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1-1 The Engineering Method and 1-1 The Engineering Method and
Statistical Thinking Statistical Thinking
The field of statistics deals with the collection, * Statistical techniques are useful for describing and
presentation, analysis, and use of data to understanding variability.
* Make decisions * By variability, we mean successive observations of a
system or phenomenon do not produce exactly the same

* Solve problems result.

* Design products and processes C e o :
&1 proau P « Statistics gives us a framework for describing this

variability and for learning about potential sources of
variability.



1-1 The Engineering Method and
Statistical Thinking

Engineering Example

An engineer is designing a nylon connector to be used in an
automotive engine application. The engineer is considering
establishing the design specification on wall thickness at 3/32
inch but is somewhat uncertain about the effect of this decision

on the connector pull-off force. If the pull-off force is too low, the

connector may fail when it is installed in an engine. Eight
prototype units are produced and their pull-off forces measured
(in pounds): 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1.

1-1 The Engineering Method and
Statistical Thinking

Engineering Example

* The engineer considers an alternate design and eight prototypes
are built and pull-off force measured.
* The dot diagram can be used to compare two sets of data

3.
., S °2. 20 '0o0o0 ° o=§|nch
12 13 14 15 o:é inch
Pull-off force

Figure 1-3 Dot diagram of pull-off force for two
wall thicknesses.

1-1 The Engineering Method and
Statistical Thinking

Engineering Example

*The dot diagram is a very useful plot for displaying a small
body of data - say up to about 20 observations.

* This plot allows us to see easily two features of the data; the
location, or the middle, and the scatter or variability.

12 13 14 15

Pull-off force

Figure 1-2 Dot diagram of the pull-off force
data when wall thickness is 3/32 inch.

1-1 The Engineering Method and
Statistical Thinking

Engineering Example

* Since pull-off force varies or exhibits variability, it is a
random variable.

* A random variable, X, can be model by
X=ute

where p is a constant and € a random disturbance.



1-1 The Engineering Method and

Statistical Thinking 1-2 Collecting Engineering Data
Three basic methods for collecting data:
Phlﬁgal Population — A retrospective study using historical data
*  May not be useful
Types of Statistical inference — An observational study
reasoning *  Cannot tell the cause-effect
— A designed experiment

Product Sample *  Make deliberate changes to observe response
designs

¢ Can tell the cause-effect

Figure 1-4 Statistical inference is one type of reasoning.

Table 1-2  Wire Bond Pull Strength Data

1-3 Mechanistic and Empirical Models Opservation  Pull Stength - Wire Length - Die Height
1 9.95 2 50
A mechanistic model is built from our underlying : e N o
knowledge of the basic physical mechanism that relates : e 0 o
several variables. 6 o6 4 200
8 9.60 2 52
Ohm’s Law: Current = voltage/resistance N e 9 100
11 17.08 4 412
I=E/R or I=E/R + ¢ 12 37.00 11 400
13 41.95 12 500
o o . . . . 14 11.66 2 360
An empirical model is built from our engineering and 15 21.65 4 205

: : . 1 7.89 4

scientific knowledge of the phenomenon, but is not 17 69.00 20 600
directly developed from our theoretical or first- s e o S
principles understanding of the underlying mechanism. 2 P ' .
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100

25 21.15 5 400




1-3 Mechanistic and Empirical Models

80
% €0 Pull strength = B, + B;(wire length) + B,(die height) + €
£ 40 | l
P ’ ‘ ] ' | 600 In genera.l, this type of empirical model is called a

| ’ 20520 regression model.

0 0 300 o
N 8 12 106 gt
Wire length 16 200 o

The estimated regression line is given by

— T

Pull strength = 2.26 + 2.74(wire length) + 0.0125(die height)
Figure 1-15 Three-dimensional plot of the wire and pull

strength data.

4-6 Normal Distribution

Definition

Pull strangth

A random variable X with probability density function

—(x—nf
20

100 et 1= rme
0 o®

—o < x < ® (4-8)

12
Wira length 16 20

is a normal random variable with parameters p, where — < p < @, and o > 0.
Also,

EX)=pn and V(X)=o" (4-9)

Figure 1-16 Plot of the predicted values of puII Strength and the notation N{p, 02) is used to denote the distribution. The mean and variance
from the empirical model of X are shown to equal . and o2, respectively, at the end of this Section 5-6.




4-6 Normal Distribution

(x) 2_
filx /o 1 o221

w=15 X

Figure 4-10 Normal probability density functions
for selected values of the parameters u and o2.

4-6 Normal Distribution

Example 4-11
Assume Z is a standard normal random variable. Appendix Table I provides probabilities of
the form P(Z = z). The use of Table II to find P(Z = 1.5) is illustrated in Fig. 4-13. Read
down the z column to the row that equals 1.5. The probability is read from the adjacent col-
umn, labeled 0.00, to be 0.93319.

The column headings refer to the hundredth’s digit of the value of z in P(Z = z). For ex-
ample, P(Z = 1.53) is found by reading down the z column to the row 1.5 and then selecting

the probability from the column labeled 0.03 to be 0.93699.

Pslo=ols .| oo o001 o0z 003

0 | 0.50000 0.50399 0.50398 0.51197

1.5 | 093319 0.93448 0.93574 0.93699
0 15 z

Figure 4-13 Standard normal probability density
function.

4-6 Normal Distribution

Definition : Standard Normal

A normal random variable with
o
p=0 and o =1

is called a standard normal random variable and is denoted as Z.
The cumulative distribution function of a standard normal random variable is

denoted as

4-6 Normal Distribution

Standardizing

If X is a normal random variable with E(X') = p and V(X) = o, the random variable

Y-
Tt (4-10)

is a normal random variable with E(Z) = 0 and V(Z) = 1. That is, Z is a standard
normal random variable.




4-6 Normal Distribution

Example 4-13

Suppose the current measurements in a strip of wire are assumed to follow a normal distribu-
tion with a mean of 10 milliamperes and a variance of 4 (milliamperes)>. What is the proba-
bility that a measurement will exceed 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
P(X > 13). Let Z = (X — 10)/2. The relationship between the several values of X and the
transformed values of Z are shown in Fig. 4-15. We note that X > 13 corresponds to Z > 1.5.
Therefore, from Appendix Table I1,

PX=>13)=PZ=>15)=1-PZ=15)=1-10.93319 = 0.06681
Rather than using Fig. 4-15, the probability can be found from the inequality X > 13. That is,

X—-10 13-10
) (13-10)

pi b

P(X>13) = P(( ) = P(Z> 1.5) = 0.06681

4-6 Normal Distribution

To Calculate Probability

. : . : 2
Suppose X is a normal random variable with mean p and variance o~. Then,

X-p x-
P(XSx)=P< U”s‘c“>=P(25:) @-11)

Sl
a

where Z is a standard normal random variable, and z = is the z-value
obtained by standardizing X.

The probability is obtained by entering Appendix Table Il with z = (x — p)/o.

4-6 Normal Distribution

Distribution of Z = %

Distribution of X

4 7 91011 13 16 x
-3  -15-05005 15 3 z

Figure 4-15 Standardizing a normal random
variable.

4-6 Normal Distribution

Example 4-14 (continued)
Determine the value for which the probability that a current measurement is below
this value is 0.98. The requested value is shown graphically in Fig. 4-16. We need the value of
x such that P(X < x) = 0.98. By standardizing, this probability expression can be written as

P(X < x) = P((X = 10)/2 < (x — 10)/2)
= PZ < (x — 10)/2)
=098

Appendix Table II is used to find the z-value such that P(Z < z) = 0.98. The nearest proba-
bility from Table I results in

P(Z < 2.05) = 0.97982
Therefore, (x — 10)/2 = 2.05, and the standardizing transformation is used in reverse to solve
for x. The result is

x = 2(2.05) + 10 = 14.1 milliamperes



4-6 Normal Distribution

Example 4-14 (continued)

10 x

Figure 4-16 Determining the value of x to meet a
specified probability.

5-5 Linear Combinations of Random
Variables

Variance of a Linear Combination

5-5 Linear Combinations of Random
Variables

Definition

Given random variables X, X, ..., X, and constants ¢, ¢, ..., ¢,

= C].Y] + szYg + 4+ C},.Yp (5-34)

is a linear combination of X, X5, ..., X,

Mean of a Linear Combination

IfY= Cl/\,l + C2.Y2 37 oo ar Cp‘k,p‘

E(Y) = ciE(X,) + E(Xy) + - + ¢, E(X,) (5-35)

If X}, X, ..., X, are random variables, and ¥ = ¢|X| + o X; + =** + ¢, X}, then in

general
NY) = V(X)) + dVXa) + - + VX)) + 2, D) aceov(X, X)) (5-36)
i<
If X, X;, ..., X, are independent,

) = V(X)) + VX)) + - + ENX,) (5-37)

5-5 Linear Combinations of Random
Variables

Example 5-33

An important use of equation 5-37 is in error propagation that is presented in the following example.

A semiconductor product consists of three layers. If the variances in thickness of the first, second. and
third layers are 25, 40, and 30 nanometers squared, what is the variance of the thickness of the final

product.
Let X, X,, X;, and Y be random variables that denote the thickness of the respective layers, and the final

product. Then
X=X+ +X;
The variance of X is obtained from equaion 5-39
V(X)) = V(X)) + V(XG) + F(Xy) = 25 + 40 + 30 = 95 nm?

Consequently, the standard deviation of thickness of the final product is 95" = 9.75 nm and this shows
how the variation in each layer is propagated to the final product.



5-5 Linear Combinations of Random
Variables

Mean and Variance of an Average

5-5 Linear Combinations of Random
Variables

X=X+ X+ +X)/pwith ) = pfori=1,2,....p

E(X)

8a)

Lo

1 (5-

if X}, Xa, ..., X, are also independent with V(X)) = ¢* fori = 1,2,....p,
oy

>

2

VX) = (5-38b)

Reproductive Property of the Normal Distribution

5-5 Linear Combinations of Random
Variables

Example 5-34

Let the random variables X, and X, denote the length and width, respectively, of a manufactured part.
Assume that X, is normal with E(X) = 2 centimeters and standard deviation 0.1 centimeter and that
X, is normal with E(X;) = 5 centimeters and standard deviation 0.2 centimeter. Also, assume that X
and X, are independent. Determine the probability that the perimeter exceeds 14.5 centimeters.

Then, ¥ = 2X, + 2X; is a normal random variable that represents the perimeter of the part. We
obtain, £(Y) = 14 centimeters and the variance of Yis

MY)=4x01>+4x02*=02
Now,

P(Y > 14.5) = P[(Y = py)/oy > (145 — 14)/V02)
=PZ>112)=013

If X}, Xo,..., X, are independent, normal random variables with E(X)) = , and
V(X)) = of fori=1,2,...,p,

Y= Cl.\,l F sz‘g ST Cp'Yp
is a normal random variable with

E(Y)=cip + apa + = + ool
and

V(Y) = clof + do3 + - + clo’ (5-39)

Some useful results to remember

fx)

nw—30c u-20 p-o " p+o pu+20 p+30 x
‘ |«— 68% —| ‘
| 95% |
| 99.7% |

For any normal random variable
Pl —o<X<p+o)=0.6827

Plp — 20 < X< p + 20) = 0.9545
P(p — 30 < X< pu + 30) = 0.9973
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6-1 NUMERICAL SUMMARIES
6-2 STEM-AND-LEAF DIAGRAMS

6-3 FREQUENCY DISTRIBUTIONS
AND HISTOGRAMS

6-4 BOXPLOTS
6.5 TIME SEQUENCE PLOTS
6-6 PROBABILITY PLOTS

6-1 Numerical Summaries

Example 6-1

Let’s consider the eight observations collected from the prototvpe engine connectors from
Chapter 1. The eight observations are x; = 12.6,x, = 12.9,x3 = 13,4, x4 = 12.3, x5 = 13.06,
Xg = 13.5,x; = 12.6, and xg = 13.1. The sample mean is

8
X;
__xtxntotuy, Zl Y126 4+ 129 + -+ 1311
8
C

R

o0

104

ke 13.0 pounds

)

A physical interpretation of the sample mean as a measure of location is shown in the dot
diagram of the pull-off force data. See Figure 6-1. Notice that the sample mean ¥ = 13.0 can be
thought of as a “balance point.” That is, if each observation represents 1 pound of mass placed
at the point on the x-axis, a fulcrum located at X would exactly balance this system of weights.

6-1 Numerical Summaries
Definition: Sample Range

If the » observations in a sample are denoted by x|, xy, ..., x,, the sample range is

r = max(x;) — min(x;)

(6-6)

Definition: Sample Mean

If the n observations in a sample are denoted by x|, x5, ..., x,, the sample mean is

n

E.\','
I L CIEEEE T i=1
x': —3

n n

(6-1)

6-1 Numerical Summaries

12 A 14

Pull-off force

Figure 6-1 The sample mean as a balance point for a
system of weights.

15




6-1 Numerical Summaries

Population Mean

For a finite population with N (equally likely)
measurements, the mean 1s

N

i
N

N l )
L= 2.\',-_/‘(.\‘..-) = ;"" (6-2)
=i

The sample mean is a reasonable estimate of the
population mean.

6-1 Numerical Summaries

How Does the Sample Variance Measure Variability?

oo

° o ¥ o o ©o o

-— v’:l — (—fl’3 —_—

- X — | —— X —

< "-4 > |- .1‘5

Figure 6-2 How the sample variance measures variability
through the deviations x;, —x .

6-1 Numerical Summaries

Definition: Sample Variance

If X, Xy, ..., X, 1s a sample of n observations, the sample variance is

n

2 (x; — -?)2

52 — ‘=l— (6_3)
n—1

The sample standard deviation, s, is the positive square root of the sample variance.

* n-1 is referred to as the degrees of freedom.

6-1 Numerical Summaries

Example 6-2

Table 6-1 displays the quantities needed for calculating the sample variance and sample
standard deviation for the pull-off force data. These data are plotted in Fig. 6-2. The
numerator of 57 is

8
> (v =X =160
i=1

so the sample variance is

) 1.60 _ 1.60

YT = (.2286 (pounds)?

and the sample standard deviation is

s = V0.2286 = 0.48 pounds



6-1 Numerical Summaries

Computation of s?

§° = (6-4)

6-2 Stem-and-Leaf Diagrams

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data
set X, X3, ..., X,, Where each number x; consists of at least two digits. To construct a stem-
and-leaf diagram, use the following steps.

Steps for Constructing a Stem-and-Leaf Diagram

(1) Divide each number x; into two parts: a stem, consisting of one or more of the
leading digits and a leaf, consisting of the remaining digit.

(2) List the stem values in a vertical column.
(3) Record the leaf for each observation beside its stem.

(4) Write the units for stems and leaves on the display.

6-1 Numerical Summaries

Population Variance

When the population is finite and consists of N (equally
likely) values, we may define the population variance as

N N
Sy o)
TTT N
The sample variance is a reasonable estimate of the
population variance.

6-2 Stem-and-Leaf Diagrams

Example 6-4

To illustrate the construction of a stem-and-leaf diagram, consider the alloy compressive
strength data in Table 6-2. We will select as stem values the numbers 7, 8,9, ..., 24. The
resulting stem-and-leaf diagram is presented in Fig. 6-4. The last column in the diagram is a
frequency count of the number of leaves associated with each stem. Inspection of this display
immediately reveals that most of the compressive strengths lie between 110 and 200 psi and
that a central value is somewhere between 150 and 160 psi. Furthermore, the strengths are dis-
tributed approximately svmmetrically about the central value. The stem-and-leaf diagram
enables us to determine quickly some important features of the data that were not immediately
obvious in the original display in Table 6-2.



6-2 Stem-and-Leaf Diagrams 6-2 Stem-and-Leaf Diagrams

Stem Leaf Frequency
) Figure 6-4 Stem-and- ' 6 !
Table 6-2 Compressive Strength (in psi) of 80 Aluminum-Lithium Alloy Specimens leaf diagram for the : ! :
105 221 183 186 121 181 180 143 Compressive Strength :‘; i:m i
97 154 153 174 120 168 167 141 data in Table 6-2. ” »I 03 \
245 228 174 199 181 158 176 110 13 413535 6
163 131 154 115 160 208 158 133 14 20583169 8
207 180 190 193 194 33 156 123 o Tonaangenes ”
134 178 76 167 184 135 229 146 17 8544162106 10
218 157 101 171 165 172 158 169 18 0361410 ’
19 960034 6
199 151 142 163 145 171 148 158 » los M
160 175 149 87 160 237 150 135 21 8 1
196 201 200 176 150 170 118 149 ;’ i“ :
24 5 1

Stem : Tens and hundreds digits (psi): Leaf: Ones digits (psi)

6-2 Stem-and-Leaf Diagrams 6-2 Stem-and-Leaf Diagrams

Character Stem-and-Leaf Display Data Features

Stem-and-leaft of Strength
Figure 6-6 Stem- N==80  LeafUnit=1.0 * The median is a measure of central tendency that divides the
and-leaf diagram _l . (- data into two equal parts, half below the median and half above. If
from Minitab. 3 9 7 the number of observations is even, the median is halfway

. :'; ['); < between the two central values.

11 12 013

l: :4 : f : : 0o From Fig. 6-6, the 40th and 41st values of strength as 160 and

37 5 001344678888 163, so the median is (160 + 163)/2 = 161.5. If the number of

( ‘:" :‘_ :: ‘l’ 'l’ : 4 _: : : * \’ observations is odd, the median is the central value.

23 I8 00113406

16 19 034699 The range is a measure of variability that can be easily computed

:‘” ;']) JrE from the ordered stem-and-leaf display. It is the maximum minus

5 22 189 the minimum measurement. From Fig.6-6 the range is 245 - 76 =

7 o 169.

24 5



6-2 Stem-and-Leaf Diagrams

Data Features

*When an ordered set of data is divided into four equal parts, the
division points are called quartiles.

*The first or lower quartile, g, , is a value that has approximately
one-fourth (25%) of the observations below it and approximately
75% of the observations above.

*The second quartile, g,, has approximately one-half (50%) of
the observations below its value. The second quartile is exactly
equal to the median.

*The third or upper quartile, g;, has approximately three-fourths

(75%) of the observations below its value. As in the case of the
median, the quartiles may not be unique.

6-2 Stem-and-Leaf Diagrams

Data Features

* The interquartile range is the difference between the upper
and lower quartiles, and it is sometimes used as a measure of
variability.

* In general, the 100kth percentile is a data value such that
approximately 100k% of the observations are at or below this
value and approximately 100(1 - k)% of them are above it.

6-2 Stem-and-Leaf Diagrams

Data Features

* The compressive strength data in Figure 6-6 contains

n = 80 observations. Minitab software calculates the first and third
quartiles as the(n + 1)/4 and 3(n + 1)/4 ordered observations and
interpolates as needed.

For example, (80 + 1)/4 = 20.25 and 3(80 + 1)/4 = 60.75.
Therefore, Minitab interpolates between the 20th and 21st ordered

observation to obtain ¢, = 143.50 and between the 60th and
61st observation to obtain g; =181.00.

6-4 Box Plots

» The box plot is a graphical display that
simultaneously describes several important features of
a data set, such as center, spread, departure from
symmetry, and identification of observations that lie
unusually far from the bulk of the data.

* Whisker
e Outlier
* Extreme outlier



6-4

Box Plots

Whisker extends to Whisker extends to

smallest data point within largest data point within

1.5 interquartile ranges from 1.5 interquartile ranges

first quartile from third quartile

First quartile  Second quartile  Third quartile
N — o
° (-] o o ©
N/ /7 /
Qutliers Qutliers Extreme outlier
1.5IGR | 1.51QR | IGR | 1.51IGR | 1.51QR |

Figure 6-13 Description of a box plot.

6-4

Box Plots

Strength

l 250
237.25
1 * 245
1.5 IR 237
1 200
181 ¥ g3= 181
IGR
143.5 i 150 gp=161.5
1 q1=1435
1.5 IGR
l 100
87.05 97

—_
~ @
o~

Figure 6-14 Box plot for compressive strength
data in Table 6-2.

6-4 Box Plots

Example: The ordered data in Example 6-1 are
12.3,12.6,12.6,12.9,13.1, 13.4,13.5, 13.6

6-4 Box Plots

Figure 6-15
Comparative box
plots of a quality index
at three plants.

Quality index

120

110

100

90

80

70

Plant



6-3 Frequency Distributions and Histograms 6-3 Frequency Distributions and Histograms

* A frequency distribution is a more compact 03125 28
summary of data than a stem-and-leaf diagram.
0.2500 20
g
* To construct a frequency distribution, we must divide S 01895 - 2 15
. . . g
the range of the data into intervals, which are usually - 3
- - - 3’
called class intervals, cells, or bins. g 01280 2 10
g
. . . . 0.0625 2
Constructing a Histogram (Equal Bin Widths):
(1) Label the bin (class interval) boundaries on a horizontal scale. 0 0 70 90 110 130 150 170 190 210 230 280
(2) Mark and label the vertical scale with the frequencies or the relative Compressive strength (psi)

frequencies.

(3) Above each bin, draw a rectangle where height is equal to the frequency . . .
(or relative frequency) corresponding to that bin. Figure 6-7 Histogram of compressive strength for 80

aluminum-lithium alloy specimens.

6-3 Frequency Distributions and Histograms 6-3 Frequency Distributions and Histograms
10
oy
g’ X X ; X X
N Negative or left skew Symmetric Positive or right skew
(a) (b) (c)
0
100 150 200 250 Figure 6-11 Histograms for symmetric and skewed distributions.
Strength

Figure 6-8 A histogram of the compressive strength data
from Minitab with 17 bins.



