiple Linear Regression Models 

12-1.4 Properties of the Least Squares Estimators 

Unbiased estimators: 

Covariance Matrix: 



12-1 Multiple Linear Regression Models 

12-1.4 Properties of the Least Squares Estimators 

Individual variances and covariances: 

In general, 



12-2 Hypothesis Tests in Multiple Linear 
Regression 
12-2.1 Test for Significance of Regression 

The appropriate hypotheses are 

The test statistic is 



12-2 Hypothesis Tests in Multiple Linear 
Regression 
12-2.1 Test for Significance of Regression 



12-2 Hypothesis Tests in Multiple Linear 
Regression 
Example 12-3 



12-2 Hypothesis Tests in Multiple Linear 
Regression 
R2 and Adjusted R2 

The coefficient of multiple determination 

•   For the wire bond pull strength data, we find that R2 = 
SSR/SST = 5990.7712/6105.9447 = 0.9811. 

•   Thus, the model accounts for about 98% of the 
variability in the pull strength response. 



12-2 Hypothesis Tests in Multiple Linear 
Regression 
R2 and Adjusted R2 

The adjusted R2 is 

•   The adjusted R2 statistic penalizes the analyst for 
adding terms to the model. 

•   It can help guard against overfitting (including 
regressors that are not really useful) 



12-2 Hypothesis Tests in Multiple Linear 
Regression 
12-2.2 Tests on Individual Regression Coefficients and 
Subsets of Coefficients 

•   Reject H0 if |t0| > tα/2,n-p. 

•   This is called a partial or marginal test 



12-2 Hypothesis Tests in Multiple Linear 
Regression 
Example 12-4 



12-2 Hypothesis Tests in Multiple Linear 
Regression 

Example 12-4 



R commands and outputs 

> dat=read.table("http://www.stat.ucla.edu/~hqxu/stat105/
data/table12_2.txt", h=T)!

> g=lm(Strength~Length+Height, dat)!

> summary(g)!

            Estimate Std. Error t value Pr(>|t|)    !

(Intercept) 2.263791   1.060066   2.136 0.044099 *  !

Length      2.744270   0.093524  29.343  < 2e-16 ***!

Height      0.012528   0.002798   4.477 0.000188 ***!

Residual standard error: 2.288 on 22 degrees of freedom!

Multiple R-Squared: 0.9811, !Adjusted R-squared: 0.9794 !

F-statistic: 572.2 on 2 and 22 DF,  p-value: < 2.2e-16 !





13-1 Designing Engineering Experiments 

Every experiment involves a sequence of activities: 

1.  Conjecture – the original hypothesis that motivates the 
experiment. 

2.  Experiment – the test performed to investigate the 
conjecture. 

3.  Analysis – the statistical analysis of the data from the 
experiment. 

4.  Conclusion – what has been learned about the original 
conjecture from the experiment.  Often the experiment will 
lead to a revised conjecture, and a new experiment, and so 
forth. 



13-2 The Completely Randomized Single-
Factor Experiment 

13-2.1 An Example 



13-2 The Completely Randomized Single-
Factor Experiment 

13-2.1 An Example 



13-2 The Completely Randomized Single-
Factor Experiment 

13-2.1 An Example 

•  The levels of the factor are sometimes called 
treatments. 

•  Each treatment has six observations or replicates. 

•  The runs are run in random order. 



13-2 The Completely Randomized Single-
Factor Experiment 

Figure 13-1 (a) Box plots of hardwood concentration data. 
(b) Display of the model in Equation 13-1 for the completely 
randomized single-factor experiment             

13-2.1 An Example 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 

Suppose there are a different levels of a single factor 
that we wish to compare.  The levels are sometimes 
called treatments. 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 

We may describe the observations in Table 13-2 by the 
linear statistical model: 

The model could be written as 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 

Fixed-effects Model   

The treatment effects are usually defined as deviations 
from the overall mean so that: 

Also, 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 

We wish to test the hypotheses: 

The analysis of variance partitions the total variability 
into two parts. 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 

The ratio MSTreatments = SSTreatments/(a – 1) is called the 
mean square for treatments. 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 

The appropriate test statistic is 

We would reject H0 if f0 > fα,a-1,a(n-1) 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 

where N=na is the total number of observations. 