6-6 Probability Plots

* Probability plotting is a graphical method for
determining whether sample data conform to a
hypothesized distribution based on a subjective visual
examination of the data.

* Probability plotting typically uses special graph
paper, known as probability paper, that has been
designed for the hypothesized distribution. Probability
paper is widely available for the normal, lognormal,
Weibull, and various chi-square and gamma
distributions.

6-6 Probability Plots

Example 6-7 (continued)

The pairs of values x(; and (j — 0.5)/10 are now plotted on normal probability paper.
This plot is shown in Fig. 6-19. Most normal probability paper plots 100(j; — 0.5)/n on the left
vertical scale and 100[ 1 — ( — 0.5)/n] on the right vertical scale, with the variable value plot-
ted on the horizontal scale. A straight line, chosen subjectively, has been drawn through the plot-
ted points. In drawing the straight line, you should be influenced more by the points near the
middle of the plot than by the extreme points. A good rule of thumb is to draw the line approxi-
mately between the 25th and 75th percentile points. This is how the line in Fig. 6-19 was deter-
mined. In assessing the “closeness™ of the points to the straight line, imagine a “fat pencil” lving
along the line. If all the points are covered by this imaginary pencil, a normal distribution ade-
quately describes the data. Since the points in Fig. 6-19 would pass the “fat pencil™ test, we con-
clude that the normal distribution is an appropriate model.

6-6 Probability Plots
Example 6-7

Ten observations on the effective service life in minutes of batteries used in a portable
personal computer are as follows: 176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We
hypothesize that battery life is adequately modeled by a normal distribution. To use probabil-
ity plotting to investigate this hypothesis. first arrange the observations in ascending order and
calculate their cumulative frequencies (j — 0.5)/10 as shown in Table 6-6.

Table 6-6 Calculation for Constructing a Normal

Probability Plot
J X)) (j — 0.5)/10 z
1 176 0.05 —1.64
2 183 0.15 —1.04
3 185 0.25 —0.67
4 190 0.35 —0.39
5 191 0.45 —0.13
6 192 0.55 0.13
7 201 0.65 0.39
8 205 0.75 0.67
9 214 0.85 1.04
10 220 0.95 1.64

6-6 Probability Plots

] 99.9 0.1
Figure 6-19 Normal
.. 99
probability plot for !
battery life. 95 .
& a
2 & 20 @
o o |
| 50 o 50 =
A -
g -
S 20 80 Z
o
5" 95
1 99
0.1 99.9
170 180 120 200 210 220
.



6-6 Probability Plots

3.30

Figure 6-20 Normal
probability plot
obtained from
standardized normal
scores.

6-5 Time Sequence Plots

* A time series or time sequence is a data set in
which the observations are recorded in the order in
which they occur.
* A time series plot is a graph in which the vertical
axis denotes the observed value of the variable (say x)
and the horizontal axis denotes the time (which could
be minutes, days, years, etc.).
* When measurements are plotted as a time series, we
often see

*trends,

«cycles, or

sother broad features of the data

.
-3.30
170 180 120 200 210 220

Sales, x

6-6 Probability Plots

3.30 3.30 3.30

.
1.65 . .
.
.
i 0 o5 ° %
.
.
o
.

-1.65

-3.30 -3.30

170 180 120 200 210 220 170 180 120 200 210 220
sl i) X(j)
(@) (&)

Figure 6-21 Normal probability plots indicating a nonnormal
distribution. (a) Light-tailed distribution. (b) Heavy-tailed
distribution. (c ) A distribution with positive (or right) skew.

6-5 Time Sequence Plots

Sales, x

~\/\/\/

19821983 1984 1985 1986 19871588 1989 1990 1991 Years 1 2 3 4 1 2 3 4 1 2 3 4Quarers

1989 1990 1991
(a) (b)

Figure 6-16 Company sales by year (a) and by quarter (b).



6-5 Time Sequence Plots

Leaf Stem Time series plot

8 9a .

6 s . /\
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Figure 6-18 A digidot plot of chemical process concentration
readings, observed hourly.

Al
«

Sampling Distributions

and Point Estimation

of Parameters

Cramer-Rao Inequality
Fisher Information

CHAPTER OUTLINE
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AND THE CENTRAL LIMIT 7-3.4 Mean Squared Error of an Estimator

THEOREM

7-4 METHODS OF POINT ESTIMATION
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ESTIMATION 7-4.1 Method of Moments

7-3.1 Unbiased Estimators 7-4.2 Method of Maximum Likelihood

7-3.2 Variance of a Point Estimator 7-4.3 Bayesian Estimation of Parameters

Some Useful Comments
* [ocations: mean and median
* Spreads: standard deviation (s.d.) and IQR

— Mean and s.d. are sensitive to extreme values (outliers)

— Median and IQR are resistant to extreme values and
are better for skewed distributions

— Use mean and s.d. for symmetrical distributions without
outliers

 Software has defaults, which may not be the best
choice
— How many stems or bins?
— The reference line in a normal probability plot.

7-1 Introduction

* The field of statistical inference consists of those
methods used to make decisions or to draw
conclusions about a population.

* These methods utilize the information contained
in a sample from the population in drawing
conclusions.

* Statistical inference may be divided into two major
areas:

e Parameter estimation

* Hypothesis testing



7-1 Introduction

Suppose that we want to obtain a point estimate of a population parameter. We know that
before the data is collected, the observations are considered to be random variables, sav
Xi. Xo, ... X, Therefore, any function of the observation, or any statistic, is also a random
variable. For example, the sample mean X and the sample variance $? are statistics and they
are also random variables.

Since a statistic is a random variable, it has a probability distribution. We call the proba-
bility distribution of a statistic a sampling distribution. The notion of a sampling distribution
is verv important and will be discussed and illustrated later in the chapter.

Definition

A point estimate of some population parameter § is a single numerical value fofa
statistic ®. The statistic ® is called the point estimator.

7-1 Introduction

Reasonable point estimates of these parameters are as follows:

e For ., the estimate is L = X, the sample mean.
b i ) b .

e For o7, the estimate is 6~ = s, the sample variance.

e For p, the estimate is p = x/n, the sample proportion, where x is the number of items
in a random sample of size n that belong to the class of interest.

e For p, — . the estimate is L; — L, = X} — X, the difference between the sample
means of two independent random samples.

e For p| — p,. the estimate is p; — p,, the difference between two sample proportions
computed from two independent random samples.

7-1 Introduction

Estimation problems occur frequently in engineering. We often need to estimate

e The mean p of a single population

e The variance o” (or standard deviation o) of a single population

e The proportion p of items in a population that belong to a class of interest
e The difference in means of two populations, p; — .

e The difference in two population proportions, p; — p>

7.2 Sampling Distributions and the
Central Limit Theorem

Statistical inference is concerned with making decisions about a
population based on the information contained in a random

sample from that population.

Definitions:

The random variables X}, X,, . . ., X, are a random sample of size n if (a) the X5 are in-
dependent random variables, and (b) every /X, has the same probability distribution.

A statistic is any function of the observations in a random sample.

The probability distribution of a statistic is called a sampling distribution.




7.2 Sampling Distributions

Population

Sample (xy, x5, X3,..., X))
. x, sample average
Flgure 6-3 \\p s, sample standard

Relationship between a devistion
population and a o Histogram
sample.
L
T ) x
8§

7.2 Sampling Distributions and the
Central Limit Theorem

If we are sampling from a population that has an unknown probability distribution, the
sampling distribution of the sample mean will still be approximately normal with mean . and
variance a>/n, if the sample size n is large. This is one of the most useful theorems in statis-
tics, called the central limit theorem. The statement is as follows:

7.2 Sampling Distributions

Suppose X, ..., X,, are a random sample from a population
with mean p and variance o2.

(a) What are the mean and variance of the sample mean?

(b) What is the sampling distribution of the sample mean if
the population is normal.

7.2 Sampling Distributions and the
Central Limit Theorem

If X}, X5, ..., X, is a random sample of size n taken from a population (either finite
s : . : z g

or infinite) with mean p and finite variance o, and if X is the sample mean, the

limiting form of the distribution of

X—p
ao/\n

(7-1)

as n — @, is the standard normal distribution.

If the population is normal, the sampling distribution of Z is exactly standard normal.

|

Figure 7-1 Distributions 1 2 3 4 s &%
of average scores from (o ona e
throwing dice. [Adapted with L | | |
permission from Box, Hunter, 1 2 3 4 s 6 x
and Hunter (1978).]
il [y
1 2 3 4 5 6 x
(c) Threa dice
.|l”|H H'Ill..
2 3 4 5 =
. . (d) Five dice
CLT Simulation
4..nI||”” HH““lln
2 3 4 5 =

(e) Ten dice



7.2 Sampling Distributions and the
Central Limit Theorem
Example 7-1

An electronics company manufactures resistors that have a mean resistance of 100 ohms and a standard
deviation of 10 ohms. The distribution of resistance is normal. Find the probability that a random sam-
ple of n = 25 resistors will have an average resistance less than 95 ohms.

Note that the sampling distribution of X is normal, with mean pg = 100 ohms and a standard

deviation of

Therefore, the desired probability corresponds to the shaded area in Fig. 7-1. Standardizing the point
X = 95 ing. 7-Dwe find that

95 — 100
A U
z P 2.5

and therefore,

P(X < 95) = P(Z < =2.5)
= 0.0062

7.2 Sampling Distributions and the
Central Limit Theorem

Approximate Sampling Distribution of a
Difference in Sample Means

7.2 Sampling Distributions and the
Central Limit Theorem

95 100 X
Figure 7-2 Probability for Example 7-1

7-3 General Concepts of Point Estimation

7-3.1 Unbiased Estimators

Definition

If we have two independent populations with means | and p, and variances o3 and
o3 and if X) and X, are the sample means of two independent random samples of
sizes ny and », from these populations, then the sampling distribution of

N-%-(u-
Zz=2 =4 (1 — 1) (1-4)

\Vai/n + o¥/n

is approximately standard normal, if the conditions of the central limit theorem
apply. If the two populations are normal, the sampling distribution of Z is exactly

standard normal.

The point estimator € is an unbiased estimator for the parameter f if

E(@) =0 (7-5)
If the estimator is not unbiased, then the difference

E(®) — 8 (7-6)

is called the bias of the estimator @.




7-3 General Concepts of Point Estimation 7-3 General Concepts of Point Estimation

Example 7-4 Example 7-4 (continued)

g ;e . . . 2 - - -
Suppose that X is a random variable with mean w and variance o~. Let X, X5, ..., X, be a

random sample of size n from the population represented by X. Show that the sample mean X The last equality follows from Equation 5-37 in Chapter 5. However, since £(X7) = > + o?

and sample variance S? are unbiased estimators of . and o, respectively. _ and E(X?) = n? + o/n. we have
First consider the sample mean. In Equation 5.40a in Chapter 5, we showed that £(X) = p.
Therefore, the sample mean X is an unbiased estimator of the population mean . » 1 n | 5 X T
Now consider the sample variance. We have E(S9) = m 2| (W™ + o) — n(p” + o/n)
= 4
e - . 2 4 ot — ppl — o)
Z (Y, - T)? | ) = (n no np o
E(sh) = E| = = EY (X, - X) = o2
n—1 n—1 =

~ . 2 . . . ~ . . b

| Therefore, the sample variance S< is an unbiased estimator of the population variance o~
n—1
1 L =

n—114 ]

B =y o I 2 =
= E_zl_(.x';+_\'-—z.\'.\',.)= E( ,\’,.-—u,\'-')

n—1

7-3.2 Variance of a Point Estimator 7-3.3 Standard Error: Reporting a Point Estimate

: . . : : . The standard error of an estimator © is its standard deviation, given b
If we consider all unbiased estimators of 6, the one with the smallest variance 1s — Y ) ' 8 y
o = V V(®). If the standard error involves unknown parameters that can be esti-

called the minimum variance unbiased estimator (MVUE).
mated, substitution of those values into o g produces an estimated standard error,

denoted by &é.

Figure 7-5 The sampling
distributions of two
unbiased estimators

Suppose we are sampling from a normal distribution with mean p and variance o*. Now

A
Distribution of ©, Ce ST . . 2 ~T
the distribution of X" is normal with mean p and variance o/, so the standard error of X is

A o
A A Distribution of © oy = —=
0, and 0,. : X Vi
8 [f we did not know o but substituted the sample standard deviation S into the above equation,
the estimated standard error of X" would be
If X, X,, ..., X, isa random sample of size »n from a normal distribution with mean
. ) — y
w and variance o, the sample mean X is the MVUE for . 5= = L_
’ Vn




7-3.3 Standard Error: Reporting a Point Estimate

Example 7-5

An article in the Journal of Heat Transfer (Trans. ASME, Sec. C, 96, 1974, p. 59) described
a new method of measuring the thermal conductivity of Armco iron. Using a temperature of
100°F and a power input of 550 watts, the following 10 measurements of thermal conductiv-
ity (in Btu/hr-ft-°F) were obtained:

41.60.41.48,42.34,41.95, 41.86.
42.18,41.72,42.26,41.81, 42.04

A point estimate of the mean thermal conductivity at 100°F and 550 watts is the sample mean or

X = 41.924 Btu/hr-ft-°F

7-3.4 Mean Square Error of an Estimator

7-3.3 Standard Error: Reporting a Point Estimate

Example 7-5 (continued)

The standard error of the sample mean is ¥ = o/ Vn, and since o is unknown, we may replace
it by the sample standard deviation s = 0.284 to obtain the estimated standard error of X as
s 0.284

G = —= = —= = 0.0898
‘ Vn Vi

(e

Notice that the standard error is about 0.2 percent of the sample mean, implying that we have ob-
tained a relatively precise point estimate of thermal conductivity. [f we can assume that thermal
conductivity is normally distributed, 2 times the standard error is 267 = 2(0.0898) = 0.1796,
and we are highly confident that the true mean thermal conductivity is with the interval
41.924 = 0.1756, or between 41.744 and 42.104.

7-3.4 Mean Square Error of an Estimator

The mean squared error of an estimator ® of the parameter 8 is defined as

MSE(®) = E(® — §)* (7-7)

The mean squared error is an important criterion for comparing two estimators. Let ®,
and 8, be two estimators of the parameter 8, and let MSE (®) and MSE (®,) be the mean
squared errors of @ and ;. Then the relative efficiency of ®, to ® is defined as

MSE(®)) (1.8)
MSE(®,)

If this relative efficiency is less than 1, we would conclude that @ is a more efficient estima-
tor of @ than ®,, in the sense that it has a smaller mean square error.

Distribution of 61

Distribution of @)2

¢ Eo))

Figure 7-6 A biased estimator @, that has smaller variance
than the unbiased estimator ©,.



7-4 Methods of Point Estimation

7-4 Methods of Point Estimation

» Problem: To find p=P(heads) for a biased coin.
* Procedure: Flip the coin n times.
+ Data (a random sample) : X,, X,, ..., X

— where X;=1 or 0 if the ith outcome is heads or tails.

n

* Question: How to estimate p using the data?

7-4 Methods of Point Estimation

Definition

Let X1, X5, ..., X, be a random sample from the probability distribution f(x), where

f(x) can be a discrete probability mass function or a continuous probability density
function. The kth population moment (or distribution moment) is E(X*), k =
1,2,....The corresponding kth sample moment is (1/n) S Xik=1,2,....

Definition

Let X, X, .... X, be a random sample from either a probability mass function
or probability density function with m unknown parameters 6,,0,,...,8,. The
moment estimators @), ®,, ..., ®, are found by equating the first m population
moments to the first m sample moments and solving the resulting equations for the
unknown parameters.

7-4 Methods of Point Estimation

Example 7-7: Consider normal distribution N(u,c?).

Find the moment estimators of p and 2.

7-4.2 Method of Maximum Likelihood

Definition

Suppose that X is a random variable with probability distribution f(x; 8), where 0 is
a single unknown parameter. Let x, x, ..., X, be the observed values in a random
sample of size n. Then the likelihood function of the sample is

L(0) = f(x130) * f(x2: 0) = = - f (32 0) (7-9)

Note that the likelihood function is now a function of only the unknown parameter .
The maximum likelihood estimator (MLE) of 0 is the value of § that maximizes
the likelihood function L(6).




7-4 Methods of Point Estimation 7-4 Methods of Point Estimation

Example 7-9 Example 7-9 (continued)

We observe that if p maximizes L(p), p also maximizes In L( p). Therefore,
Let X' be a Bernoulli random variable. The probability mass function is

] ] InL{p) = < 2 .\',-)]n p+ (u - 2 .\',-) In(l — p)
, p=p) x=0.1 = =
flap) =

0, otherwise

Now
where p is the parameter to be estimated. The likelihood function of a random sample of size i n
1S - X; n—
s dlIn L(p) ~
dp P l—p

=1

L(p)=p*(1 = p)' ™ p2(1 = p

= H Pl = p)i = /J‘.V‘
i=1

n . . . ~ . ~ ; n ~ .
P Equating this to zero and solving for p vields p = (1/n) 2=, x;. Therefore, the maximum
=1 . . . ~ .
likelihood estimator of p is

YR (] = p)
.}'.,

|
<

1

n i

p=

7-4 Methods of Point Estimation 7-4 Methods of Point Estimation

Examples 7-6 and 7-11

-32.59
0.0
The time to failure of an electronic module used in an automobile engine e 3
. . .61
controller is tested at an elevated temperature to accelerate the failure s
mechanism. The time to failure is exponentially distributed. Eight E -32.63 » o
units are randomly selected and tested, resulting in the following failure % e s
time (in hours): 11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38. o g -03
Here X is exponentially distributed with parameter A. e o
(a)What is the moment estimate of A.? 2% s sz 044 046 048 0s0 082 0.038 0.040 0.042 0044 0,046 0.048 0.050 0.052 0.054
(b) What is the MLE estimate of A? ®

Figure 7-7 Log likelihood for the exponential distribution, using the
failure time data. (a) Log likelihood with n = 8 (original data). (b)
Difference in Log likelihood if n = 8, 20, and 40.



7-4 Methods of Point Estimation

Example 7-12

Let X be normally distributed with mean p and variance -,
unknown. The likelithood function for a random sample of size n is

n
H i) = L 0208 -
I AY 271' (2mo? )

and

In L(p, %) = —% In(2ma?) — %_ E (v — )

7-4 Methods of Point Estimation

Cramer-Rao Inequality (extra!)

Let Xl’X2" --,Xn be a random sample with pdf f (x,0).

If © is an unbiased estimator of 6, then

Var(@) = A10)

where
9 2 072
1(0) = E[%lnf(X,B)} =-F aojlnf(X,H)

is the Fisher information.

2 2
=, where both p and o°

are

7-4 Methods of Point Estimation

Example 7-12 (continued)
Now

|
=— (x;y —w)=0
o2

i=1

a1n L(p. o?)
d

dIn L, 0') 1
_—= — = 0
(0D 202 2 Z‘ % = W)’

The solutions to the above equation yield the maximum likelihood estimators

— = l n
h=2X -:I_z

Once again, the maximum likelihood estimators are equal to the moment estimators.

7-4 Methods of Point Estimation

Properties of the Maximum Likelihood Estimator

Under very general and not restrictive conditions, when the sample size » is large and
if ® is the maximum likelithood estimator of the parameter 6,

(1) ®isan approximately unbiased estimator for 6 [E((E‘)) = 0],

(2) the variance of @ is nearly as small as the variance that could be obtained
with any other estimator, and

(3) © hasan approximate normal distribution.




7-4 Methods of Point Estimation

The Invariance Property

7-4 Methods of Point Estimation

Let ®), O, ..., ®; be the maximum likelihood estimators of the parameters 6,
6, ..., 6. Then the maximum likelihood estimator of any function h(8), 6,, ... , 8
of these parameters is the same function A(®), ®,, ..., ®;) of the estimators

6, 6,,....0,

. . . . . . . ~ 2 ~ v

[n the normal distribution case, the maximum likelihood estimators of . and o~ were L = X
A2 n , Ay ) . . . . - . .

and 6° = X, (X; = X)/n. To obtain the maximum likelihood estimator of the function

~i=1

h(j. 0‘3) = V¢’ = o, substitute the estimators i and 67 into the function A, which yields

Thus, the maximum likelihood estimator of the standard deviation o is not the sample

standard deviation S.

n

1172

S (- Ty

i=

Statistical Intervals

for a Single Sample

CHAPTER OUTLINE

8-1 INTRODUCTION
8-2 CONFIDENCE INTERVAL ON THE
MEAN OF A NORMAL DISTRIBU-
TION, VARIANCE KNOWN
8-2.1 Development of the Confidence
Interval and its Basic
Properties
8.2.2 Choice of Sample Size
8-2.3 One-Sided Confidence
Bounds
8-2.4 General Method to Derive a
Confidence Interval
8-2.5 Large-Sample Confidence
Interval for p.
8-3 CONFIDENCE INTERVAL ON THE
MEAN OF A NORMAL DISTRIBU-
TION, VARIANCE UNKNOWN
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8-3.1 t Distribution

8-3.2 t Confidence Interval on p
CONFIDENCE INTERVAL ON THE
VARIANCE AND STANDARD
DEVIATION OF A NORMAL
DISTRIBUTION

LARGE-SAMPLE CONFIDENCE
INTERVAL FOR A POPULATION
PROPORTION

GUIDELINES FOR CONSTRUCT-
ING CONFIDENCE INTERVALS

TOLERANCE AND PREDICTION

INTERVALS

8-7.1 Prediction Interval for a Future
Observation

8-7.2 Tolerance Interval for a Normal
Distribution

Complications in Using Maximum Likelihood Estimation

« It is not always easy to maximize the likelihood
function because the equation(s) obtained from dL(0)/
dB = 0 may be difficult to solve.

+ It may not always be possible to use calculus
methods directly to determine the maximum of L(0).

* See Example 7-14.

8-1 Introduction

* In the previous chapter we illustrated how a parameter
can be estimated from sample data. However, it is
important to understand how good is the estimate obtained.

* Bounds that represent an interval of plausible values for
a parameter are an example of an interval estimate.

* Three types of intervals will be presented:
¢ Confidence intervals
« Prediction intervals

 Tolerance intervals



8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval
and its Basic Properties

Suppose that X}, X;, ..., X, is a random sample from a normal distribution with unknown
mean w and known variance o®. From the results of Chapter 5 we know that the sample
mean X is normally distributed with mean w and variance o?/n. We may standardize X
by subtracting the mean and dividing by the standard deviation, which results in the
variable

Z =" = (8-3)

Now Z has a standard normal distribution.

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval and its
Basic Properties

* The endpoints or bounds / and u are called lower- and upper-
confidence limits, respectively.

* Since Z follows a standard normal distribution, we can write:

Y-
P{_:(\/: = & S:“/:} =] -«

o/Vn

Now manipulate the quantities inside the brackets by (1) multiplying through by o/Vn, (2)
subtracting X from each term, and (3) multiplving through by — 1. This results in

— o = o )
P{\ —_'“/:WS p=X+ :“/:ﬁ} =]—-a«a (R-6)

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval
and its Basic Properties

A confidence interval estimate for w is an interval of the form / = p = u, where the end-
points / and & are computed from the sample data. Because different samples will produce
different values of / and u, these end-points are values of random variables L and U, respec-
tively. Suppose that we can determine values of L and U such that the following probability
statement is true:

PlL=p=U}=1—-a (8-4)
where 0 = a = 1. There is a probability of 1 — a of selecting a sample for which the CI will
contain the true value of . Once we have selected the sample, so that X} = x|, X5 = x5, ...,

X, = x,,, and computed / and u, the resulting confidence interval for p is

l=pn=u (8-5).

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval and its
Basic Properties

Definition

If X is the sample mean of a random sample of size n from a normal population with
. » - ..
known variance o=, a 100(1 — a)% CI on . is given by

.\_'—:a‘,ga/\;SpS.\_‘+:ﬁﬂc'/\; (8-7)

where z,; is the upper 100a/2 percentage point of the standard normal distribution.




8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

Example 8-1

ASTM Standard E23 defines standard test methods for notched bar impact testing of metallic
materials. The Charpy V-notch (CVN) technique measures impact energy and is often used to
determine whether or not a material experiences a ductile-to-brittle transition with decreasing
temperature. Ten measurements of impact energy (/) on specimens of A238 steel cut at 60°C
are as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that
impact energy is normally distributed with o = 1J. We want to find a 95% CI for ., the mean
impact energy. The required quantities are z,; = Zggs = 1.96, n = 10, ¢ = 1, and
X = 64.46. The resulting 95% CI is found from Equation 8-7 as follows:

1 |
6446 — 196—==p = 6446 + 1.96 —=
V10 V10

|
63.84 = L= 65.08

That is, based on the sample data, a range of highly plausible vaules for mean impact energy
for A238 steel at 60°C is 63.84/ = p = 65.08/.

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

Ty

1 2 3 4 5 6 7 8 21011121314 1516
Intarval number

Figure 8-1 Repeated construction of a confidence interval for u.

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

Interpreting a Confidence Interval
* The confidence interval is a random interval

» The appropriate interpretation of a confidence interval
(for example on ) is: The observed interval [/, u]
brackets the true value of u, with confidence 100(1-a).

» Examine Figure 8-1 on the next slide.

¢ Simulation on CI

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

Confidence Level and Precision of Error

The length of a confidence interval is a measure of the
precision of estimation.

E =eror= |3 - ul

fe—>1

=1

[=X-zyp0/fn

Figure 8-2 Error in estimating u with x .

u u=X+2z,0/fn



8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.2 Choice of Sample Size

If X is used as an estimate of p, we can be 100(1 — a)% confident that the error

|¥ — p| will not exceed a specified amount E when the sample size is

Zaf20 2
n=< E ) (8-8)

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.3 One-Sided Confidence Bounds

Definition

A 100(1 — a)% upper-confidence bound for . is
R=u=X+z,0/\Vn (8-9)
and a 100(1 — )% lower-confidence bound for p is

X—zu0/\Vn=1=p (8-10)

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

Example 8-2

To illustrate the use of this procedure, consider the CVN test described in Example 8-1, and
suppose that we wanted to determine how many specimens must be tested to ensure that the
95% Clon p for A238 steel cut at 60°C has a length of at most 1.0J/. Since the bound on error
in estimation £ is one-half of the length of the CI, to determine n we use Equation 8-8 with
E=05,0=1,andz,, = 0.025. The required sample size is 16

Zono\r [(1.96)1 72
n=< 2 ) - [k L
E 05 |

and because n must be an integer, the required sample size is n = 16.

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.4 General Method to Derive a Confidence Interval

[t is easy to give a general method for finding a confidence interval for an unknown parame-
ter 0. Let X}, X, ..., X, be a random sample of n observations. Suppose we can find a statistic

2(X1, Xy ..., Xy: 0) with the following properties:

l. g(X, Xy, ..., X, 0) depends on both the sample and 0.

2. The probability distribution of g(X}, X5...., X, 0) does not depend on  or any other
unknown parameter.



8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.4 General Method to Derive a Confidence Interval

In the case considered in this section, the parameter § = . The random variable g(X,, X,. ..
X, ) = (X — w)/(o/Vn) and satisfies both conditions above: it depends on the sample and
on ., and it has a standard normal distribution since o is known. Now one must find constants
Cp and Cy; so that

Because of property 2. C; and Cy; do not depend on 0. In our example, C; = —z,, and
Cyy = zyp- Finally, vou must manipulate the inequalities in the probability statement so that
PILIX). X5 o X)) =0 =UXL X, X)) =1 —a (8-12)

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.5 A Large-Sample Confidence Interval for p

Definition

When » is large, the quantity

X—pn
S/\n

has an approximate standard normal distribution. Consequently,

(8-13)

is a large sample confidence interval for ., with confidence level of approximately
100(1 — «)%.

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.4 General Method to Derive a Confidence Interval

This gives L(X, X5, ..., X,) and UX|, X, ... .. X,) as the lower and upper confidence limits
defining the 100(1 — a)% confidence interval for 0. The quantity g(X,, X, ..., X,; 0) is

often called a “pivotal quantity” because we pivot on this quantity in Equation 8-11 to pro-
duce Equation 8-12. In our example, we manipulated the pivotal quantity (X — w)/(o/Vn)
to obtain L(X}, Xy, ..., X,) = X — zypo/Vnand U(X|. Xy, ... . X)) = X + z,p0/ Vi,

8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

Example 8-4

An article in the 1993 volume of the Transactions of the American Fisheries Society reports
the results of a study to investigate the mercury contamination in largemouth bass. A sample
of fish was selected from 53 Florida lakes and mercury concentration in the muscle tissue was
measured (ppm). The mercury concentration values are

30 0.490 0.490 1.080 0.590 0.280 0.180 0.100 0.940
330 0.190 1.160 0.980 0.340 0.340 0.190 0.210 0.400
0.040 0.830 0.050 0.630 0.340 0.750 0.040 0.860 0.430
0.044 0.810 0.150 0.560 0.840 0.870 0.490 0.520 0.250
1.200 0.710 0.190 0.410 0.500 0.560 1.100 0.650 0.270
0.270 0.500 0.770 0.730 0.340 0.170 0.160 0.270

I
I

o b2
)



8-2 Confidence Interval on the Mean of a 8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known Normal Distribution, Variance Known

Example 8-4 (continued) Example 8-4 (continued)

Figure 8-3(a) and (b) presents the histogram and normal probability plot of the mercury

%9
. concentration data. Both plots indicate that the distribution of mercury concentration is not nor-
o % mal and is positively skewed. We want to find an approximate 95% CI on .. Because n > 40,
8 80 the assumption of normality is not necessary to use Equation 8-13. The required quantities are
7 ill’ ég n =253, % = 0.5250, s = 0.3486. and z o5 = 1.96.The approximate 95% Cl on w is
! ¥ 50 I n
by 2 a0
§s 2 30
g4 20 _ 8 _ 5
“ 3 10 Y= s TS REX T 00 T
. Vn Vn
2 5
1 o ().34.% o 0.3486
0 ! 0.5250 = 1.96 ——=—= . = 0.5250 + 1.96 ——=
0.0 0.5 1.0 1.5 0.0 05 1o ) V33
Concentration Concentration “'431 | = n = (.6189
(a) &)
Figure 8-3 Mercury concentration in Iargemouth bass This interval is fairly wide because there is a lot of variability in the mercury concentration
(a) Histogram. (b) Normal probability plot measurements.
8-2 Confidence Interval on the Mean of a 8-3 Confidence Interval on the Mean of a
Normal Distribution, Variance Known Normal Distribution, Variance Unknown
A General Large Sample Confidence Interval 8-3.1 The ¢ distribution
. . o Let X, X5, ..., X, be a random sample from a normal distribution with unknown
b— Zg2 0y = BE={DEE Za20g (8-14) mean . and unknown variance o, The random variable

_Y-u

S/vVn ( !

has a ¢ distribution with » — | degrees of freedom.




8-3 Confidence Interval on the Mean of a
Normal Distribution, Variance Unknown

8-3.1 The ¢ distribution

k=10

=[N0, 1)]

o x

Figure 8-4 Probability density functions of several t
distributions.

8-3 Confidence Interval on the Mean of a
Normal Distribution, Variance Unknown

8-3.2 The ¢ Confidence Interval on p

If ¥ and s are the mean and standard deviation of a random sample from a normal
distribution with unknown variance o<, a 100(1 — «) percent confidence interval
on . is given by

X — ta/ln—ls/\.’_ls [T =X+ ta/’_’,.v—ls/\ ; (8-18)

where 74/, is the upper 100a/2 percentage point of the ¢ distribution with n — 1
degrees of freedom.

on the mean are found by replacing

z

wan 10 Equation 8-18 with 7, ;.

8-3 Confidence Interval on the Mean of a
Normal Distribution, Variance Unknown

8-3.1 The ¢ distribution

1 —a k2 =—ta,2 O ta, k ¢

Figure 8-5 Percentage points of the t distribution.

8-3 Confidence Interval on the Mean of a
Normal Distribution, Variance Unknown

Example 8-5

An article in the journal Materials Engineering (1989, Vol. II, No. 4, pp. 275-281) describes the results
of tensile adhesion tests on 22 U-700 alloy specimens. The load at specimen failure is as follows (in
megapascals):

19.8 10.1 14.9 7.5 154 154
15.4 185 7.9 12.7 11.9 11.4
11.4 14.1 17.6 16.7 158
19.5 8.8 13.6 11.9 114

The sample mean is ¥ = 13.71, and the sample standard deviation is s = 3.55nhow
a box plot and a normal probability plot of the tensile adhesion test data, respectively. These displays
provide good support for the assumption that the population is normally distributed. We want to find
a 95% Cl on . Since n = 22, we have n — | = 21 degrees of freedom for ¢, 50 #5455, = 2.080. The
resulting CI is
T tapa15/ VN E WET + tap,—1s/Vn
13.71 — 2.080(3.55)/v22 = = 13.71 + 2.080(3.55)/\v22
1371 = 157 = = 1371 + 1.57
1214 = n= 1528

The C1 is fairly wide because there is a lot of variability in the tensile adhesion test measurements.



8-3 Confidence Interval on the Mean of a
Normal Distribution, Variance Unknown

20.5 o Normal probability plot
95
0 18.0 ‘ b

=

T 165 £ $Z§
o &
L 5 20
g 13.0 e gg
3 20
10.5 ‘ 10
5
8.0 .

5 10 15 20 25
Load at failure

Figure 8-6/8-7 Box and Whisker plot and Normal probability
plot for the load at failure data in Example 8-5.

8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

Definition

Let X, X, ..., X, be a random sample from a normal distribution with mean p. and
: 5 > . .
variance o, and let S be the sample variance. Then the random variable

., (n—1)82
X = ( 02) (8-19)

has a chi-square (x?) distribution with » — 1 degrees of freedom.

8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

filx)

Figure 8-8 Probability
density functions of
several %2 distributions.

Definition

If 5~ is the sample variance from a random sample of » observations from a normal dis-
- . - - 2 - o 2.
tribution with unknown variance o~, then a 100(1 — )% confidence interval on o” is

(n — 1) ,  (n—=1)s

3 =0 = (8-21)
Xa/20-1 X1-a/2n-1

where Xi/z -1 and x';_a/ll,_, are the upper and lower 100a/2 percentage points of
the chi-square distribution with n — 1 degrees of freedom, respectively. A confidence
interval for o has lower and upper limits that are the square roots of the correspon-
ding limits in Equation 8-21.




8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

One-Sided Confidence Bounds

The 100(1 — «)% lower and upper confidence bounds on o” are

(n — 1)s?

(n— 1)s*
———=¢" ad o'=—F5——

2
Xo,a—1 Xl-aa-1

(8-22)

respectively.

8-5 A Large-Sample Confidence Interval
For a Population Proportion

Normal Approximation for Binomial Proportion

Example 8-6

An automatic filling machine is used to fill bottles with liquid detergent. A random sample of 20 bottles
results in a sample variance of fill volume of s* = 0.0153 (fluid ounces)?. If the variance of fill volume
is too large, an unacceptable proportion of bottles will be under- or overfilled. We will assume that the
fill volume is approximately normally distributed. A 95% upper-confidence interval is found from
Equation 8-22 as follows:

L (= 1)s?
o= 5
X0.95.19
or
L (19)0.0153 ) )
o° = ———— = 0.0287 (fluid ounce)*

10.117

This last expression may be converted into a confidence interval on the standard deviation o by taking
the square root of both sides, resulting in

o =017

Therefore, at the 95% level of confidence, the data indicate that the process standard deviation could be
as large as 0.17 fluid ounce.

8-5 A Large-Sample Confidence Interval
For a Population Proportion

If » is large, the distribution of

X —np P—p

e np(l — p) - p(1 — p)
\ n

is approximately standard normal.

The quantity v p(1-p)/n is called the standard error of the point
estimator P .

If p is the proportion of observations in a random sample of size » that belongs to a
class of interest, an approximate 100(1 — «)% confidence interval on the proportion
p of the population that belongs to this class is

. 'p(1 = p) . [p(1 = p)
;)—Zq/_)\“T‘SpSP‘l‘:wZ\‘T‘ (8-25)

where z, is the upper a/2 percentage point of the standard normal distribution.




8-5 A Large-Sample Confidence Interval
For a Population Proportion

Example 8-7

In a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish that
is rougher than the specifications allow. Therefore, a point estimate of the proportion of bear-
ings in the population that exceeds the roughness specification is p = x/n = 10/85 = 0.12.
A 95% two-sided confidence interval for p is computed from Equation 8-25 as

. [p(1 = p) R [p(1 = p)
P~ Zo0s\| T g =Ep =Pt Zo0s \ 7 n
or
R [0.12(0.88) N [0.12(0.88)
— 14 f— 0 C [—o——
0.12 1.)()\“ 85 =p=0.12+ l.)(\\: 35

which simplifies to

005=p=0.19

8-5 A Large-Sample Confidence Interval
For a Population Proportion

Example 8-8

Consider the situation in Example 8-7. How large a sample is required if we want to be 95% confident
that the error in using p to estimate p is less than 0.05? Using p = 0.12 as an initial estimate of p, we find
from Equation 8-26 that the required sample size is

Zp.o25 2 1.96 : RR
_(FosY .. (196 2(0.88) == 163
R ( : )p(l ) (n.os) 0.12(0.88) == 163

If we wanted to be at least 95% confident that our estimate p of the true proportion p was within 0.03
regardless of the value of p, we would use Equation 8-27 to find the sample size

Zo.025 2 1.96\? )
=295 95y = — 25) = 385
n ( > (0.25) (0,(,)5) (0.25) =3

Notice that if we have information concerning the value of p, either from a preliminary sample or from
past experience, we could use a smaller sample while maintaining both the desired precision of estima-
tion and the level of confidence.

8-5 A Large-Sample Confidence Interval
For a Population Proportion

Choice of Sample Size

The sample size for a specified value E is given by

n= (%/2)“)“ —-p) (8-26)

An upper bound on 7 is given by

o= (EP) (0.25) (8-27)

8-5 A Large-Sample Confidence Interval
For a Population Proportion

One-Sided Confidence Bounds

The approximate 100(1 — «)% lower and upper confidence bounds are
. p(1 = p) . [p(1 - p)
D— 2, \T =p and p=p+z, \ — (8-28)

respectively.




8-6 Guidelines for Constructing
Confidence Intervals

The most difficult step in constructing a confidence interval is often the match of the appro-
priate calculation to the objective of the study. Common cases are listed in Table 8-1 along
with the reference to the section that covers the appropriate calculation for a confidence inter-
val test. Table 8-1 provides a simple road map to help select the appropriate analysis. Two
primary comments can help identify the analysis:
1. Determine the parameter (and the distribution of the data) that will be bounded by the
confidence interval or tested by the hypothesis.

2. Check if other parameters are known or need to be estimated.

8-7 Tolerance and Prediction
Intervals

Example 8-9

Reconsider the tensile adhesion tests on specimens of U-700 alloy described in Example 8-5. The
load at failure for » = 22 specimens was observed, and we found that ¥ = 13.71 and s = 3.55. The
95% confidence interval on p was 12.14 = p = 15.28. We plan to test a twenty-third specimen.

A 95% prediction interval on the load at failure for this specimen is

- ] _ 1
T lapam1Sy I+ =X, =3+ faf2a-15 I+

] l - v - 177 l
1371 = (2080)3.55 |1 + 5= = Yoy < 1371 + (20803551 +

6.16 = X5, = 21.26

Notice that the prediction interval is considerably longer than the CI.

8-7 Tolerance and Prediction Intervals

8-7.1 Prediction Interval for Future Observation

A 100(1 = @)% prediction interval on a single future observation from a normal
distribution is given by

[ 1 ]
= taf2.n—15 \,‘ IEE n =X =X+, _‘,,_]S\‘“ Il =F n (8-29)

The prediction interval for X, ,, will always be longer than the
confidence interval for u.

8-7 Tolerance and Prediction
Intervals

8-7.2 Tolerance Interval for a Normal Distribution

Consider a population of semiconductor processors. Suppose that the speed of these
processors has a normal distribution with mean p = 600 megahertz and standard
deviation 0 = 30 megahertz. Then the interval from 600 - 1.96(30) = 541.2 to 600 +
1.96(30) = 658.8 megahertz captures the speed of 95% of the processors in this
population because the interval from -1.96 to 1.96 captures 95% of the area under the
standard normal curve. The interval from Y -z, ,0 to Y +z,,, 0 is called a tolerance

interval.

If p and O are unknown, we can use the data from a random sample of size » to
compute x and s, and then form the interval (x - 1.96s, x + 1.96s). However, because of
sampling variability in x and s, it is likely that this interval will contain less than 95% of
the values in the population. The solution to this problem is to replace 1.96 by some
value that will make the proportion of the distribution contained in the interval 95%
with some level of confidence. Fortunately, it is easy to do this.




8-7 Tolerance and Prediction

Intervals

8-7.2 Tolerance Interval for a Normal Distribution

Definition

A tolerance interval for capturing at least y% of the values in a normal distribution

with confidence level 100(1 — a)% is

X — ks, X+ ks

where £ 1s a tolerance interval factor found in Appendix Table XII. Values are given
for y = 90%, 95%, and 99% and for 90%, 95%, and 99% confidence.

Tests of Hypotheses

for a Single Sample

9-3 4 1 ikelihood ratio test
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8-7 Tolerance and Prediction
Intervals

EXAMPLE 8-10 Alloy Adhesion

Let's reconsider the tensile adhesion tests originally described in Example 8-5.
The load at failure for » = 22 specimens was observed, and we found that x =
13.71 and s = 3.55. We want to find a tolerance interval for the load at failure
that includes 90% of the values in the population with 95% confidence. From
Appendix Table XII the tolerance factor & for n = 22, y = 0.90, and 95%
confidence is k£ = 2.264. The desired tolerance interval is

(X —ks, X +ks) or [13.71—(2.264)3.55.13.71 + (2.264)3.55]
which reduces to (5.67, 21.74). We can be 95% confident that at least 90% of
the values of load at failure for this particular alloy lic between 5.67 and 21.74
megapascals.

Simulation on Tolerance Intervals

9-1 Hypothesis Testing
9-1.1 Statistical Hypotheses

Statistical hypothesis testing and confidence interval
estimation of parameters are the fundamental methods
used at the data analysis stage of a comparative
experiment, in which the engineer is interested, for
example, in comparing the mean of a population to a
specified value.

Definition

A statistical hypothesis is a statement about the parameters of one or more populations.




9-1 Hypothesis Testing
9-1.1 Statistical Hypotheses

For example, suppose that we are interested in the
burning rate of a solid propellant used to power aircrew
escape systems.

» Now burning rate is a random variable that can be
described by a probability distribution.

 Suppose that our interest focuses on the mean burning
rate (a parameter of this distribution).

* Specifically, we are interested in deciding whether or
not the mean burning rate is 50 centimeters per second.