13-2 The Completely Randomized Single-
Factor Experiment 
13-2.2 The Analysis of Variance 

Analysis of Variance Table 



13-2 The Completely Randomized Single-
Factor Experiment 

Example 13-1 



13-2 The Completely Randomized Single-
Factor Experiment 
Example 13-1 



13-2 The Completely Randomized Single-
Factor Experiment 
Example 13-1 





13-2 The Completely Randomized Single-
Factor Experiment 

The 95% CI on the mean of the 20% hardwood is 



13-2 The Completely Randomized Single-
Factor Experiment 

For the hardwood concentration example, 



13-2 The Completely Randomized Single-
Factor Experiment 

An Unbalanced Experiment 



13-2 The Completely Randomized Single-
Factor Experiment 

13-2.3 Multiple Comparisons Following the ANOVA 

The least significant difference (LSD) is 

If the sample sizes are different in each treatment: 



13-2 The Completely Randomized Single-
Factor Experiment 
Example 13-2 



13-2 The Completely Randomized Single-
Factor Experiment 
Example 13-2 



13-2 The Completely Randomized Single-
Factor Experiment 

Example 13-2 

Figure 13-2 Results of Fisher’s LSD method in Example 13-2             



13-2 The Completely Randomized Single-
Factor Experiment 

13-2.4 Residual Analysis and Model Checking 



13-2 The Completely Randomized Single-
Factor Experiment 

13-2.4 Residual Analysis and Model Checking 

Figure 13-4 Normal 
probability plot of 
residuals from the 
hardwood concentration 
experiment.             



13-2 The Completely Randomized Single-
Factor Experiment 

13-2.4 Residual Analysis and Model Checking 

Figure 13-5 Plot of 
residuals versus factor 
levels (hardwood 
concentration).             



13-2 The Completely Randomized Single-
Factor Experiment 

13-2.4 Residual Analysis and Model Checking 

Figure 13-6 Plot of 
residuals versus 



13-4 Randomized Complete Block Designs 

13-4.1 Design and Statistical Analyses 

The randomized block design is an extension of the 
paired t-test to situations where the factor of interest has 
more than two levels. 

Figure 13-9 A randomized complete block design. 



13-4 Randomized Complete Block Designs 

13-4.1 Design and Statistical Analyses 

For example, consider the situation of Example 10-9, 
where two different methods were used to predict the 
shear strength of steel plate girders.  Say we use four 
girders as the experimental units. 



13-4 Randomized Complete Block Designs 

13-4.1 Design and Statistical Analyses 

General procedure for a randomized complete block 
design: 



13-4 Randomized Complete Block Designs 

13-4.1 Design and Statistical Analyses 

The appropriate linear statistical model: 

We assume  

•   treatments and blocks are initially fixed effects 

•   blocks do not interact 

•    



13-4 Randomized Complete Block Designs 

13-4.1 Design and Statistical Analyses 

We are interested in testing: 



13-4 Randomized Complete Block Designs 

13-4.1 Design and Statistical Analyses 

The mean squares are: 



13-4 Randomized Complete Block Designs 

13-4.1 Design and Statistical Analyses 

The expected values of these mean squares are: 



13-4 Randomized Complete Block Designs 

13-4.1 Design and Statistical Analyses 



13-4 Randomized Complete Block Designs 

Example 13-5 



13-4 Randomized Complete Block Designs 

Example 13-5 



13-4 Randomized Complete Block Designs 

Minitab Output for Example 13-5 



13-4 Randomized Complete Block Designs 

13-4.2 Multiple Comparisons 

Fisher’s Least Significant Difference for Example 13-5 

Figure 13-10 Results of Fisher’s LSD method. 



13-4 Randomized Complete Block Designs 

13-4.3 Residual Analysis and Model Checking 

(a) Normal prob. plot of residuals (b) Residuals versus ŷij 



13-4 Randomized Complete Block Designs 

(a) Residuals by block. (b) Residuals by treatment 





14-1 Introduction 

•  An experiment is a test or series of tests. 

•  The design of an experiment plays a major role in 
the eventual solution of the problem. 

•  In a factorial experimental design, experimental 
trials (or runs) are performed at all combinations of 
the factor levels. 

•  The analysis of variance (ANOVA) will be used as 
one of the primary tools for statistical data analysis. 



14-2 Factorial Experiments 

Definition 



14-2 Factorial Experiments 

Figure 14-3 Factorial Experiment, no interaction.             



14-2 Factorial Experiments 

Figure 14-4 Factorial Experiment, with interaction.             



14-2 Factorial Experiments 

Figure 14-5 Three-dimensional surface plot of the data from 
Table 14-1, showing main effects of the two factors A and B.             



14-2 Factorial Experiments 

Figure 14-6 Three-dimensional surface plot of the data from 
Table 14-2, showing main effects of the A and B interaction.             



14-2 Factorial Experiments 

Figure 14-7 Yield versus reaction time with temperature 
constant at 155º F.             



14-2 Factorial Experiments 

Figure 14-8 Yield versus temperature with reaction time 
constant at 1.7 hours.             



14-2 Factorial Experiments 

Figure 14-9 
Optimization 
experiment using the 
one-factor-at-a-time 
method.             