9-1 Hypothesis Testing

9-1.1 Statistical Hypotheses

Test of a Hypothesis
* A procedure leading to a decision about a particular
hypothesis

* Hypothesis-testing procedures rely on using the information
in a random sample from the population of interest.

« If this information is consistent with the hypothesis, then we
will conclude that the hypothesis is true; if this information is
inconsistent with the hypothesis, we will conclude that the
hypothesis is false.

9-1 Hypothesis Testing

9-1.1 Statistical Hypotheses
Two-sided Alternative Hypothesis

Hy: o = 50 centimeters per second  null hypothesis

Hy: o # 50 centimeters per second  alternative hypothesis

One-sided Alternative Hypotheses

Hy: o = 50 centimeters per second Hgy: o = 50 centimeters per second

or

Hy: << 50 centimeters per second Hy: i > 50 centimeters per second

9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

Hy: o = 50 centimeters per second

H,: w # 50 centimeters per second
Reject Hy Fail to Reject Hg Reject Hy
u# 50 cm/s u=50cm/s n= 50 cm/s
48.5 50 51.5

Figure 9-1 Decision criteria for testing Hy:u = 50 centimeters per
second versus H;:u = 50 centimeters per second.

=1



9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

Table 9-1 Decisions in Hypothesis Testing

Decision H, 1s True H, Is False
Fail to reject H, no error type I error
Reject H, type I error no error

Rejecting the null hypothesis H, when it is true is defined as a type I error.
Failing to reject the null hypothesis when it is false is defined as a type 11 error.
a = P(type | error) = P(reject Hy when Hy is true)

Sometimes the type I error probability is called the significance
level, or the a-error, or the size of the test.

9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

a = P(Y < 48.5 when . = 50) + P(X > 51.5 when p = 50)
The z-values that correspond to the critical values 48.5 and 51.5 are

48.5 — 50 51.5 — 50
=——— =190 and z=——""=190
0.79 2

Therefore

a = P(Z< —190) + P(Z> 1.90) = 0.028717 + 0.028717 = 0.057434

9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

* In the propellant burning rate example, a type I error will occur when

x<d850rx>515

when the true mean burning rate is p = 50 centimeters per second.
*n=10.

* Suppose that the standard deviation of burning rate is ¢ = 2.5 centimeters per
second and that the burning rate has a normal distribution, so the distribution
of the sample mean is normal with mean p = 50 and standard deviation

o 25

b A0

* The probability of making a type I error (or the significance level of our test)
is equal to the sum of the areas that have been shaded in the tails of the normal
distribution in Fig. 9-2.

=0.79

9-1 Hypothesis Testing

al/2 =0.0287 \ / /2 =0.0287
485 u=50 515 X

Figure 9-2  The critical region for H;: p. = 50
versus H,: . # 50 and n = 10.

a = P(type I error) = P(reject H; when Hj is true) (9-3)




9-1 Hypothesis Testing

B = P(type Il error) = P(fail to reject A, when Hj is false) (9-4)

Probability density

0.6
Under Hy:t =50  Under Hy:u = 52
0.5 - \ .
I\ Figure 9-3 The
0.4 \ -
l/ \ probability of type Il
03 h \‘ error when u =52 and
/ \ n=10.
0.2 \
\
0.1 \
\
0 u._.
46 48 50 52 54 56

Probability density

o
)

Under Hp:ut =50
\\Under Hyp:u =505

o
)

o
'S

o
w

o
S

0.1

Figure 9-4 The
probability of type Il
error when u =50.5
and n = 10.

=|

9-1 Hypothesis Testing

B = P(485 = X = 51.5 when p = 52)

The z-values corresponding to 48.5 and 51.5 when p = 52 are

485 — 52 o 51.5 =52 R
Y R —4.43 and Y T —0.63

Therefore

B=P(—443=7=—063)=P(Z=—063) — P(Z= —443)
= 0.2643 — 0.0000 = 0.2643

9-1 Hypothesis Testing

_ 485505 |, o515 =%05 .
= 0.79 = £.92 and ) = 0.79 = 1.2/

Therefore

B=P(-253=7Z=127)=P(Z=127) - P(Z= -2.53)
= 0.8980 — 0.0057 = 0.8923



9-1 Hypothesis Testing
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1.5 when u = 52)

0.8

Under Hg:u = 50 Under Hy:u = 52

9-1 Hypothesis Testing

B = P(485 = X = 51.5 when p = 52)

When n = 16, the standard deviation of X is o/Vn = 2.5/V16 = 0.625, and the z-values
corresponding to 48.5 and 51.5 when . = 52 are

= ———— = —-5.60 and I = -
Therefore

B=P(=5.60 = Z= —080) = P(Z= —0.80) — P(Z = —5.60)
=0.2119 = 0.0000 = 0.2119

9-1 Hypothesis Testing

> 06 ,’\\
5 \ Figure 9-5 The
Z 04 ‘\ probability of type Il
2 \\ error when u =52 and
£ 02 \ n=16.
\
\
NI NS
0
46 52 54 56
X
9-1 Hypothesis Testing
Acceptance Sample
Region Size a Batp =52 Bat = 505
485 <7< 515 10 0.0576 02643 0.8923
48 <7< 52 10 0.0114 0.9705
485 <7< 515 16 0.0164 02119 0.9445
48 <3< 5 16 0.0014
Acceptance Region Sample Size o Batu=52 Batu =50.5
48.5<x<51.5 10 0.0576 0.2643 0.8923
48 <x <52 10 0.0114 [0.5000] [0.9705]
4881 <x<5L19 16 [00576] [00966] [0:8606]
842 S 2SS 16 [ooiia) [02515]) [09578)

The size of the critical region, and consequently the probability of a
type I error o, can always be reduced by appropriate selection of the
critical values.

Type I and type II errors are related. A decrease in the probability of
one type of error always results in an increase in the probability of
the other, provided that the sample size n does not change.

An increase in sample size reduces B, provided that a is held
constant.

When the null hypothesis is false, § increases as the true value of the
parameter approaches the value hypothesized in the null hypothesis.
The value of B decreases as the difference between the true mean and
the hypothesized value increases.



9-1 Hypothesis Testing

Definition

The power of a statistical test is the probability of rejecting the null hypothesis H,
when the alternative hypothesis is true.

» The power is computed as 1 - , and power can be interpreted as
the probability of correctly rejecting a false null hypothesis. We
often compare statistical tests by comparing their power properties.

* For example, consider the propellant burning rate problem when
we are testing H , : uw = 50 centimeters per second against H | : u not
equal 50 centimeters per second . Suppose that the true value of the
mean is w = 52. When n = 10, we found that 3 = 0.2643, so the
power of this testis 1 - =1 -0.2643 = 0.7357 when u = 52.

9-1 Hypothesis Testing

Example 9-1

Consider the propellant burning rate problem. Suppose that if the burning rate is less than
50 centimeters per second, we wish to show this with a strong conclusion. The hypotheses

should be stated as

Hy: i = 50 centimeters per second

H,: < 50 centimeters per second

Here the critical region lies in the lower tail of the distribution of X. Since the rejection of
is always a strong conclusion, this statement of the hypotheses will produce the desired out-
come if Hy is rejected. Notice that, although the null hypothesis is stated with an equal sign, it
is understood to include any value of p not specified by the alternative hypothesis. Therefore,
failing to reject Hy does not mean that . = 50 centimeters per second exactly, but only that we

do not have strong evidence in support of H,.

9-1 Hypothesis Testing

9-1.3 One-Sided and Two-Sided Hypotheses
Two-Sided Test:

Ho: o = o
Hi:p #
One-Sided Tests:
Hy: = wy o Hy: o = g
Hy: > Hy: e <

Rejecting H,) is a strong conclusion.

9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

P-value = P (test statistic will take on a value that is at least as
extreme as the observed value when the null hypothesis H is true)

Decision rule:
¢ If P-value > a, fail to reject H at significance level a;

* If P-value < a , reject H, at significance level a.

The P-value is the smallest level of significance that would lead to rejection of the
null hypothesis H, with the given data.




9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

Consider the two-sided hypothesis test for burning rate
Hy: =50 H:p#50

with n = 16 and o = 2.5. Suppose that the observed sample mean is X = 51.3 centimeters
per second. Figure 9-6 shows a critical region for this test with critical values at 51.3 and
the symmetric value 48.7. The P-value of the test is the a associated with this critical
region. Any smaller value for a expands the critical region and the test fails to reject the
null hypothesis when ¥ = 51.3. The P-value is easy to compute after the test statistic is ob-
served. In this example

P-value = 1 — P(48.7 < X < 51.3)
48.7 — 5 51.3 -5
=1—P(4q8‘_ —O<Z< l-a _O)
2.5/V'16 2.5/V16
1 — P(—2.08 < Z < 2.08)
1 — 0.962 = 0.038

9-1 Hypothesis Testing

9-1.5 Connection between Hypothesis Tests and
Confidence Intervals

There is a close relationship between the test of a hypothesis about any parameter, say , and
the confidence interval for 6. If [/, u] is a 100(1 — «)% confidence interval for the parameter
6, the test of size a of the hypothesis

Hy: 6 = 6y
HIZB F 00

will lead to rejection of H if and only if 6, is not in the 100(1 — «)% CI [/, «]. As an illus-
tration, consider the escape system propellant problem with ¥ = 51.3, ¢ = 2.5, and n = 16.
The null hypothesis Hy: p = 50 was rejected, using a = 0.05. The 95% two-sided CI
on p can be calculated using Equation 8-7. This CI is 51.3 * 1.96(2.5/\/16) and this is
50.075 = p. = 52.525. Because the value py = 50 is not included in this interval, the null
hypothesis H,: . = 50 is rejected.

N OO o0~ W N

9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

0.7
0.6
0.5

0.4

c2

0.3

0.2
Figure 9-6 P-value 0.1
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9-1 Hypothesis Testing

9-1.6 General Procedure for Hypothesis Tests

. From the problem context, identify the parameter of interest.
. State the null hypothesis, H,, .

. Specify an appropriate alternative hypothesis, H,.

. Choose a significance level, o.

. Determine an appropriate test statistic.

. State the rejection region for the statistic.

. Compute any necessary sample quantities, substitute these into the

equation for the test statistic, and compute that value.

. Decide whether or not H, should be rejected and report that in the

problem context.



9-2 Tests on the Mean of a Normal 9-2 Tests on the Mean of a Normal
Distribution, Variance Known Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean 9-2.1 Hypothesis Tests on the Mean

We wish to test: Reject H, if the observed value of the test statistic z,, is

Hy = po either:

Hi:w # wy 2y > Zop OF 2y < ~Zqpp
Fail to reject H if

The test statistic is:
Zan<Zy<Zyp

T o/Vn (9-8)

9-2 Tests on the Mean of a Normal 9-2 Tests on the Mean of a Normal
Distribution, Variance Known Distribution, Variance Known

Example 9-2

Aircrew escape systems are powered by a solid propellant. The burning rate of this pro-
pellant is an important product characteristic. Specifications require that the mean burning

Critical region \ / Critical region

a2\ Accaptance F a2 Acceptance Acceptance

region region region rate must be 50 centimeters per second. We know that the standard deviation of burning
—=Zqy; Zay. - 2, - - - . . . . oo
“ 0 " % © ‘ % o ° % rate i1s o = 2 centimeters per second. The experimenter decides to specify a type | error
e ] R o ] o probability or significance level of @ = 0.05 and selects a random sample of n = 25 and
Figure 9-7  The distribution of Z, when Hy: . = ., is true, with critical region for (a) the two-sided alternative H, : p # . FENO R, . to of T = §1 2 confimetere nep <op Mooy o
obtains a sample average burning rate of ¥ = 51.3 centimeters per second. What conclu-

(b) the one-sided alternative H,: . > p,, and (c) the one-sided alternative H, : p < p, . .
sions should be drawn?



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-2

We may solve this problem by following the eight-step procedure outlined in Section 9-1.4.

This results in

1. The parameter of interest is ., the mean burning rate.
2. Hy p = 50 centimeters per second
3. Hp:p # 50 centimeters per second
4. a= 005
5. The test statistic is

X - Mo

Iy = —
o/ Vn

9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean

We may also develop procedures for testing hypotheses on the mean . where the alter-
native hypothesis is one-sided. Suppose that we specify the hypotheses as

Hy:p = po

(9-11)
Hiip = o

In defining the critical region for this test, we observe that a negative value of the test statistic
Z, would never lead us to conclude that H;: p = p, is false. Therefore, we would place the
critical region in the upper tail of the standard normal distribution and reject Hj, if the com-
puted value of z; is too large. That is, we would reject H, if

Z0 > zq (9-12)

9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-2

6. Reject Hyifzy = 1.96 or if z; << —1.96. Note that this results from step 4, where we

specified @ = 0.05, and so the boundaries of the critical region are at zy g5 = 1.96
and —zpgs = —1.96.

7. Computations: Since ¥ = 5S1.3and o = 2,

8. Conclusion: Since z; = 3.25 > 1.96, we reject Hy: o = 50 at the 0.05 level of
significance. Stated more completely, we conclude that the mean burning rate dif-
fers from 50 centimeters per second, based on a sample of 25 measurements. In
fact, there is strong evidence that the mean burning rate exceeds 50 centimeters
per second.

9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean (Continued)

as shown in Figure 9-7(b). Similarly, to test

Hy: p = po
Hip < pg (9-13)

we would calculate the test statistic Z; and reject Hj, if the value of z; is too small. That is, the

critical region is in the lower tail of the standard normal distribution as shown in Figure
9-7(c), and we reject H, if

Zy < =z ‘9-14)

“a



9-2 Tests on the Mean of a Normal 9-2 Tests on the Mean of a Normal
Distribution, Variance Known Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean (Continued)
Null hvpothesis: Hy:pt = pig

P-Values in Hypothesis Tests

Test statistic: Zy= LL[O— The P-value is the smallest level of significance that would lead to rejection of the
o ﬁ null hypothesis H; with the given data.
Alternative hypothesis:  Rejection criteria
Hy:p#H, Zy> 2gyy OT 29 < -Zgyp)
. > 2[1 = D(|zp|)] fora two-tailed test: Hy: p = Hy:p #

Hl. H>Ho " P = {l — d(z) for a upper-tailed test: Hy: o = g Hy: o > g (9-15)

Hl: M < Ho Zp < -2y D(zg) for a lower-tailed test: Hy: o = g Hy:p < g
The notation on p. 307 includes n-1, which is wrong.
9-2 Tests on the Mean of a Normal 9-2 Tests on the Mean of a Normal
Distribution, Variance Known Distribution, Variance Known

9-2.2 Type II Error and Choice of Sample Size

Finding the Probability of Type Il Error p 9-2.2 Type II Error and Choice of Sample Size

Consider the two-sided hypothesis Finding the Probability of Type II Error 8
Hyt o = py
Bz # o B = P(type II error) = P(failing to reject H, when it is false)

Suppose that the null hypothesis is false and that the true value of the mean is w = gy + 8.

say. where 8 > 0. The test statistic Z, 1s _ _
d\Vn d\Vn .
S X _X-(mtd) 3va B—‘l’(w/z— T )“’(‘-w— cr ) ©-17)
* o/Vn o/ Vi o

Iherefore. the distribution of Z; when H, is true is

) (dVn o e
Zy~ N o | (9-16)




9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type II Error and Choice of Sample Size
Finding the Probability of Type II Error 3

Under Hy: it =iy Under Hy: =1y

.Iﬁ‘tg
Nl—7,

N(O,1) 1

~Zar 0 Zar 8vn Zy

Figure 9-7 The distribution of Z, under H, and H,

9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-3

Consider the rocket propellant problem of Example 9-2. Suppose that the analyst wishes to
design the test so that if the true mean burning rate differs from 50 centimeters per second by
as much as | centimeter per second. the test will detect this (i.e.. reject Hy: o = 50) with a high
probability, say 0.90. Now, we note that e = 2.8 = 51 — 50 = |, a = 0.05, and B = 0.10
Since z,n = Zgps = 1.96 and zp = 255 = 1.28. the sample size required to detect this
departure from Hy: o = 50 is found by Equation 9-19 as

(Zap + 2p) 07 1.96 + 1.28)%22
L Lk LA LR

82 (1)2

The approximation is good here. since ®(—z,,, — 3Va/o) = ©(—1.96 — (1)V42/2) =
B(—=5.20) = 0. which is small relative to B.

9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type II Error and Choice of Sample Size
Sample Size Formulas

For a two-sided alternative hypothesis:

Zapn + 2p) 07
n= (MTB) where d=p— (9-19)

For a one-sided alternative hypothesis:

(zo + zp)’ 0
n= it i where 8= p — (9-20)

9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type II Error and Choice of Sample Size
Using Operating Characteristic Curves

When performing sample size or type Il error calculations, it is sometimes more conven-
ient to use the operating characteristic (OC) curves in Appendix Charts Vla and VIb.
These curves plot B as calculated from Equation 9-17 against a parameter d for various
sample sizes n. Curves are provided for both « = 0.05 and a = 0.01. The parameter d is
defined as

[w = ol (8]
(1=T=T (9-21)




9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type II Error and Choice of Sample Size

Using Operating Characteristic Curves

so one set of operating characteristic curves can be used for all problems regardless of the
values of g and o. From examining the operating characteristic curves or Equation 9-17 and
Fig. 9-7. we note that
1. The further the true value of the mean p is from pg, the smaller the probability of
type Il error B fora given # and . That 1s, we see that for a specified sample size and
o large differences in the mean are easier to detect than small ones.

(54

For a given & and o the probability of type 11 error B decreases as n increases. That
is. to detect a specified difference & in the mean, we may make the test more power-
ful by increasing the sample size.

9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.3 Large Sample Test

We have developed the test procedure for the null hypothesis Hj: p = p,, assuming that the pop-
ulation is normally distributed and that @ is known. In many if not most practical situations o°
will be unknown. Furthermore, we may not be certain that the population is well modeled by a
normal distribution. In these situations if » is large (say n > 40) the sample standard deviation s
can be substituted for @ in the test procedures with little effect. Thus, while we have given a test
for the mean of a normal distribution with known &?, it can be easily converted into a large-
sample test procedure for unknown o? that is valid regardless of the form of the distribution
of the population. This large-sample test relies on the central limit theorem just as the large-
sample confidence interval on . that was presented in the previous chapter did. Exact treatment
of the case where the population is normal, o is unknown, and » is small involves use of the
t distribution and will be deferred until Section 9-3.

9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-4

Consider the propellant problem in Example 9-2. Suppose that the analyst is concerned about the prob-
ability of type II error if the true mean burning rate is . = 51 centimeters per second. We may use the
operating characteristic curves to find . Note that 8 = 51 — 50 = 1, n =25, 0 = 2, and @ = 0.05. Then
using Equation 9-21 gives

and from Appendix Chart VIla, with » = 25, we find that = 0.30. That is, if the true mean burning rate
is p = 51 centimeters per second, there is approximately a 30% chance that this will not be detected by
the test with n = 25.

9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.1 Hypothesis Tests on the Mean

One-Sample #-Test

Null hypothesis: Hy: p = o

- X—
Test statistic: Ty = —}io
S/Vn
Alternative hypothesis Rejection criteria
Hy: K o fo > tepa—-1 O o< —fupn-1
Hyp >y fo = faa—1

H: W< o fh < —lan-1




9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.1 Hypothesis Tests on the Mean

Figure 9-9 The reference distribution for Hy: u = u, with critical
region for (a) Hy: w = uy, (b) Hy: w>ug, and (c) Hy: w < g,

9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6
The sample mean and sample standard deviation are ¥ = 0.83725 and s = 0.02456. The normal
probability plot of the data in Fig. 9-9 supports the assumption that the coefficient of restitution is
normally distributed. Since the objective of the experimenter is to demonstrate that the mean co-
efficient of restitution exceeds 0.82, a one-sided alternative hypothesis is appropriate.
The solution using the eight-step procedure for hypothesis testing is as follows:
1. The parameter of interest is the mean coefficient of restitution, .
2. Hypn=10382
3. Hpp = 0.82. We want to reject Hy il the mean coefficient of restitution exceeds 0.82.
4, a=005

The test statistic 1s

N

6. Reject Hyif ty = typs,4 = 1.761

Ty

9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6

The increased availability of light materials with high strength has revolutionized the design and
manufacture of golf clubs, particularly drivers. Clubs with hollow heads and very thin faces can
result in much longer tee shots, especially for players of modest skills. This is due partly to the
“spring-like effect’” that the thin face imparts to the ball. Firing a golf ball at the head of the club
and measuring the ratio of the outgoing velocity of the ball to the incoming velocity can quantify
this spring-like effect. The ratio of velocities is called the coefficient of restitution of the club. An
experiment was performed in which 15 drivers produced by a particular club maker were selected
at random and their coefficients of restitution measured. In the experiment the golf balls were
fired from an air cannon so that the incoming velocity and spin rate of the ball could be precisely
controlled. Tt is of interest to determine if there is evidence (with « = 0.03) to support a claim that
the mean coefficient of restitution exceeds 0.82. The observations follow:

08411 0.8191 0.8182 08125 0.8750

0.8580 0.8532 0.8483  0.8276  0.7983

0.8042  0.8730 0.8282  0.8359  0.8660

9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6

99

Figure 9-10 °

Normal probability 22
plot of the ¥ 7
coefficient of 550
restitution data & gg
from Example 9-6. o
5
1
0.78 0.83 0.88

Coefficient of restitution



9-3 Tests on the Mean of a Normal

9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Distribution, Variance Unknown

Example 9-6 9-3.2 P-value for a t-Test

7. Computations: Since ¥ = 0.83725, 5 = 0.02456, py = 0.82, and n = 15, we have The P-value for a f-test is just the smallest level of significance

at which the null hypothesis would be rejected.
0.83725 — 0.82 .
Iy = —”.”:45(‘/\ s =272 To illustrate, consider the t-test based on 14 degrees of freedom in Example 9-6. The
relevant critical values from Appendix Table IV are as follows:
8. Conclusions: Since t; = 2.72 = 1.761. we reject Hy and conclude at the 0.05 level of Critical Value:  0.258  0.692 1.345
significance that the mean coefficient of restitution exceeds 0.82.

2977

1.761  2.145 2.624 2. 3326 3.787  4.140

Tail Area: 0.40 025 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

Notice that t, = 2.72 in Example 9-6, and that this is between two
tabulated values, 2.624 and 2.977. Therefore, the P-value must be

between 0.01 and 0.005. These are effectively the upper and lower
bounds on the P-value.

9-3 Tests on the Mean of a Normal

9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Distribution, Variance Unknown

9-3.3 Type II Error and Choice of Sample Size
Example 9-7
The type II error of the two-sided alternative (for example)

Consider the golf club testing problem from Example 9-6. If the mean coefficient of restitution exceeds
would be

0.82 by as much as 0.02, is the sample size n = 15 adequate to ensure that H;: p = 0.82 will be rejected
with probability at least 0.87

IA

B = P{_[(l/:'.ll—l = Tl)
P{_[a/l.lz—l

t d * () To solve this problem, we will use the sample standard deviation s = 0.02456 to estimate . Then

af2.n—1 i v ; A . - . .

, d = |38|/o = 0.02/0.02456 = 0.81. By referring to the operating characteristic curves in Appendix

T“ = fa/\, n—1 } Chart VlIg (for @ = 0.05) with & = 0.81 and » = 15, we find that B = 0.10, approximately. Thus, the
probability of rejecting Hy: . = 0.82 if the true mean exceeds this by 0.02 is approximately | — B =
I = 0.10 = 0.90, and we conclude that a sample size of n = 15 is adequate to provide the desired

. sensitivity.
where 7", denotes a noncentral # random variable. '

A



9-3.4 Likelihood Ratio Test (extra!)

Hypothesis testing is one of the most important techniques of statistical inference. Throughout
this book we present many applications of hypothesis testing. While we have emphasized a
heuristic development, many of these hypothesis-testing procedures can be developed using a
general principle called the likelihood ratio principle. Tests developed by this method often
turn out to be “best™ test procedures in the sense that they minimize the type II error probabil-
ity B among all tests that have the same type I error probability .

The likelihood ratio principle is easy to illustrate. Suppose that the random variable X has
a probability distribution that is described by an unknown parameter 6, say, f(x, 0). We wish
to test the hypothesis Hy: 0 is in ), versus H: 6 is in Q;, where ), and (), are disjoint sets of
values (such as Hy: pu = 0 versus H;: . < 0). Let X, X, ..., X, be the observations in a ran-
dom sample. The joint distribution of these sample observations is

F 125 s X 0) = f(x1, 0) * f (%2, 0) = o+ f (3, 0)

Recall from our discussion of maximum likelihood estimation in Chapter 7 that the likeli-
hood function, say L(0), is just this joint distribution considered as a function of the parameter
0. The likelihood ratio principle for test construction consists of the following steps:

9-3.4 Likelihood Ratio Test (extra!)

* Neyman-Pearson Lemma:

Likelihood-ratio test is the most powerful test of a
specified value a when testing two simple hypotheses.

+ simple hypotheses
H,: 6=6, and H,: 6=6,

The likelihood ratio principle is a very general procedure. Most of the tests presented in
this book that utilize the ¢, chi-square, and F-distributions for testing means and variances of
normal distributions are likelihood ratio tests. The principle can also be used in cases where
the observations are dependent, or even in cases where their distributions are different.

9-3.4 Likelihood Ratio Test (extra!)

1. Find the largest value of the likelihood for any 6 in (). This is done by finding the
maximum likelihood estimator of 6 restricted to values within )y and by substituting
this value of 6 back into the likelihood function. This results in a value of the likeli-
hood function that we will call L(£),).

2. Find the largest value of the likelihood for any 6 in (). Call this the value of the like-
lihood function L((2,).

3. Form the ratio

_ L0y
L)

A

This ratio \ is called the likelihood ratio test statistic.

The test procedure calls for rejecting the null hypothesis H, when the value of this ratio A
is small, say, whenever N < k, where k is a constant. Thus, the likelihood ratio principle re-
quires rejecting Hy when L(£),) is much larger than Z()). which would indicate that the sam-
ple data are more compatible with the alternative hypothesis H; than with the null hypothesis
H,,. Usually, the constant & would be selected to give a specified value for a, the type I error
probability.

9-3.4 Likelihood Ratio Test (extra!)

Suppose that we have a sample of n observations

from a normal population with unknown mean y. and unknown variance o?, say, Xj, X, ..., X,
We wish to test the hypothesis Hy: p = g versus Hy: i # . The likelihood function of the
sample is

1 "o L
L= (m) e El(.t._l") /(207)

and the values of )y and (), are Q) = pyand ; = {: — o< p < oo}, respectively. The values
of p and o? that maximize L in €); are the usual maximum likelihood estimates for . and o”:

k=1
Il
x|
.M:

xX; =X

Il
A

F=> (-3

x| =
M=

i
X

Substituting these values in L, we have

1 1 e
L) = Qn/n) S - 37 €



9-3.4 Likelihood Ratio Test (extra!)

To maximize L in (), we simply set . = p, and then find the value of o that maximizes L.

This value is found to be

1 n
A2 _ 2 )2
o =75 2(-\:' o)
=
which gives

1 " o)
L(Q) = [m] )

The likelihood ratio is

_ L) _ { S(x — % ]"f—’
L) [T — oy

9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.1 Hypothesis Test on the Variance

Suppose that we wish to test the hypothesis that the variance of a normal population o~ equals

. B . .. . -
a specified value, say ag, or equivalently, that the standard deviation o is equal to o Let X,
D, CR X, be a random sample of # observations from this population. To test

Hy: 0* = o
5 s (9-26)
Hy:0" # aj

we will use the test statistic:

9-3.4 Likelihood Ratio Test (extra!)

we may write the value of the likelihood ratio \ as

1 n nf2
1

A= l+(¢>{a;7/ij°)7} T+ - 1)

n—1

It is easy to find the value for the constant & that would lead to rejection of the null hypothe-
sis H,. Since we reject Hy if N < k, this implies that small values of A support the alternative
hypothesis. Clearly, A will be small when #* is large. So instead of specifying k we can spec-
ify a constant ¢ and reject Hy: p = p, if £ > c. The critical values of # would be the extreme
values, either positive or negative, and if we wish to control the type I error probability at o,
the critical region in terms of # would be

< —topa-1 and > 1tgnu-1

or, equivalently, we would reject Hy: p = po if > > ¢ = ¢ /2.—1- Therefore, the likelihood
ratio test for Hy: p = po versus Hy: . # iy is the familiar single-sample #-test.

9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

Xg=—75— (9-27)

9-4.1 Hypothesis Test on the Variance

If the null hypothesis Hy: 0% = o is true, the test statistic X3 defined in Equation 9-27
follows the chi-square distribution with n — 1 degrees of freedom. This is the reference
distribution for this test procedure. Therefore, we calculate 3. the value of the test statistic X7,
and the null hypothesis Hy: o* = o3 would be rejected if

Xo = Xapa-1 O X6 < XT-apa-1
where x;"‘/:‘,,_| and X';_a/:_,,_| are the upper and lower 100a/2 percentage points of the chi-

square distribution with n — 1 degrees of freedom, respectively. Figure 9-10(a) shows the
critical region.



9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.1 Hypothesis Test on the Variance

flx) flx) flx)

0 X{_ama-1 Xam,n-1 ¥ 0 Xan-1 * 0 Xgna *
(a) (b) (©

Figure 9-11 Reference distribution for the test of Hy: ol = af. with critical region values for (a) H,: o+ 05.
(b)Hy: 0" > aj.and (¢) H): o° < 0.

9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

Example 9-8

An automatic filling machine is used to fill bottles with liquid detergent. A random sample of
20 bottles results in a sample variance of fill volume of s* = 0.0153 (fluid ounces)?. If the
variance of fill volume exceeds 0.01 (fluid ounces)?, an unacceptable proportion of bottles
will be underfilled or overfilled. Is there evidence in the sample data to suggest that the man-
ufacturer has a problem with underfilled or overfilled bottles? Use a = 0.05, and assume that
fill volume has a normal distribution.

Using the eight-step procedure results in the following:

1. The parameter of interest is the population variance o”.
2. Hy o =00l

3. Hy:a?>001

4. a=0.05

5. The test statistic is

5
s (= 1)
Xo = 3
fen

9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.1 Hypothesis Test on the Variance

The same test statistic is used for one-sided alternative hypotheses. For the one-sided
hypothesis

5 5
Hy: 07 = o3

s (9-28)
H: 0" > o3
we would reject Hy if x§ > x2,.-1. whereas for the other one-sided hypothesis
Ho: 0™ = op (9-29)

5 )
Hy:0° < o3

we would reject Hy if X§ < XT—aun—1- The one-sided critical regions are shown in Figure
9-10(b) and (c).

9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

Example 9-8

6. Reject Hyif X2 > X30s.00 = 30.14.
7. Computations:
19(0.0153)

2= b7
X0 0.01

8. Conclusions: Since x5 = 29.07 < xj0s.10 = 30.14, we conclude that there is no
strong evidence that the variance of fill volume exceeds 0.01 (fluid ounces)®.



9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.2 Type II Error and Choice of Sample Size

Operating characteristic curves are provided in
* Charts VII(i) and VII(j) for the mwo-sided alternative
* Charts VII(k) and VII(1) for the upper tail alternative

* Charts VII(m) and VII(n) for the lower tail alternative

9-5 Tests on a Population Proportion

9-5.1 Large-Sample Tests on a Proportion

Many engineering decision problems include hypothesis testing
about p.

Hy: p = po

Hy:p # po

An appropriate test statistic is

X — np,
ZIJ = :10
Vnpo(1 — po) (9-32)
and reject Hy: p = py if
20> Zopy O Zp < —Zyp

9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

Example 9-9

Consider the bottle-filling problem from Example 9-8. If the variance of the filling process exceeds 0.01

(fluid ounces)?, too many bottles will be underfilled. Thus, the hypothesized value of the standard devia-

tion is o, = 0.10. Suppose that if the true standard deviation of the filling process exceeds this value by

25%., we would like to detect this with probability at least 0.8. Is the sample size of n = 20 adequate?
To solve this problem, note that we require

This is the abscissa parameter for Chart VIIk. From this chart, with » = 20 and A = 1.25, we find that
B = 0.6. Therefore, there is only about a 40% chance that the null hypothesis will be rejected if the true
standard deviation is really as large as o = 0.125 fluid ounce.

To reduce the B-error, a larger sample size must be used. From the operating characteristic curve
with B = 0.20and X = 1.25, we find that n» = 75, approximately. Thus, if we want the test to perform as
required above, the sample size must be at least 75 bottles.

9-5 Tests on a Population Proportion

Example 9-10

A semiconductor manufacturer produces controllers used in automobile engine applications.
The customer requires that the process fallout or fraction defective at a critical manufacturing
step not exceed 0.05 and that the manufacturer demonstrate process capability at this level of
quality using @ = 0.05. The semiconductor manufacturer takes a random sample of 200
devices and finds that four of them are defective. Can the manufacturer demonstrate process
capability for the customer?
We may solve this problem using the eight-step hypothesis-testing procedure as follows:
1. The parameter of interest is the process fraction defective p.
2. Hyp=005
3. Hi:p<0.05
This formulation of the problem will allow the manufacturer to make a strong claim
about process capability if the null hypothesis Hy: p = 0.05 is rejected.
4. a=10.05



9-5 Tests on a Population Proportion

Example 9-10
5. The test statistic is (from Equation 9-32)

_x—npg
O Vapo(T - Po)
where x = 4, n = 200, and py = 0.05.
6. Reject Hy:p = 0.05ifzy < —z505 = —1.645
7. Computations: The test statistic is
4 — 200(0.05)

o ey —————————— —1.95
\/200(0.05)(0.95)

8. Conclusions: Since z; = —1.95 < —zy55 = —1.645, we reject H, and conclude that the

process fraction defective p is less than 0.05. The P-value for this value of the test statistic
zp1s P = 0.0256, which is less than a = 0.05. We conclude that the process is capable.

9-5 Tests on a Population Proportion

9-5.2 Type II Error and Choice of Sample Size

For a two-sided alternative

8= </’n —p+ zenVpoll = po)in o <l’n =P~ Z2Vpoll — /)")/Il) (9-34)
= —_— - = -3
Vp(l = p)/n Vp(l = p)/n

If the alternative is p < p,

B=1-d (/’f.:. — P~z Vpoll = po)/n (9.35)
Vol = p)/n

If the alternative is p > p,

B= (])(/J” SRS (9-36)

9-5 Tests on a Population Proportion

Another form of the test statistic Z; is

X/n —p P—p
Zy = —/”, or Zy = #
Vol = po)/n Vpoll — po)/n

Think about: What are the distribution of Z, under H, and H,?

9-5 Tests on a Population Proportion

9-5.3 Type II Error and Choice of Sample Size

For a two-sided alternative

zenVpo(l — po) + zgVp(1l — p) )2
0= [ SERE p"ipoﬂ ( )] (9-37)
For a one-sided alternative
zaVpo(l = po) + g Vp(1 — p)]? o
n= 2 — 7o (9-38)




9-5 Tests on a Population Proportion

Example 9-11

Consider the semiconductor manufacturer from Example 9-10. Suppose that its process fall-
out is really p = 0.03. What is the B-error for a test of process capability that uses n = 200
and a = 0.05?

The B-error can be computed using Equation 9-35 as follows:

4 0.05 = 0.03 — (1.645)V0.05{0.95)/200 | | — d(—0.44 7
e =1 — ®(—044) = 0.67
p V0.03(T = 0.03)/200 - | o

Thus, the probability is about 0.7 that the semiconductor manufacturer will fail to con-
clude that the process is capable if the true process fraction defective is p = 0.03 (3%). That
is, the power of the test against this particular alternative is only about 0.3. This appears to be
a large B-error (or small power), but the difference between p = 0.05 and p = 0.03 is fairly
small, and the sample size n = 200 is not particularly large.

9-7 Testing for Goodness of Fit

* The test is based on the chi-square distribution.

» Assume there is a sample of size n from a population whose
probability distribution is unknown.

* Arrange n observations in a frequency histogram.
+ Let O, be the observed frequency in the ith class interval.
 Let E, be the expected frequency in the ith class interval.

The test statistic is

Xt = ET (9-39)

which has approximately chi-square distribution with df=k-p-1.

9-5 Tests on a Population Proportion

Example 9-11

Suppose that the semiconductor manufacturer was willing to accept a B-error as large as
0.10 if the true value of the process fraction defective was p = 0.03. If the manufacturer con-
tinues to use a = 0.05, what sample size would be required?

The required sample size can be computed from Equation 9-38 as follows:

1.645V/0.05(0.95) + 1.28V/0.03(0.97) 12
0.03 = 0.05

n=
= 8§32

where we have used p = 0.03 in Equation 9-38. Note that n = 832 is a very large sample size.
However, we are trying to detect a fairly small deviation from the null value py = 0.05.

9-7 Testing for Goodness of Fit

Example 9-12

A Poisson Distribution
The number of defects in printed circuit boards is hypothesized to follow a Poisson distribution. A ran-
dom sample of » = 60 printed boards has been collected, and the following number of defects observed.

Number of Observed
Defects Frequency
0 32
1 15
2 9
3 4




9-7 Testing for Goodness of Fit

Example 9-12

The mean of the assumed Poisson distribution in this example is unknown and must be estimated
from the sample data. The estimate of the mean number of defects per board is the sample average, that
is, (32:0 4+ 15-1 + 9:2 + 4-3)/60 = 0.75. From the Poisson distribution with parameter 0.75, we may
compute p;, the theoretical, hypothesized probability associated with the ith class interval. Since each
class interval corresponds to a particular number of defects, we may find the p; as follows:

) e 0.75)
p=PX=0)= o - 0472
e"(0.75)"
pp=PX=1)= - 0.354
i e~ 073075
p3=PX=2)= —r " 0.133

py=PX=3)=1=(p +py+p3) =004

9-7 Testing for Goodness of Fit

Example 9-12

Since the expected frequency in the last cell is less than 3, we combine the last two cells:

Number of Observed Expected
Defects Frequency Frequency

0 32 28.32

| 15 21.24

2 (or more) 13 10.44

The chi-square test statistic in Equation 9-39 willhavek — p — 1 = 3 — | — | = 1 degree of freedom,

because the mean of the Poisson distribution was estimated from the data.

9-7 Testing for Goodness of Fit

Example 9-12

The expected frequencies are computed by multiplying the sample size » = 60 times the probabilities p;.
That is, E; = np;. The expected frequencies follow:

Number of Expected
Defects Probability Frequency

0 0.472 28.32

1 0.354 21.24

2 0.133 7.98

3 (or more) 0.041 2.46

9-7 Testing for Goodness of Fit

Example 9-12

The eight-step hypothesis-testing procedure may now be applied, using a = 0.05, as
follows:

1. The variable of interest is the form of the distribution of defects in printed circuit boards.
2.  Hy: The form of the distribution of defects is Poisson.

3. H,;: The form of the distribution of defects is not Poisson.

4. a=0.05

5. The test statistic is



9-7 Testing for Goodness of Fit

Example 9-12

6. Reject Hyif x2 > x3os1 = 3.84.

Computations:

(32 —2832)% (15 —121.24)* (13 — 10.44)?

2 — + + = 2.9
X0 2832 21.24 10.44 4

8. Conclusions: Since x§ = 2.94 < x3 5.1 = 3.84, we are unable to reject the null hypothesis
that the distribution of defects in printed circuit boards is Poisson. The P-value for the
test is P = 0.0864. (This value was computed using an HP-48 calculator.)

9-8 Contingency Table Tests

We are interested in testing the hypothesis that the row-and-column methods of classifi-
cation are independent. If we reject this hypothesis, we conclude there is some interaction be-
tween the two criteria of classification. The exact test procedures are difficult to obtain, but an
approximate test statistic is valid for large n. Let p;; be the probability that a randomly selected
element falls in the ijth cell, given that the two classifications are independent. Then p; = wv,
where u; is the probability that a randomly selected element falls in row class 7 and v; is the
probability that a randomly selected element falls in column class j. Now, assuming inde-
pendence, the estimators of «; and v; are

il = l 0.
n & -y
Jj=1
1 &
=g 20 (9-40)

9-8 Contingency Table Tests

Many times, the n elements of a sample from a
population may be classified according to two different
criteria. It is then of interest to know whether the two
methods of classification are statistically independent;

Table 9-2  Anr X ¢ Contingency Table

Columns
1 2 . c
| 0, O, ... 0,.
2 0,, Oy, . 0,.
Rows
? 0, 0, .. 0,

9-8 Contingency Table Tests

Therefore, the expected frequency of each cell is

R ,
Ey = nup; =7 2,0y Z O;; (9-41)
j=1 =l
Then, for large n, the statistic
ro< (0 — E)?
> ij ij
Xo = 5 (9-42)
i=l j=1 ij

has an approximate chi-square distribution with ( — 1)(¢ — 1) degrees of freedom if the null
hypothesis is true. Therefore, we would reject the hypothesis of independence if the observed
value of the test statistic x3 exceeded xf,v(,_])“._ Iy



9-8 Contingency Table Tests

Example 9-14

A company has to choose among three pension plans. Management wishes to know whether
the preference for plans is independent of job classification and wants to use a = 0.05. The
opinions of a random sample of 500 employees are shown in Table 9-3.

To find the expected frequencies, we must first compute ;= (340/500) = 0.68, &, =
(160/500) = 0.32, ¥y = (200/500) = 0.40, ¥, = (200/500) = 0.40, and ¥; = (100/500) =
0.20. The expected frequencies may now be computed from Equation 9-41. For example, the
expected number of salaried workers favoring pension plan 1 is

Eyy = niyty = 500(0.68)(0.40) = 136

The expected frequencies are shown in Table 9-4.

9-8 Contingency Table Tests

Example 9-14
The eight-step hypothesis-testing procedure may now be applied to this problem.
1. The variable of interest is employee preference among pension plans.
2. Hy: Preference is independent of salaried versus hourly job classification.

3. H,: Preference is not independent of salaried versus hourly job classification.

4. a=0.05
5. The test statistic is
5
bl u < (01/ Eii)
X = )
,-Zl AE
6. Since ¥ = 2 and ¢ = 3, the degrees of freedom for chi-square are (¥ — 1)(¢ — 1) =

(1)(2) = 2, and we would reject Hy if X3 = X352 = 5.99.

9-8 Contingency Table Tests

Example 9-14

Table 9-3 Okbserved Data for Example 9-14

Pension Plan

Job Classification | 2 3 Totals
Salaried workers 160 140 40 340
Hourly workers 40 60 60 160
Totals 2_00 ﬁ) W) %

Table 9-4  Expected Frequencies for Example 9-14

Pension Plan

Job Classification | 2 3 Totals
Salaried workers 136 136 68 340
Hourly workers 64 64 32 160
Totals ﬁ .’.T)O 100 %

9-8 Contingency Table Tests

Example 9-14

7.