14-3 Two-Factor Factorial Experiments 



14-3 Two-Factor Factorial Experiments 

The observations may be described by the linear 
statistical model: 



14-3 Two-Factor Factorial Experiments 

14-3.1 Statistical Analysis of the Fixed-Effects Model 



14-3 Two-Factor Factorial Experiments 

14-3.1 Statistical Analysis of the Fixed-Effects Model 



14-3 Two-Factor Factorial Experiments 

14-3.1 Statistical Analysis of the Fixed-Effects Model 



14-3 Two-Factor Factorial Experiments 

To test H0: τi = 0 use the ratio 
14-3.1 Statistical Analysis of the Fixed-Effects Model 

To test H0: βj = 0 use the ratio 

To test H0: (τβ)ij = 0 use the ratio 



14-3 Two-Factor Factorial Experiments 
14-3.1 Statistical Analysis of the Fixed-Effects Model 

Definition 



14-3 Two-Factor Factorial Experiments 
14-3.1 Statistical Analysis of the Fixed-Effects Model 



14-3 Two-Factor Factorial Experiments 
14-3.1 Statistical Analysis of the Fixed-Effects Model 

Example 14-1 
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14-3.1 Statistical Analysis of the Fixed-Effects Model 

Example 14-1 



14-3 Two-Factor Factorial Experiments 
14-3.1 Statistical Analysis of the Fixed-Effects Model 

Example 14-1 



14-3 Two-Factor Factorial Experiments 
14-3.1 Statistical Analysis of the Fixed-Effects Model 

Example 14-1 



14-3 Two-Factor Factorial Experiments 
14-3.1 Statistical Analysis of the Fixed-Effects Model 

Example 14-1 



14-3 Two-Factor Factorial Experiments 
14-3.1 Statistical Analysis of the Fixed-Effects Model 

Example 14-1 



14-3 Two-Factor Factorial Experiments 
14-3.1 Statistical Analysis of the Fixed-Effects Model 

Example 14-1 

Figure 14-10 Graph 
of average adhesion 
force versus primer 
types for both 
application 
methods.             



R commands and outputs 
Example 14-1: enter data by row 
> Adhesion=c(4.0, 4.5, 4.3, 5.4, 4.9, 5.6,  5.6, 4.9, 5.4, 5.8, 6.1, 6.3,  3.8, 

3.7, 4.0, 5.5, 5.0, 5.0) 

> Primer=c(1,1,1,1,1,1, 2,2,2,2,2,2, 3,3,3,3,3,3) 
> Method=c(1,1,1,2,2,2, 1,1,1,2,2,2, 1,1,1,2,2,2)  # 1=Dipping, 2=Spraying 
> g=lm(Adhesion ~ as.factor(Primer) * as.factor(Method)) 
> anova(g)    
Response: Adhesion 
                                    Df Sum Sq Mean Sq F value    Pr(>F)     
as.factor(Primer)                    2 4.5811  2.2906 27.8581 3.097e-05 
as.factor(Method)                    1 4.9089  4.9089 59.7027 5.357e-06 
as.factor(Primer):as.factor(Method)  2 0.2411  0.1206  1.4662    0.2693     

Residuals                           12 0.9867  0.0822  

> interaction.plot(Primer, Method, Adhesion) 

See ch14.R for more commands  



14-3 Two-Factor Factorial Experiments 

14-3.2 Model Adequacy Checking 



14-3 Two-Factor Factorial Experiments 

14-3.2 Model Adequacy Checking 

Figure 14-11 
Normal probability 
plot of the residuals 
from Example 14-1             



14-3 Two-Factor Factorial Experiments 
14-3.2 Model Adequacy Checking 

Figure 14-14 Plot of residuals versus predicted values.             



14-4 General Factorial Experiments 

Model for a three-factor factorial experiment 





14-4 General Factorial Experiments 

Example 14-2 



R commands and outputs 
Example 14-2: enter data by row 
> Roughness=c(9,11,9,10, 7,10,11,8, 10,10,12,16, 12,13,15,14) 
> Feed=c(1,1,1,1, 1,1,1,1, 2,2,2,2, 2,2,2,2) 

> Depth=c(1,1,2,2, 1,1,2,2, 1,1,2,2, 1,1,2,2) 
> Angle=c(1,2,1,2, 1,2,1,2, 1,2,1,2, 1,2,1,2) 
> g=lm(Roughness ~ Feed*Depth*Angle) 
> anova(g) 
Response: Roughness 
                 Df Sum Sq Mean Sq F value   Pr(>F)    
Feed              1 45.562  45.562 18.6923 0.002534 ** 

Depth             1 10.562  10.562  4.3333 0.070931 .  
Angle             1  3.062   3.062  1.2564 0.294849    
Feed:Depth        1  7.562   7.562  3.1026 0.116197    
Feed:Angle        1  0.062   0.062  0.0256 0.876749    
Depth:Angle       1  1.562   1.562  0.6410 0.446463    
Feed:Depth:Angle  1  5.062   5.062  2.0769 0.187512    