Computations:

, & oy — Ey)
X6 = Z 2 /E b
i=1j=1 ij
160 — 136)% (140 — 136)> (40 — 68)F (40 — 64)?
_ (16 n)+( ‘n)+( *)+( 04)
136 136 68 64
(60 — 64)> (60 — 32)?
= »L).,3
e T m 49

Conclusions: Since x§ = 49.63 > x30s2 = 5.99, we reject the hypothesis of inde-
pendence and conclude that the preference for pension plans is not independent of
job classification. The P-value for 3 = 49.63 is P = 1.671 X 107", (This value
was computed using a hand-held calculator.) Further analysis would be necessary to
explore the nature of the association between these factors. It might be helpful to
examine the table of observed minus expected frequencies.
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10-1 Introduction

Population 1 Population 2
53
rd
|
Sample 1: Sample 2:
.1'1]..1'12,.... .I'lnl .\'21..1'33,.... .l'zn:

Figure 10-1 Two independent populations.

10-1 Introduction

The previous chapter presented hypothesis tests and confidence intervals for a single popula-
tion parameter (the mean . the variance o2, or a proportion p). This chapter extends those
results to the case of two independent populations. ,

The general situation is shown in Fig. 10-1. Population I has mean P and variance o1,
while population 2 has mean P2 and variance 93. Inferences will be based on two random
samples of sizes nl and n2, respectively. That is, X11. X12.p . Xlniis a random sample of nl
observations from population 1, and X21, X22. p. X2n, is a random sample of n2 observations
from population 2. Most of the practical applications of the procedures in this chapter arise in
the context of simple comparative experiments in which the objective is to study the differ-
ence in the parameters of the two populations.

10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Assumptions
1. Xy, X, ..., Xj,, is a random sample from population 1.
2. X;, Xa,..., Xy, is a random sample from population 2.
3. The two populations represented by X, and X, are independent.
4. Both populations are normal.

E(X) — X) = E(X)) — E(X;) = py —

e - ot o G% 2
"‘I(.Xl - ‘X')) = ‘(“l) + l(.‘z) = e e——



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

The quantity

.T = .T'\ = — W
7= 2 (1 - M)
(o] o3

\ np T om

(10-1)

has a N(0, 1) distribution.

10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

10-2.1 Hypothesis Tests for a Difference in Means,
Variances Known

10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Example 10-1
A product developer is interested in reducing the drying time of a primer paint. Two formula-
tions of the paint are tested; formulation 1 is the standard chemistry, and formulation 2 has a
new drying ingredient that should reduce the drying time. From experience, it 1s known that
the standard deviation of drying time is 8 minutes, and this inherent variability should be un-
affected by the addition of the new ingredient. Ten specimens are painted with formulation 1.
and another 10 specimens are painted with formulation 2: the 20 specimens are painted in
random order. The two sample average drying times are ¥ = 121 minutes and ¥, = 112
minutes, respectively. What conclusions can the product developer draw about the effective-
ness of the new ingredient, using a = 0.05?

We apply the eight-step procedure to this problem as follows:

The quantity of interest is the difference in mean drying times, p, — po. and Ag = 0.

Hyo g — pp = 0.0r Hy g = .
Hyopy = pg. We want to reject Hy if the new ingredient reduces mean drying time.

ol o 2 S

a = 0.05

Null hypothesis:  Hy: ) — po = 4p

. X —-X -4, :
Test statistic: Zy = —F——— (10-2)
91 , O
\ n " om
Alternative Hypotheses Rejection Criterion
Hipy—p# 4 20 > Zgpa OF 2y < —Zgp
Hipy— >4y %) P Zg
Hitp — < 4y Zp < —Zy

10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Example 10-1
5. The test statistic 1s

'Tl - T: -0
I T e—
o] 03

\W‘an

where o7 = o3 = (8)° = 64andny = ny = 10,
6. Reject Hy ) = pyifzg = 1.645 = z4s.

Computations: Since ¥; = 121 minutes and ¥, = 112 minutes, the test statistic is

121 — 112

Vo T 0

ra

52




10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Example 10-1

8. Conclusion: Since z; = 2.52 = 1.645, we reject Hy: | = |, at the a = 0.05 level
and conclude that adding the new ingredient to the paint significantly reduces the
drying time. Alternatively. we can find the P-value for this test as

P-value = | — ®(2.52) = 0.0059

Therefore, Hy: y = pp would be rejected at any significance level a = 0.0059.

10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

10-2.3 Confidence Interval on a Difference in Means,
Variances Known

Definition

If ¥} and ¥, are the means of independent random samples of sizes »; and n, from
. . . . 2 2 .

two independent normal populations with known variances oy and o3, respectively,

a 100(1 = «)% confidence interval for p, — p,is

_ laf | o - o | o3 ‘
5 =87 = Zq/g\‘w + EE R — =X — X+ Ia/—_)\‘w =F E (10-7)

where z,, is the upper a/2 percentage point of the standard normal distribution.

10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

10-2.2 Type II Error and Choice of Sample Size

* Use of Operating Characteristic Curves
* Chart Vli(a)-(d)
* Identical to 9-2.2 except

Iy — po — Al _ A — Ay

Vol + o3 Vol + o3

d=

10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Example 10-4

Tensile strength tests were performed on two different grades of aluminum spars used in
manufacturing the wing of'a commercial transport aircraft. From past experience with the spar
manufacturing process and the testing procedure, the standard deviations of tensile strengths
are assumed to be known. The data obtained are as follows: ny = 10. ¥} = 87.6. o) = 1.
= 12.% = 745, and o = 1.5 If p; and py denote the true mean tensile strengths for the
two grades of spars, we may find a 90% confidence interval on the difference in mean strength
I — P as follows:

s 5 5 5
- o1 + o2 _ S = 4 op L 03
T a2\ Ty < By = P2 =X — T Iup T

1) 1.5)} 12 1.5)?
87.6 — 745 — 1.645 \ (]—|]| + ( P) E =y =87.6— T45 + 1.645 \ (I—”)+ ( |‘)



10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

Example 10-4

Therefore. the 90% confidence interval on the difference in mean tensile strength (in kilo-
grams per square millimeter) is

1222 = p; — pp = 13.98 (in kilograms per square millimeter)

Notice that the confidence interval does not include zero, implying that the mean
strength of aluminum grade 1 () exceeds the mean strength of aluminum grade 2 (p,). In

fact, we can state that we are 90% confident that the mean tensile strength of aluminum

grade | exceeds that of aluminum grade 2 by between 12.22 and 13.98 kilograms per

square millimeter.

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

10-3.1 Hypotheses Tests for a Difference in Means,
Variances Unknown

We wish to test:
Ho: py — o = 4y
Hytpy — o # 4

2 2 2
Casel: O, =0,=0

Case 2: 012 = 0;

10-2 Inference for a Difference in Means
of Two Normal Distributions, Variances
Known

One-Sided Confidence Bounds

Upper Confidence Bound
)
- - (O] O3
P-n—lbzﬁ-\'n—-‘é"'-"a\ﬁ"'ﬁ (10-9)
Lower Confidence Bound
G
= = 1 2 .
.\'l—.\'_—Zu\‘W-i-ESp.l - W2 (10-10)

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Case 1: 012 = 0‘% = 02

The pooled estimator of o2:

The pooled estimator of o, denoted by Sf,. is defined by

g2 (= DS+ (m—1)S;

10-12)
. ny +ny; — 2 : )

The pooled estimator is an unbiased estimator of o?




10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Case 1: ()'12 = ()'g = ()'2

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Definition: The Two-Sample or Pooled 7-Test"

Given the assumptions of this section, the quantity

00 =6 = (g =
r-X 2.1(11-1l M) (10-13)
Sp\“m+72

has a ¢ distribution with »n; + n, — 2 degrees of freedom.

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-5

Two catalysts are being analyzed to determine how they affect the mean yield of a chemical
process. Specifically. catalyst 1 is currently in use, but catalyst 2 is acceptable. Since catalyst
2 is cheaper. it should be adopted. providing it does not change the process yield. A test 1s run
in the pilot plant and results in the data shown in Table 10-1. Is there any difference between
the mean yields? Use a = 0.05, and assume equal variances

Null hypothesis: Hy py — pa =4y
- b N
Test statistic: T, = % (10-14)

SP\‘E_*_E

Alternative Hypothesis Rejection Criterion
Hiip — pa# A to = tofom +ny—20T
o < —laf20,4m-2
Hipy — pa = 4y fy = ton+n—2
Hiipy — pa <4y Ty < ~lap+a—2

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Table 10-1  Catalyst Yield Data, Example 10-5

Observation
Number Catalyst 1 Catalyst 2
| 01.50 80.19
2 04.18 00.95
3 02.18 00.46
4 05.39 03.21
5 01.79 07.19
6 89.07 07.04
7 04.72 91.07
8 89.21 92.75
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Figure 10-2 Normal brobability plot and comparative box plot for

the catalyst yield data in Example 10-5. (a) Normal probability
plot, (b) Box plots.

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-5 )

7. Computations: From Table 10-1 we have ¥ = 92.255,5) = 230, 1 = 8.%, =92.733,
5, = 298 and ny = & Therefore

(m = 1)t + (=13 (D239 + 702987
5, = = =730
o+ oy =2 8S+8-2
s, = V730 =27
and
X — X, 02.255 — 92.733
to = = = — 3
- 1 + 1 -0 | + |
70, | — + — 704 [— + —
A TTRT) “T\R TR
8. Conclusions: Since —2.145 < {5 = —0.35 < 2,145, the null hypothesis cannot be

rejected. That is. at the 0.05 level of significance, we do not have strong evidence to
conclude that catalyst 2 results in a mean yield that differs from the mean yield when
catalyst 1 1s used

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-5

The solution using the eight-step hypothesis-testing procedure is as follows:

1. The parameters of interest are , and p,. the mean process vield using catalysts

I and 2. respectively. and we want to know if p; — p, = 0.
Hypy — o = 0.0r Hyt py = g
Hyipy #F g

a = 0.05

O

The test statistic 1s

YN-x—-0
[ = = —

S\ Ty 4

6. Reject Hyilty = tygosgy = 2. 145 0r ity < —fgmsge = —2.145.

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

2 2
Case 2: O} = O,

e X -X- A v
p="l_2" 0 (10-15)
51,8
\E n

is distributed approximately as ¢ with degrees of freedom given by

& 5h\2
mtm
(Si/m)* | (Si/m)

—+
n — 1 n — 1

(10-16)
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of Two Normal Distributions, Variances
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Example 10-6

Arsenic concentration in public drinking water supplies is a potential health risk. An article in
the Arizena Republic (Sunday, May 27, 2001) reported drinking water arsenic concentrations
in parts per billion (ppb) for 10 methropolitan Phoenix communities and 10 communities in
rural Arizona. The data follow:

Metro Phoenix (¥} = 12.5.5; = 7.63) Rural Arizona (¥, = 27.5.5, = 15.3)
Phoenix. 3 Rimrock, 48
Chandler, 7 Goodyear, 44

Gilbert, 25 New River, 40
Glendale, 10 Apachie Junction, 38
Mesa, 15 Buckeye. 33

Paradise Valley. 6 Nogales. 21

Peoria, 12 Black Canyon City, 20
Scottsdale. 25 Sedona, 12

Tempe, 15 Pavson, |

Sun City, 7 Casa Grande, 18

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-6 (Continued)

29
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Figure 10-3 Normal 10
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arsenic concentration .
data from Example 10-6. o o 20 30 40
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o

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-6 (Continued)

We wish to determine it there is any difference in mean arsenic concentrations between met-
ropolitan Phoenix communities and communities in rural Arizona. Figure 10-3 shows a nor-
mal probability plot for the two samples of arsenic concentration. The assumption of normal-
ity appears quite reasonable, but since the slopes of the two straight lines are very different. it
is unlikely that the population variances are the same.

Applying the eight-step procedure gives the following:

1. The parameters of interest are the mean arsenic concentrations for the two geographic regions, say,
v and o, and we are interested in determining whether p, — p, = 0.

Hy oy = pp = 0, 0r Hyt g = iy

Hypy # py

a = 0.05 (say)

- W e

10-3 Inference for a Difference in Means
of Two Normal Distributions, Variances
Unknown

Example 10-6 (Continued)

5. The test statistic is

6. The degrees of freedom on ¢; are found from Equation 10-16 as

(‘ S 53 )3 (7.63  (15.3)*)?
_+_- —
%! n 10 10
V=3 O S T g ——— =132 =13
(i/m)f (s3/mp)  [(7.63)%/10F  [(15.3)%/10]
+
n =1 ny — | 9 9

Therefore, using « = 0.05, we would reject Hy: ) = o if 14 = fomsia = 2.160 or if

fh < —fomsyz = —2.160
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Example 10-6 (Continued)

7. Computations: Using the sample data we find

A 125 - 275
.

5 ;3_ (7.63F (133F

\ + \ +
N om Vo110 10

n o

8. Conclusions: Because 5 = —2.77 < t505,5 = —2.160, we reject the null hypothesis
Therefore, there is evidence to conclude that mean arsenic concentration in the drinking
water in rural Arizona is different from the mean arsenic concentration in metropolitan
Phoenix drinking water. Furthermore, the mean arsenic concentration is higher in rural
Arizona communities. The P-value for this test is approximately P = 0.016

10-3.3 Confidence Interval on the Difference in Means,
Variance Unknown

2 2
Case 2: 01 # 02

Ifx), %5, 57, and 53 are the means and variances of two random samples of sizes », and
n,, respectively, from two independent normal populations with unknown and unequal
variances, an approximate 100(1 — «)% confidence interval on the difference in
means L, — b, IS

2 2

[ 2 ) 2
_ | 81 [ 8] 5

= 82 = =
.\'] = .\'2 = tu/'_’.v\“m + E = p,] == p.z = .\l = .\2 + fu/lv\"Tl + E (10-20)

where v is given by Equation 10-16 and ,/, , is the upper a/2 percentage point of the
t distribution with v degrees of freedom.

10-3.3 Confidence Interval on the Difference in Means,
Variance Unknown

2 2 2
Case 1: O'1 =O'2 =0

If ¥, %5, 51 and 53 are the sample means and variances of two random samples of
sizes n; and n,, respectively, from two independent normal populations with un-
known but equal variances, then a 100(1 — «)% confidence interval on the differ-
ence in means Ly — 4, is

_ /1 1
X| — X2 — o2 m+n—25p \ 7 =
- - 1 1
=W — W2 =X — X2 + loy20,4+n-25 \ 7y + 5, (10-19)
where 5, = V[(n — 1)5‘1’ + (ny — I)Sg]/(nl + n; — 2) is the pooled estimate

of the common population standard deviation, and Zo3 4 +,,—2 is the upper /2
percentage point of the ¢ distribution with #, + n, — 2 degrees of freedom.

10-4 Paired 7-Test

* A special case of the two-sample t-tests of Section
10-3 occurs when the observations on the two
populations of interest are collected in

» Each pair of observations, say (X1j , ij ), is taken
under homogeneous conditions, but these conditions
may change from one pair to another.

* The test procedure consists of analyzing the
differences between two observations from each pair.




10-4 Paired z-Test
Example 10-9

An article in the Jowrnal of Strain Analysis (1983, Vol. 18, No. 2) compares several methods

10-4 Paired 7-Test
The Paired t-Test

for predicting the shear strength for steel plate girders. Data for two of these methods, the

Null hypothesis: Hy: pp = A Karlsruhe and Lehigh procedures, when applied to nine specific girders, are shown in Table
DA 10-2. We wish to determine whether there is any difference (on the average) between the two
L. — 4 methods.
Test statistic: T (10-22) cHI

Sp/ Vn Table 10-2  Strength Predictions for Nine Steel Plate Girders
(Predicted Load/Observed Load)

Alternative Hypothesis Rejection Region Lo Lokl i, Lol Lo
S1/1 1.186 1.061 0.119
Hiipp # A to = tapn—1 OF fo < —lgp2.n-1 s2/1 1151 0.992 0.159
Hy:pp > B fo > foa-1 $3/1 1.322 1.063 0.259
Hy:pp < By fo < a1 S4/1 1.339 1.062 0277
S5/1 1.200 1.065 0.138
_ S2/1 1.402 1.178 0.224
In Equation 10-22, D is the sample average of the » differences Dl, Dz, ceny Dn, s2/2 1.365 1.037 0.328
and S, is the sample standard deviation of these differences. S2/3 1.537 1.086 0.451
S2/4 1.559 1.052 0.507

10-4 Paired z-Test 10-4 Paired z-Test
Example 10-9 Example 10-9

The eight-step procedure 1s applied as follows:

1. The parameter of interest is the difference in mean shear strength between the two

methods. say, up = p; — pp = 0. 7. Computations: The sample average and standard deviation of the differences d; are
2 Hypp=0 d=0.2736 and s, = 0.1356, so the test statistic is
3. Hyipp#0 d 0.2736 i
o = = = — —= = (.05
4., o =005 O sV 0.1356/V0
5. The test statistic 1s ) ) . _ . .
8. Conclusions: Since f; = 6.05 = 2.306. we conclude that the strength prediction
i methods yield different results. Specifically, the data indicate that the Karlsruhe
Iy = W method produces. on the average. higher strength predictions than does the Lehigh
sp/ V

method. The P-value for t; = 6.05 1s P = 0.0002, so the test statistic is well into the
critical region.

4

Reject Hy if ty > fygps 8 = 2.306 or if tfy < —fg s = —2.306.



10-4 Paired 7-Test

Paired Versus Unpaired Comparisons

To— D —A To=-X1=X2—40

S o1+

So how do we decide to conduct the experiment? Should we pair the observations or not?
Although there is no general answer to this question, we can give some guidelines based on

the above discussion.

1.

184

If the experimental units are relatively homogeneous (small ) and the correlation
within pairs 1s small. the gain in precision attributable to pairing will be offset by the
loss of degrees of freedom. so an independent-sample experiment should be used.
If the experimental units are relatively heterogeneous (large o) and there is large pos-
itive correlation within pairs. the paired experiment should be used. Typically, this
case occurs when the experimental units are the same for both treatments; as in
Example 10-9, the same girders were used to test the two methods.

Simple Linear

Regression and

Colftlation 10-5.1 The F distribution
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10-4 Paired 7-Test

A Confidence Interval for p

If d and sp, are the sample mean and standard deviation of the difference of » random
pairs of normally distributed measurements, a 100(1 — «)% confidence interval on
the difference in means pp = py — p,y is

d— luﬂ‘n_]SD/\"‘; =pmup= d+ ta/Z“v—lSD/\"ﬁ'_' (10-23)

where £, ,—; is the upper a/2% point of the t-distribution with n — 1 degrees of
freedom.

11-1 Empirical Models

» Many problems in engineering and science involve
exploring the relationships between two or more
variables.

* Regression analysis is a statistical technique that is
very useful for these types of problems.

* For example, in a chemical process, suppose that the
yield of the product is related to the process-operating
temperature.

* Regression analysis can be used to build a model to
predict yield at a given temperature level.




11-1 Empirical Models 11-1 Empirical Models

Table 11-1  Oxygen and Hydrocarbon Levels

Observation  Hydrocarbon Level  Purity : S . Based on the scatter diagram, it is probably reasonable to
Number x(%) ¥(%) ¢ v 9 S AL . .
1 09 P 100 assume that the mean of the random variable Y is related to x by
: Loz B0s " the following straight-line relationship:
4 129 9374 \
: - aras % E(Y[x) = pyx = Bo + Byx
7 0.87 87.59 - o . ‘ "
. o o B , ! Te 0 e where the slope and intercept of the line are called regression
: T L . coefficients.
5 LS 23 % ',. N (o The simple linear regression model is given by
14 1.01 89.54 ¢ ' )
15 L11 89.85 8, " Yy = B() + Bl-\- + €
16 120 90.39 !
17 126 93.25 8 T where ¢ is the random error term.
18 1.32 9341 085 095 105 115 125 135 145 L%
19 1.43 94.98 Hydrocarbon kel (x)
20 0.95 87.33
11-1 Empirical Models 11-1 Empirical Models
We think of the regression model as an empirical model. * The true regression model is a line of mean values:
Suppose that the mean and variance of € are 0 and o2, = By + B
respectively, then ey |x y -

where 8, can be interpreted as the change in the
mean of Y for a unit change in x.

* Also, the variability of Y at a particular value of x is
determined by the error variance, o2.

* This implies there is a distribution of Y-values at
each x and that the variance of this distribution is the
same at each x.

1':( )'}.\') = 12.([30 + B].\' + E) = BD + Bl". -+ ll.(e_) = Bﬂ + Bl".
The variance of Y given x is

V(Y|x)= V(By + Bix + €) = V(By + Bx) + V(e) = 0 + ¢ = &?



11-1 Empirical Models

(Oxygen
purity) {
\

) \
Bo+By11.28 True regrassion line

kylx=Bo+B1*
=75 +15x

B+ By (LoD
x=100 x=1.25 x(Hydrocarbon level)

Figure 11-2 The distribution of Y for a given value of
x for the oxygen purity-hydrocarbon data.

11-2 Simple Linear Regression

» Suppose that we have n pairs of observations
(X1, Y1)y (X ¥2)s «-es (X Yin)-

Observed '.'al_l.—l-e.
Data (y)
. [}

Figure 11-3 .. \ ¢

\
Deviations of the . i
data from the
estimated

regression model.

11-2 Simple Linear Regression

- The case of simple linear regression considers
a single regressor or predictor x and a
dependent or response variable Y.

» The expected value of Y at each level of x is a
random variable:

E(Y|x)=PBg + B1x
* We assume that each observation, Y, can be
described by the model

Y=p0;+ Bx+e

11-2 Simple Linear Regression

+ The method of least squares is used to
estimate the parameters, , and 4, by minimizing
the sum of the squares of the vertical deviations in

Figure 11-3.
Observed '.'al_l.—l-e.T’J/
Data (y)
. [}

L]

Figure 11-3 .. \
Deviations of the . regreasion e
data from the

estimated

regression model.



11-2 Simple Linear Regression

- Using Equation 11-2, the n observations in the
sample can be expressed as

=By + Py + € i=1.2.....n

« The sum of the squares of the deviations of the
observations from the true regression line is

L= Ee,z = (vi— Bo— Bl-"i,):

11-2 Simple Linear Regression

Simplifying these two equations yields

n A
nBo + By E X = 2_";
n

BUE\ +B,2\ =i|,\, (11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimators By and B.

11-2 Simple Linear Regression

L= 26,2 = (vi— Bo— Bl-"i):

The least squares estimators of By and B,. say. Bg and B,. must satisfy

aL - .

. = ‘ - .\'i =1
Bo [Pob ,En Bo = Buv)

al -

— = =2 (y; — x)x; =0
B i~ 2T BB

11-2 Simple Linear Regression

The least squares estimates of the intercept and slope in the simple linear regression
model are

Bo=7— BiF (11-7)
")
z"" =] = o |

: — (11-8)
n ( E".")
i=l

where ¥ = (1/n) .-, y; and X = (1/n) 3], x..




11-2 Simple Linear Regression

The fitted or estimated regression line is therefore
¥ =PBo+ Bix (11-9)
Note that each pair of observations satisfies the relationship

.1';=BD+B|.\'f+¢'i. i=1.2.....n

where ¢, = y, — ¥; 1s called the residual. The residual describes the error in the fit of the
model to the ith observation y,. Later in this chapter we will use the residuals to provide in-

formation about the adequacy of the fitted model.

11-2 Simple Linear Regression

Example 11-1

We will fit a simple linear regression model to the oxygen purity data in Table 11-1. The

following quantities may be computed:

20 20
=200 Y x=2392 3y = 184321 T = 11960 § = 92,1605
=1 =
20 20 20
2 - e ~ , N
37 = 1700445321 3 aF =20.2802 N wy; = 2.214.6566
i=1 i=1 i=1
20 \2
N Z-‘} (23.92)?
> = 2 T = 70 MIROD) — e — () ARSI
S = ;-\i 20 = 29.2892 _:() 0.68088
and
20 20
= (Z") Z") (23.92)(1,843.21)
oy = Ly, - = 2 5 - = 0177
Sy = 2-\,'_\,‘ 30 2.214.6566 0 10.17744

11-2 Simple Linear Regression

Notation
n 2
) -lei
Spe= 2 (x;— X )" =2 x;— !_n
i= i=1
n n
S.\Jzzl(}z_,")(xz_ r)—zlrz}z_ n
= I=

11-2 Simple Linear Regression

Example 11-1

Therefore. the least squares estimates of the slope and intercept are

Sey  10.17744 -
1= T T T — 1404748
Sey 068088

>

and
Bo =7 — BT = 92.1605 — (14.94748)1.196 = 74.28331

The fitted simple linear regression model (with the coeflicients reported to three decimal places) is
§= 74283 + 14947y

This model is plotted in Fig. 11-4, along with the sample data.



11-2 Simple Linear Regression

Example 11-1

102
a9
z
Figure 11-4 Scatter 2 ™
plot of oxygen ;% o
purity y versus &
hydrocarbon level x o
and regression
model y = 74.20 + 8

7
0.87 1.07 1.27

14.97x.

11-2 Simple Linear Regression

Estimating o2

The error sum of squares is

" n

ss:= 3= S0u-7

i=1 i=1

It can be shown that the expected value of the
error sum of squares is E(SSg) = (n — 2)0?.

Hydrocarbon level (%)
x

1.47

167

Table 11-2  Minitab Output for the Oxygen Purity Data in Example 11-1

Regression Analysis

The regression equation is

Purity = 74.3 + 14.9 HC Level

Predictor Coef 7 SE Coef T P
Constant 74.283 -y 1.593 46.62 0.000

HC Level 14947 -3, 1.317 11.35 0.000

S = 1.087 R-Sq = 87.7% R-Sq (adj) = 87.1%
Analysis of Variance

Source DF SS MS

Regression 1 152,13 152,13 128.86
Residual Error 18 21.25 - S5 118 =&

Total 19 173.38

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI

0.000

1 89.231 0.354 (88.486, B89.975)  (86.830, 91.632)

Values of Predictors for New Observations

New Obs HC Level
1 1.00

11-2 Simple Linear Regression

Estimating o2

An unbiased estimator of 62 is

. SSg
n—2

(11-13)

where SS;, can be easily computed using

S = 857 = BiS,,

(11-14)

where S, = ¥ (y,- )’ = Yyl -1y’ =S,
i=1 i=1




11-3 Properties of the Least Squares
Estimators

» Slope Properties

E(B) = B V) = —

* Intercept Properties

]L‘( B!’J) = Bo and l(f;’,()) = 0-: |:’I_’ + 'T-:]

S

11-4 Hypothesis Tests in Simple Linear
Regression

Assumptions:

To test hypotheses about the slope and intercept of the regression

model, we must make the additional assumption that the error
component in the model, €, is normally distributed.

Thus, the complete assumptions are that the errors are normally

and independently distributed with mean zero and variance o2,
abbreviated NID(0, ¢?).

11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of 7-Tests

Suppose we wish to test

Hy: By = Bio
HyiBy # Bio

An appropriate test statistic would be

T, = Bl'_ Bm

=
~ 2 / Y
0°/S,,

11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of #-Tests

The test statistic could also be written as:

-~

Br — Bio
se(B)

We would reject the null hypothesis if

Iy =

1{()1 > fa/l'.n—.";



11-4.1 Use of -Tests

Suppose we wish to test

Hy: Bo = Boo
Hy: Bo # Boo
An appropriate test statistic would be
Bn - B(m B(} - B«)_n
Iy = == = =
[ a1 | X7 se(Bo)
\ S + S—“_

We would reject the null hypothesis if

‘[U; = [a/l.n—:

11-4 Hypothesis Tests in Simple Linear
Regression

Figure 11-5 The hypothesis H,: B, = 0 is not rejected.

11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of 7-Tests

An important special case of the hypotheses of
Equation 11-18 is
H”: B' == ()

HII B| #0
These hypotheses relate to the significance of regression.

Failure to reject Hy, is equivalent to concluding that there
is no linear relationship between x and Y.

11-4 Hypothesis Tests in Simple Linear
Regression

Figure 11-6 The hypothesis H,: f, = 0 is rejected.



11-4 Hypothesis Tests in Simple Linear
Regression

Example 11-2
We will test for significance of regression using the model for the oxygen purity data from
Example 11-1. The hypotheses are

Hy: By =0
H|Z B| #0

and we will use @ = 0.01. From Example 11-1 and Table 11-2 we have
By =1497 n =20, S,=0068088. &> =1.18

so the t-statistic in Equation 10-20 becomes

LB B 4047
TNGYS,, seBl) T V1.18/0.68088

11.35

Since the reference value of ¢ is #5955 = 2.88, the value of the test statistic is very far
into the critical region, implying that Hy: 3, = 0 should be rejected. The P-value for this test
is P = 1.23 X 1077, This was obtained manually with a calculator.

10-5.1 The F Distribution

Let W and Y be independent chi-square random variables with « and v degrees of
freedom, respectively. Then the ratio

W/u
= 0-26
F /v (1 )

has the probability density function

e
v

! (\) = u - u (2e+v)/2*
RERE(EmY

and is said to follow the F distribution with # degrees of freedom in the numerator
and v degrees of freedom in the denominator. It is usually abbreviated as F, ,.

0<x<w (10-27)

R commands and outputs

> dat=read.table("tablell-1l.txt", h=T)
> g=lm(y~x, dat)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 74.283 1.593 46.62 < 2e-16 ***
X 14.947 1.317 11.35 1.23e-09 **%*

Residual standard error: 1.087 on 18 degrees of freedom
Multiple R-Squared: 0.8774, Adjusted R-squared: 0.8706
F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09

> anova(g)
Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)
b4 1 152.127 152.127 128.86 1.227e-09 ***
Residuals 18 21.250 1.181

10-5.1 The F Distribution

fix)

fix)

fl-a,uv fo, u,v

Figure 10-5 Upper and lower percentage
points of the F distribution.

0 2 - 6 8 10 x
Figure 10-4  Probability density functions of
two F distributions.



10-5.1 The F Distribution

The lower-tail percentage points f;_, ,, can be found as follows.

11-4 Hypothesis Tests in Simple Linear
Regression

. |
N-auy = (10-28)

.f‘d.llll

11-4.2 Analysis of Variance Approach to Test
Significance of Regression

The analysis of variance identity is

11-4 Hypothesis Tests in Simple Linear
Regression

11-4.2 Analysis of Variance Approach to Test
Significance of Regression

If the null hypothesis, H,: B, = 0 1s true, the statistic

_ SSp/l MSg
SSE/(H - 3) .‘\!SE

['0 (11-26)

follows the F  , distribution and we would reject if

ﬂ) >fa,1,n—2'

n

i(.\‘- - =S -y+ 2"‘,(,\‘, - ) (11-24)
=]

i=1 i=1

Symbolically,

SSr = SSgp + SSg (11-25)

11-4 Hypothesis Tests in Simple Linear
Regression

11-4.2 Analysis of Variance Approach to Test
Significance of Regression

The quantities, MS; and MS;, are called mean squares.

Analysis of variance table:

Table 11-3  Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy
Regression SSg = B.Sx,, 1 MSg MSy/MSg
Error §Sg = SS; — B,S,, n-2 MS;

Total S8y ' n-1

Note that MSg = .



11-4 Hypothesis Tests in Simple Linear
Regression

Example 11-3

We will use the analysis of variance approach to test for significance of regression using the
oxvgen purity data model from Example 11-1. Recall that SS; = 173.38, 3, = 14.947,
Sey = 10.17744, and n = 20. The regression sum of squares is

SSg = BiSy, = (14.947)10.17744 = 152.13
and the error sum of squares is

=212

(98]
N

SSp = SSp— SSp = 17338 — 152.1

The analysis of variance for testing Hy: 3, = 0 is summarized in the Minitab output in
Table 11-2. The test statistic is fo = MSp/MS; = 152.13/1.18 = 128.86, for which we find
that the P-value is P = 1.23 X 107°, so we conclude that B, is not zero.

There are frequently minor differences in terminology among computer packages. For

example, sometimes the regression sum of squares is called the “model” sum of squares, and

the error sum of squares is called the “residual™ sum of squares.

11-5 Confidence Intervals

11-5.1 Confidence Intervals on the Slope and Intercept

Definition

Under the assumption that the observations are normally and independently distributed,
a 100(1 — a)% confidence Interval on the slope B, in simple linear regression is

. ra X &

B — o221\ T =Bi=Bt fop2n=2\| 5 (11-29)
Similarly, a 100(1 — a)% confidence Interval on the Intercept B, is
: 1, &
Bo — fapzm-2 \ (72[; + S_"]

- B N=
=Bo=p + ’a,’L~—2\°’ [;+S—"] (11-30)

11-4 Hypothesis Tests in Simple Linear
Regression

Note that the analysis of variance procedure for testing for significance of regression is
equivalent to the #-test in Section 1 1-5.1. That is, either procedure will lead to the same conclusions.
This is easy to demonstrate by starting with the #~test statistic in Equation 11-19 with 3,4 = 0, say

= —P (11-27)

Squaring both sides of Equation 11-27 and using the fact that % = MSj results in

o BIS. BSy MS
> _ BiSe _ BiSey _ MSg (11-28)
MS;; MSp  MSg

Note that 73 in Equation 11-28 is identical to Fy in Equation 11-26 It is true, in general, that
the square of a t random variable with v degrees of freedom is an F random variable, with one
and v degrees of freedom in the numerator and denominator, respectively. Thus, the test using
T, is equivalent to the test based on Fj,. Note, however, that the #-test is somewhat more flexi-
ble in that it would allow testing against a one-sided alternative hyvpothesis, while the F-test is

restricted to a two-sided alternative.

11-6 Confidence Intervals

Example 11-4

We will find a 95% confidence interval on the slope of the regression line using the data in
Example 11-1. Recall that B, = 14.947, S,, = 0.68088, and ¢- = 1.18 (see Table 11-2).
Then, from Equation 10-31 we find

B — 1 "‘&:<B =B+ &
1~ lhosasy/ T =PI =P 0.025.18\/ T
\ ‘S.\'.l’ \ 5.lf.\'
or
[ 118 [ 118

4947 = 2101, |[——— = = 14947 + 2.101, | ————
e : ]\'().(»X()NX B =14.947 + “]\: 0.68088

This simplifies to

12,197 = B, = 17.697



11-5 Confidence Intervals

11-5.2 Confidence Interval on the Mean Response
Ry g = Bo + Bixo

Definition

A 100(1 — )% confidence Interval about the mean response at the value of
X = Xq, SAY LY}« 1S given by

T (e — 3]
- 2! (xo — X)
B¥pey — ’ufln—Z\ o |t s
- S[1, (o — %) .
= Py = By T la2m-2 0'2[; T (11-31)

where fLy |, = Bo + P1xp is computed from the fitted regression model.

11-5 Confidence Intervals

or

89.23 = (.75
Therefore, the 95% confidence interval on py|; go is
.\’X-lx = p'”“’(l = X‘)‘)(\’

Minitab will also perform these calculations. Refer to Table 11-2. The predicted value of y at
x = 1.00 is shown along with the 95% CI on the mean of y at this level of x.

By repeating these calculations for several different values for x, we can obtain confi-
dence limits for each corresponding value of py|,.. Figure 11-7 displays the scatter diagram
with the fitted model and the corresponding 95% confidence limits plotted as the upper and
lower lines. The 95% confidence level applies only to the interval obtained at one value of x
and not to the entire set of x-levels. Notice that the width of the confidence interval on y|,,
increases as |xg — X| increases.

11-5 Confidence Intervals

Example 11-5

We will construct a 95% confidence interval about the mean response for the data in Example
I1-1. The fitted model is iy, = 74.283 + 14.947x;, and the 95% confidence interval on
Wy |y, is found from Equation 11-31 as

G+ 2101 ':‘l sl L+ (xo — 1.1960)"]
Pyl = = N 720 0.68088

Suppose that we are interested in predicting mean oxvgen purity when x; = 1.00%. Then
Byl = 74283 + 14.947(1.00) = 89.23

and the 95% confidence interval is

20.23 % 2.101 3‘1 8 1 (1.00 — 1.1960)T
89.20 = 2018 155+ 0.68088

11-5 Confidence Intervals

Example 11-5

102

Figure 11-7 ”
Scatter diagram of £ _
oxygen purity data £

from Example 11-1 & o
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11-6 Prediction of New Observations

If x, 1s the value of the regressor variable of interest,

Yo = Bo + Bixg

is the point estimator of the new or future value of the
response, Y,

11-6 Prediction of New Observations

Example 11-6

To illustrate the construction of a prediction interval, suppose we use the data in Example 11-1
and find a 95% prediction interval on the next observation of oxygen purity at x, = 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that 3, = 89.23, we find that the
prediction interval is

1 (1.00 — 1.1960)77

89.23 — 2,101,/ 1LI8| 1 + — +
) \ 20 0.68088

11-6 Prediction of New Observations

¥ = 8923 + 2.101 ;'] sl 42 (1.00 = 1.1960)"
= = 8 3 / s —_— —_—
= fo=80.20 % 2101 20 T T 068088

Definition

A 100(1 — a) % prediction Interval on a future observation Y; at the value x; 1s
given by

—\2
N 2 (xg — )
Yo — [a/g',,_g\ a |l + n SF T]
1 (x—-%)? n
= Yo =Jo + laj2n-2y é’z[l +7+(OS—)] (11-33)

The value i is computed from the regression model 7 = g + Bixo.

11-6 Prediction of New Observations

Example 11-6

which simplifies to
86.83 < yy = 91.63

Minitab will also calculate prediction intervals. Refer to the output in Table 11-2. The 95% PI
on the future observation at xo = 1.00 is shown in the display.

By repeating the foregoing calculations at different levels of xg, we may obtain the 95%
prediction intervals shown graphically as the lower and upper lines about the fitted regression
model in Fig. 11-8. Notice that this graph also shows the 95% confidence limits on wy/,,
calculated in Example 11-5. It illustrates that the prediction limits are always wider than the

confidence limits.



11-6 Prediction of New Observations

Example 11-6

102

Figure 11-8 Scatter %
diagram of oxygen
purity data from
Example 11-1 with
fitted regression line,
95% prediction limits
(outer lines) , and
95% confidence g7
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11-7 Adequacy of the Regression Model

11-7.1 Residual Analysis

¢ The residuals from a regression model are €; =y, - ¥, , where y,
is an actual observation and y, is the corresponding fitted value
from the regression model.

* Analysis of the residuals is frequently helpful in checking the
assumption that the errors are approximately normally distributed
with constant variance, and in determining whether additional
terms in the model would be useful.

11-7 Adequacy of the Regression Model

+ Fitting a regression model requires several
assumptions.

1. Errors are uncorrelated random variables with
mean zero;

2. Errors have constant variance; and,
3. Errors be normally distributed.

» The analyst should always consider the validity of
these assumptions to be doubtful and conduct
analyses to examine the adequacy of the model

11-7 Adequacy of the Regression Model

11-7.1 Residual Analysis

Figure 11-9 Patterns

for residual plots. (a) o— T paler:
satisfactory, (b) o )
funnel, (c) double
bow, (d) nonlinear. @ ®

[Adapted from i . N
Montgomery, Peck, S

and Vining (2001).] ALPCNPRE A



11-7 Adequacy of the Regression Model 11-7 Adequacy of the Regression Model
Example 11-7

The regression model for the oxygen purity data in Example 11-1 is ¥ = 74.283 + 14.947x. Table Example 11-7
11-4 presents the observed and predicted values of y at each value of x from this data set, along with

the corresponding residual. These values were computed using Minitab and show the number of dec- 999
imal places typical of computer output. A normal probability plot of the residuals is shown in Fig. 11-10. @
Since the residuals fall approximately along a straight line in the figure, we conclude that there is no
severe departure from normality. The residuals are also plotted against the predicted value ¥;in Fig. 11-11
and against the hydrocarbon levels x, in Fig. 11-12. These plots do not indicate any serious model in-

95

£
;
. a 20
adequacies. - >
i - 50
Table 11-4  Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals Flg ure 1 1 1 0 Normal E
e M
Hydrocarbon Oxygen Predicted  Residual Hydrocarbon Oxygen Predicted  Residual probablhty pIOt Of = 20
Level, x Purity,y  Value,y e=y—7 Level, x Purity,y  Value,j e=y— 7 . Fl
J J y—) J J y—) g 5.
1 0.99 90.01 89.069009 0.940991 11 1.19 93.54 92.063189 1.476811 reSIduaIS’ Example a .
2 1.02 89.05 89.518136 —0.468136 12 115 92.52 91.614062 0.905938 1 1 -7_ 1
3 115 91.43 91.464353  —0.034353 13 0.98 90.56  88.919300 1.640700
- 1.29 93.74  93.560279 0.179721 14 1.01 89.54  89.368427 0.171573 0'_11 9 0.9 01 1.1 21
5 1.46 96.73 96.105332 0.624668 15 111 89.85 90.865517 —1.015517 Residuals
6 1.36 94.45 94.608242 —0.158242 16 1.20 90.39 92212898 —1.822898
7 0.87 87.59 87.272501 0.317499 17 1.26 93.25 93.111152 0.138848
8 1.23 91.77 92.662025 —0.892025 18 1.32 93.41 94.009406 —0.599406
9 1.55 99.42 7.452713 1.967287 19 1.43 9498 95656205 —0.676205
10 1.40 93.65 95.207078 —1.557078 20 0.95 87.33 88.470173 —1.140173

11-7 Adequacy of the Regression Model 11-7 Adequacy of the Regression Model

_ . . . 2
Example 11-7 11-7.2 Coefficient of Determination (R?)

2 o * The quantity

Figure 11-11 Plot of . . is called the coefficient of determination and is often
residuals versus -1 . .

oredicted oxygen -15 . used to judge the adequacy of a regression model.

EI)}IJEI?ty’ », Example % e a1 s 95 97w *0=R*=1;

Predicted valuss,

» We often refer (loosely) to R? as the amount of
variability in the data explained or accounted for by the
regression model.



11-7 Adequacy of the Regression Model

11-7.2 Coefficient of Determination (R?)

* For the oxygen purity regression model,
R?=SS;/SS,
=152.13/173.38
=0.877

* Thus, the model accounts for 87.7% of the
variability in the data.

11-9 Transformation and Logistic
Regression

Example 11-9

A research engineer is investigating the use of a windmill to generate electricity and has collected data
on the DC output from this windmill and the corresponding wind velocity. The data are plotted in Figure
11-14 and listed in Table 11-5.