Residuals         8 19.500   2.438 

> par(mfrow=c(1,3)) # 
> interaction.plot(Feed, Depth, Roughness) 
> interaction.plot(Feed, Angle, Roughness) 
> interaction.plot(Angle, Depth, Roughness) 



14-4 General Factorial Experiments 
Example 14-2 



Bootstrap Method  



15-1 Introduction 

•  Most of the hypothesis-testing and confidence 
interval procedures discussed in previous chapters 
are based on the assumption that we are working 
with random samples from normal populations. 

•  These procedures are often called parametric methods 

•  In this chapter, nonparametric and distribution free 
methods will be discussed. 

•  We usually make no assumptions about the distribution 
of the underlying population. 



15-2 Sign Test 
15-2.1 Description of the Test 
•  The sign test is used to test hypotheses about the 
median of a continuous distribution. 

• Let R+ represent the number of differences 

  that are positive.  

•  What is the sampling distribution of R+ under H0? 

0
~µ−iX



15-2 Sign Test 
15-2.1 Description of the Test 

If the following hypotheses are being tested: 

The appropriate P-value is  



15-2 Sign Test 

15-2.1 Description of the Test 

If the following hypotheses are being tested: 

The appropriate P-value is  



15-2 Sign Test 
15-2.1 Description of the Test 

If the following hypotheses are being tested: 

If r+ < n/2, then the appropriate P-value is  

If r+ > n/2, then the appropriate P-value is  



15-2 Sign Test 
Example 15-1 



Example 15-1 



15-2 Sign Test 
Example 15-1 



15-2 Sign Test 

15-2.2 Sign Test for Paired Samples 

See Example 15-3. 



15-2 Sign Test 
15-2.3 Type II Error for the Sign Test  

•  Depends on both the true population distribution and alternative value! 

Figure 15-1 
Calculation of β 
for the sign test. 
(a) Normal 
distributions. (b) 
Exponential 
distributions             



15-3 Wilcoxon Signed-Rank Test 

•  The Wilcoxon signed-rank test applies to the case 
of symmetric continuous distributions. 

•  Under this assumption, the mean equals the median. 

•  The null hypothesis is H0: µ = µ0 



15-3 Wilcoxon Signed-Rank Test 

•  Assume that X1, X2, …, Xn is a random sample from a continuous 
and symmetric distribution with mean (and median) µ. 

Procedure: 
•  Compute the differences Xi − µ0, i = 1, 2, …, n. 
•  Rank the absolute differences |Xi − µ0|, i = 1, 2, …, n in ascending 

order. 
•  Give the ranks the signs of their corresponding differences. 
•  Let W+ be the sum of the positive ranks and W− be the absolute 

value of the sum of the negative ranks. 
•  Let W = min(W+, W−). 

•  15-3.1 Description of the Test  



15-3 Wilcoxon Signed-Rank Test 
Decision rules: 



15-3 Wilcoxon Signed-Rank Test 

Example 15-4  



Example 15-4  



15-3 Wilcoxon Signed-Rank Test 

Example 15-4  



15-3 Wilcoxon Signed-Rank Test 

15-3.2 Large-Sample Approximation  

Z0 is approximately standard normal when n is large. 



15-4 Wilcoxon Rank-Sum Test 

15-4.1 Description of the Test 



15-4 Wilcoxon Rank-Sum Test 
15-4.1 Description of the Test  



15-4 Wilcoxon Rank-Sum Test 
Example 15-6  



15-4 Wilcoxon Rank-Sum Test 
Example 15-6  



Example 15-6  



15-4 Wilcoxon Rank-Sum Test 
Example 15-6  



15-5 Nonparametric Methods in the 
Analysis of Variance 

The single-factor analysis of variance model for 
comparing a population means is 

The hypothesis of interest is 

The Kruskal-Wallis test (w/o assumption of normality)  

•  Basic idea: Use ranks instead of actual numbers 



Parametric vs. Nonparametric Tests 
•  When the normality assumption is correct, t-test or F-test is 

more powerful. 
–   Wilcoxon signed-rank or rank-sum test is approximately 95% as 

efficient as the t-test in large samples. 
•   On the other hand, regardless of the form of the 

distributions, nonparametric tests may be more powerful. 
–  Wilcoxon signed-rank or rank-sum test will always be at least 86% 

as efficient.  
•  The efficiency of the Wilcoxon test relative to the t-test is 

usually high if the underlying distribution has heavier tails 
than the normal 
–  because the behavior of the t-test is very dependent on the sample 

mean, which is quite unstable in heavy-tailed distributions. 