Observation ‘Wind Velocity DC Output,
Number, i (mph), x, »
1 5.00 1.582
6.00 1.822
3 340 1.057
4 270 0.500
5 10.00 2236
6 9.70 2386
7 9.55 2294
8 3.05 0558
9 815 2.166
10 6.20 1.866
11 290 0.653
12 6.35 1.930
13 4.60 1562
14 5.80 1.737
15 7.40 2.088
16 3.60 1137
17 7.85 2179
Table 11-5 Observed Values Y s 550 2112
1 20 545 1501
and Regressor Variable x,for
2 10.20 2310
Example 11-9.
24 395 1144

25 245 0.123

11-9 Transformation and Logistic Regression

We occasionally find that the straight-line regression model ¥ = B, + B,x + € is inappropri-
ate because the true regression function 1s nonlinear. Sometimes nonlinearity 1s visually de-
termined from the scatter diagram, and sometimes, because of prior experience or underlying
theory, we know in advance that the model 1s nonlinear. Occasionally, a scatter diagram will
exhibit an apparent nonlinear relationship between ¥and x. In some of these situations, a non-
linear function can be expressed as a straight line by using a suitable transformation. Such
nonlinear models are called Intrinsically linear.

11-9 Transformation and Logistic
Regression

30
L] l' .
.
» 20 , 0
- .0 .
8 10 o
.O
. 04
00 Lyt . o0
0" 2 4 6 8 10 02 S,
Wind velcity, x -
Figure 11-14  Plot of DC output y versus wind velocity x 00 o . '
for the windmill data. . ‘.
: . .
-02
.
.
-04
Figure 11-15  Plot of
residuals e, versus fit- ~ ~06 ‘
ted values j for the 04 08 12 16 20 24
windmill data. 3



11-9 Transformation and Logistic

Regression

3.0
oo .
- 20 Tetl .
§-. . ...
E
(&}
o 10
Figure 11-16  Plot of
DC output versus 00 0.10 0.20
x" = 1/x for the wind-
mill data.

0.30 0.40 0.530

Figure 11-16 is a scatter diagram with the transformed variable x” = 1/x. This plot appears linear, indicat-
ing that the reciprocal transformation is appropriate. The fitted regression model is

§ = 2.9789 — 6.9345x"

The summary statistics for this model are R* = 0.9800, MS; = 6> = 0.0089, and F, = 1128.43

(the P value is <0.0001).

Muldple Linear

Regfession

11-9 Transformation and Logistic

Regression
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Figure 11-17 Plot of residuals versus
fitted values ¥, for the transformed model
for the windmill data.
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Figure 11-18 Normal probability plot of
the residuals for the transformed model for
the windmill data.

A plot of the residuals from the transformed model versus y is shown in Figure 11-17. This plot
does not reveal any serious problem with inequality of variance. The normal probability plot, shown in
Figure 11-18, gives a mild indication that the errors come from a distribution with heavier tails than the
normal (notice the slight upward and downward curve at the extremes). This normal probability plot has
the z-score value plotted on the horizontal axis. Since there is no strong signal of model inadequacy. we

conclude that the transformed model is satisfactory.

12-1 Multiple Linear Regression Models

CHAPTER OUTLINE

12-1 MULTIPLE LINEAR REGRESSION
MODEL

12-1.1 Intreduction

12-1.2 Least Squares Estimation of
the Parameters

12-1.3 Matrix Approach to Multiple
Lincar Regression

12-1.4 Propertics of the Least Squares
Estimators

12-2 HYPOTHESIS TESTS IN MULTIPLE
LINEAR REGRESSION
2-2.1 Test for Significance of

Regression

2-2.2 Tests on Individual Regression
Cocfficients and Subsets of
Cocfficients

12-3 CONFIDENCE INTERVALS

IN MULTIPLE LINEAR
REGRESSION

2-3.1 Confidence Intervals on
Individual Regression
Cocfficients

2-3.2 Confidence Interval on
the Mean Response

PREDICTION OF NEW
OBSERVATIONS

MODEL ADEQUACY CHECKING
2-5.1 Residual Analysis
12-5.2 Influential Obscrvations

ASPECTS OF MULTIPLE
REGRESSION MODELING

12-6.1 Polynomial Regression Models

12-6.2 Categorical Regressors and
Indicator Variables

12-6.3 Sclection of Variables and
Model Building

12-6.4 Multicollincarity

12-1.1 Introduction

« Many applications of regression analysis involve
situations in which there are more than one

regressor variable.

* A regression model that contains more than one
regressor variable is called a multiple regression

model.



12-1 Multiple Linear Regression Models

12-1.1 Introduction

» For example, suppose that the effective life of a cutting
tool depends on the cutting speed and the tool angle. A
possible multiple regression model could be

V=13 + B + By + e
where
Y — tool life
X, — cutting speed

X, — tool angle

12-1 Multiple Linear Regression Models

12-1.1 Introduction

[n general, the dependent variable or response Y may be related to £ independent or

regressor variables. The model

V=0 + B+ By + - + By + € (12-2)

is called a multiple linear regression model with & regressor variables. The parameters B, j=0,
I, ..., k, are called the regression coefficients. This model describes a hvperplane in the -
dlmumon 1l space of the regressor variables {x;}. The parameter 3; represents the expected change
in response } per unit change in x; when all tlu remaining regressors X; (i # j) are held constant.

12-1 Multiple Linear Regression Models

12-1.1 Introduction

240 /;,, AT Z7|
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Figure 12-1 (a) The regression plane for the model E(Y)
=50 + 10x, + 7x,. (b) The contour plot

12-1 Multiple Linear Regression Models

12-1.1 Introduction
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Figure 12-2 (a) Three-dimensional plot of the
regression model E(Y) = 50 + 10x, + 7Xx, + 5X;X,.

(b) The contour plot



12-1 Multiple Linear Regression Models

12-1.1 Introduction
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Figure 12-3 (a) 3-D plot of the regression model
E(Y) =800 + 10x, + 7X,— 8.5%,2 — 5x,2 + 4X4X5.
(b) The contour plot

12-1 Multiple Linear Regression Models

12-1.2 Least Squares Estimation of the Parameters

* The least squares function is given by
n n k 2
L= E:l E,; = zl (-"i — B“ — Z Bj.\',:i)
i= i= Jj=

* The least squares estimates must satisfy

aL : I
- o ) = _2 2 Vi — B“ - z Bl\’/ =0
Bo lp,8,.. .o = F=
and
al. n . k . .
,)_ L . = =2 Z Vi — BU - E BI"I \” =0 J = 1. 2. ceey
By 18, 8.6, = =

/\,

12-1 Multiple Linear Regression Models

12-1.2 Least Squares Estimation of the Parameters

The method of least squares may be used to estimate the regression coefficients in the mul-
tiple regression model, Equation 12-2. Suppose that n > k observations are available, and let

x;; denote the ith observation or level of variable X The observations are

(X510 Xi20 oe v s Xigo Vi) i=1,2,....n and n=>k

[t is customary to present the data for multiple regression in a table such as Table 12-1.

Table 12-1 Data for Multiple Linear Regression

y X X2 cas Xk
il n X2 cas Xk
y2 21 22 cen X2k
Va Xel X2 ces Xk

12-1 Multiple Linear Regression Models

12-1.2 Least Squares Estimation of the Parameters

* The least squares normal Equations are
nBo + By Zw\'il + B, Z»“i: +o [:”k;»\'m = ;.1}'

. n N n 5 R n . n n
Bo Z}-Xu +B X B Sxax+ o+ By Do =
i= i=1 i=1 =1 =

P .o .n P n
Bo Z} X+ By X v By Dxaxn o B Dk =S v
= = = = =

* The solution to the normal Equations are the least
squares estimators of the regression coefficients.



12-1 Multiple Linear Regression Models 12-1 Multiple Linear Regression Models

12-1.3 Matrix Approach to Multiple Linear Regression 12-1.3 Matrix Approach to Multiple Linear Regression
Suppose the model relating the regressors to the ,
response is y=Xp + e
Vi =Bot By + Baxip + o+ Bryp + € i=1,2,....n where
In matrix notation this model can be written as . L - 8 .
V= \B + € y= ";: X = 1 '\A?] '\.::: ka p= B:I and € = )
Yn 1 ~\-r.1 1 \;l '\'I.v'k B-I. €n
12-1 Multiple Linear Regression Models 12-1 Multiple Linear Regression Models
12-1.3 Matrix Approach to Multiple Linear Regression 12-1.3 Matrix Approach to Multiple Linear Regression

The fitted regression model is
We wish to find the vector of least squares ;
estimators that minimizes: Ji=PBot 2 Bovy i=12....n (12-14)
J=
n
L= Ye&=¢ee=(y—XB)y— XB)

= In matrix notation, the fitted model is

: : : y=Xp
The resulting least squares estimate is
The difference between the observation y; and the fitted value ¥; is a residual, say,
¢; = y; — ¥ The (n X 1) vector of residuals is denoted by

B =(X'X)" X'y (12-13)

e=y—y (12-15)



12-1 Multiple Linear Regression Models 12-1 Multiple Linear Regression Models

. .
Example 12-2 5415 - .
‘e
Strength .:' . . '.
Table 12-2 Wire Bond Data for Example 11-1 24.45 3 % L 4 H : s
Observation  Pull Strength  Wire Length  Die Height Observation  Pull Strength ~ Wire Length Die Height o1 * 2
Number ¥ X X Number ¥ X, X, . .
d L]
1 9.95 2 50 14 11.66 2 360 15.25 - * .o *
.
2 24.45 8 110 15 21.65 4 205 '.'-' Length " v ‘e
3175 7 75 *
3 3175 11 120 16 17.89 4 400 5 of .. s
4 35.00 10 550 17 69.00 20 600 L . - .
5 25.02 8 295 18 10.30 1 585 . o o . . N
6 16.86 4 200 19 34.93 10 540 452.5 .. L
. . h ..!c . . LES .
7 14.38 2 375 20 46.59 15 250 - . . . Height
8 9.60 2 52 21 44.88 15 290 187.5 .o . *
9 2435 9 100 2 54.12 16 510 o« *° o *%°
10 27.50 8 300 23 56.63 17 590
54.15 5.75 5. g X
1 17.08 4 412 24 213 6 100 24.45 541 5.75 15.25 187.5 4825
12 37.00 11 400 25 2115 5 400
13 4195 12 500

Figure 12-4 Matrix of scatter plots (from Minitab) for the
wire bond pull strength data in Table 12-2.

1 2 50 [9.957]
1 8 110 24.45 * ° .
Example 12-2 Vo] [ 12-1 Multiple Linear Regression Models
1 10 550 35.00
1 8 295 25.02
1 4 200 16.86 Example 12_2
1 2 375 14.38 - R ..
2 5 9.60 I'he X'X matrix is
19 100 24.35 S«
boyow 2730 IR T | 25 206 8294
1 4 412 17.08 X'X = | 2 g < I8 110 ] _ 20¢ y 306 77177
111 400 37.00 AAT L2 0TS T | Y0 &Yh LA
X=|1 12 500| y=|4195 50 110 -+ 400 l N 4(')“ 8,294 77,177 3,531,848
12 360 11.66
14 205 21.65
L4100 1759 and the X'y vector is
120 600 69.00 0.05
11 585 10.30 | 1 1 7-1. 4‘< 725.82
110540 34.93 Xy=]|2 8§ - 5 T = 8.008.37
I 15 250 46.59 :
5 274 8113
U 1s a0 g 50110 4001 1 274.811.31
I 16 510 54.12
1 17 590 56.63 The least squares estimates are found from Equation 12-13 as
16 100 2.13 X
L5 400 2115 ] B=(X'X)"'X"y




12-1 Multiple Linear Regression Models

Example 12-2

or
Bo 25 206 8204 17 725.82
B, | =] 206 239 77177 8.008.37
B, 18,294 77177 3.531.848 274.811.31
0.214653  —0.007491  —0.000340 725.82 226379143
= | —0.007491 0.001671  —0.000019 8.008.47 | = | 2.74426964
| —0.000340  —0.000019  +0.0000015 | [ 274.811.31 0.01252781

Therefore, the fitted regression model with the regression coefficients rounded to five decimal
places is

P = 226379 + 2.74427x, + 0.01253x,

This is identical to the results obtained in Example 12-1.

12-1 Multiple Linear Regression Models

Example 12-2

Table 12-3  Observations, Fitted Values, and Residuals for Example 12-2

Observation Observation
Number W e=y—J Number e W a=y—
1 8.38 1.57 14 11.66 12.26 —0.60
2 25.60 —1.15 15 21.65 15.81 5.84
3 33.95 —-2.20 16 17.89 18.25 —-0.36
- 36.60 —1.60 17 69.00 64.67 433
5 27.91 —-2.89 18 10.30 12.34 —2.04
6 1575 111 19 3493 36.47 —1.54
7 12.45 1.93 20 46.59 46.56 —0.03
8 8.40 1.20 21 4488 47.06 =218
9 28.21 —3.86 22 54.12 52.56 156
10 27.98 —0.48 23 56.63 56.31 0.32
11 18.40 —132 24 22.13 19.98 215
12 3746 —0.46 25 2115 21.00 0.15
13 41.46 049

12-1 Multiple Linear Regression Models

Example 12-2

This regression model can be used to predict values of pull strength for various values of
wire length (x,) and die height (x,). We can also obtain the fitted values 7; by substituting each
observation (x;, xp), i = 1,2, ..., n, into the equation. For example, the first observation has

x1; = 2 and x;; = 50, and the fitted value is

$1 = 226379 + 2.74
226379 + 2.7
=838

427 X + ()(”25“)\
442702) + 0.01253(5( )

The corresponding observed value is y; = 9.95. The residual corresponding to the first obser-
vation is

ep =y — 0

Table 12-3 displays all 25 fitted values y; and the corresponding residuals. The fitted values
and residuals are calculated to the same accuracy as the original data.

Table 12-4  Minitab Multiple Regression Output for the Wire Bond Pull Strength Data

Regression Analysis: Strength versus Length, Height

The regression equation is
Strength = 2.26 + 2.74 Length + 0.0125 Height

Predictor Coef SE Coef T P VIF
Constant By 2.264 1.060 214 0044

Length By 2.74427 009352 2934 0000 12
Height B, 0.012528  0.002798 448 0000 12

S =2288 R-Sq = 98.1% R-Sq (adj) = 97.9%

PRESS = 156,163 R-Sq (pred) = 97.44%

Analysis of Variance

Source DF SS MS F P
Regression 2 5990.8 29954 572.17 0.000
Residual Eror 22 1152 5202
Total 24 61059
Source DF Seq 88
Length 1 58859
Height 1 104.9
Predicted Values for New Observations
New Obs Fit SE Fit 95.0% CI 95.0% PI
1 27.663 0482 (26.663, 28.663) (22.814, 32.512)

Values of Predictors for New Observations

New Obs  Length Height
1 8.00 275




12-1 Multiple Linear Regression Models

Estimating o?

An unbiased estimator of 62 is

,.Z' o] S5

n—p n-—p (12-16)

~2
ag- =

12-1 Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Individual variances and covariances:

V() =o'Cp. j=0.1.2
CO\'(B,’. B/) = (J':(w!'l'. i # /

In general,

cm’(fi) = 0'3(‘\""\")_' =o' C

12-1 Multiple Linear Regression Models

12-1.4 Properties of the Least Squares Estimators

Unbiased estimators:

E(B) = E[(X'X)”'X"Y]
E[(X'X)™'X'(XB + €)]
E[(X'X)7IX'XB + (X'X)"'X'€]

I

5]
Covariance Matrix:
('( )0 (‘() | Cl )2
C= (\\)_l =|Cyp C O
G G Oy

12-2 Hypothesis Tests in Multiple Linear

Regression
12-2.1 Test for Significance of Regression

The appropriate hypotheses are

HyBy=By="=B=0

Hy: B;#0 for at least one j (12-17)

The test statistic is

SSp/k MS,
o=k _ My (12-18)
SSp/(n —p) MSg




12-2 Hypothesis Tests in Multiple Linear
Regression

12-2.1 Test for Significance of Regression

Table 12-9  Analysis of Variance for Testing Significance of Regression in Multiple Regression

Source of Degrees of

Variation Sum of Squares Freedom Mean Square Fy
Regression SSg k MSy MSp/MSg
Error or residual SSg n-p MS¢
Total SSr n-—1

12-2 Hypothesis Tests in Multiple Linear
Regression

R? and Adjusted R?
The coefficient of multiple determination

. SS SSr
R- = .—.R =1- —[
SSr SSt

* For the wire bond pull strength data, we find that R? =
SSr/SS+=5990.7712/6105.9447 = 0.9811.

* Thus, the model accounts for about 98% of the
variability in the pull strength response.

12-2 Hypothesis Tests in Multiple Linear
Regression
Example 12-3

Table 12-10  Test for Significance of Regression for Example 12-3

Source of Degrees of

Variation Sum of Squares Freedom Mean Square fo P-value
Regression 5990.7712 2 2995.3856 572.17 1.08E-19
Error or residual 115.1735 22 5.2352
Total 6105.9447 24
The analysis of variance is shown in Table 12-10. To test Hy: B, = B, = 0, we calculate the
statistic

MSp  2995.3856
YO MSE T 5.2352

Since fy = fyos200 = 3.44 (or since the P-value is considerably smaller than a = 0.05),
we reject the null hypothesis and conclude that pull strength is linearly related to either wire
length or die height, or both. However, we note that this does not necessarily imply that the

12-2 Hypothesis Tests in Multiple Linear
Regression

R? and Adjusted R?

The adjusted R?is
, . SS/in=p) o
Rai =1 = 5n = 1) (1222

 The adjusted R? statistic penalizes the analyst for
adding terms to the model.

* It can help guard against overfitting (including
regressors that are not really useful)



12-2 Hypothesis Tests in Multiple Linear
Regression

12-2.2 Tests on Individual Regression Coefficients and
Subsets of Coefficients

Hy B, = Bo
Hy:B; # Bjo (12-23)

The test statistic for this hypothesis is
B,'J - B B - B_,-'U

— = (12-24)
\ U-(ﬁu S(’(B}ﬂ)

Ty =

* Reject Hy if [to| > to -

* This is called a partial or marginal test

12-2 Hypothesis Tests in Multiple Linear
Regression

Example 12-4

The P-value for t, = 44767 is P = 0.0002, so with a = 0.05 we would reject the null hy-
pothesis. Note that this test measures the marginal or partial contribution of x, given that x, is
in the model. That is, the t-test measures the contribution of adding the variable x, = die
height to a model that already contains x; = wire length. Table 12-4 shows the value of the
t-test computed by Minitab. The Minitab #-test statistic is reported to two decimal places. Note
that the computer produces a t-test for each regression coefficient in the model. These -tests
indicate that both regressors contribute to the model.

12-2 Hypothesis Tests in Multiple Linear
Regression

Example 12-4

Consider the wire bond pull strength data, and suppose that we want to test the hvpothesis that

the regression coefficient for x, (die height) is zero. The hypotheses are
Hy:B,=0
Hy: By # 0

The main diagonal element of the (X'X)™" matrix corresponding to B, is C5, = 0.0000015,
so the t-statistic in Equation 12-24 is

B, 0.01253 _
= = —— — = 44767
V62Cy  V(5.2352)(0.0000015)

Note that we have used the estimate of o= reported to four decimal places in Table 12-10. Since
fooasa = 2.074, we reject Hy: B, = 0 and conclude that the variable x, (die height) con-
tributes significantly to the model. We could also have used a P-value to draw conclusions.

R commands and outputs

> dat=read.table("http://www.stat.ucla.edu/~hgxu/statl05/
data/tablel2_2.txt", h=T)

> g=lm(Strength~Length+Height, dat)
> summary(g)

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 2.263791 1.060066 2.136 0.044099 *
Length 2.744270 0.093524 29.343 < 2e-16 **x
Height 0.012528 0.002798 4.477 0.000188 ***
Residual standard error: 2.288 on 22 degrees of freedom
Multiple R-Squared: 0.9811, Adjusted R-squared: 0.9794

F-statistic: 572.2 on 2 and 22 DF, p-value: < 2.2e-16



Design and Analysis

13-1 Designing Engineering Experiments

of Single-Factor

Experiments: The

Analysis of Variance

Every experiment involves a sequence of activities:

1. Conjecture — the original hypothesis that motivates the

CHAPTER OUTLINE experiment.

13-1 DESIGNING ENGINEERING 133 RANDOM EFFECTS MODEL 2. Experiment — the test performed to investigate the
EXPERIMENTS 13-3.1 Fixed Versus Random Factors .

132 COMPLETELY RANDOMIZED 13.3.2 ANOVA and Variance conjecture.
SINGLE-FACTOR EXPERIMENT T Components
13-2.1 Example 13-4 RANDOMIZED COMPLETE BLOCK 3. Analysis — the statistical analysis of the data from the
13-2.2 Analysis of Variance DESIGN experiment
13-2.3 Multiple Comparisons Following 13-4.1 Design and Statistical Analysis )

the ANOVA
13-2.4 Residual Analysis and Model

Checking

o ple Compurons 4. Conclusion — what has been learned about the original
g, csidual Analysis and odc

Checking conjecture from the experiment. Often the experiment will

lead to a revised conjecture, and a new experiment, and so
forth.

13-2.5 Determining Sample Size

13-2 The Completely Randomized Single-
Factor Experiment

13-2 The Completely Randomized Single-
Factor Experiment

13-2.1 An Example 13-2.1 An Example
N N - . L .. . . Table 13-1 Tensile Strengeh of Paper (psi)
A manufacturer of paper used for making grocery bags is interested in improving the tensile
strength of the product. Product engineering thinks that tensile strength is a function of the Hardwood Observations
hardwood concentration in the pulp and that the range of hardwood concentrations of practi- Concentration (%) 1 B 3 4 5 6 Totals Averages
cal interest is between 5 and 20%. A team of engineers responsible for the study decides to in- 3 7 8 13 1 ? 10 60 10.00
10 12 17 13 18 19 15 94 15.67

vestigate four levels of hardwood concentration: 5%, 10%, 15%., and 20%. They decide to

) . ) ) ; . 15 14 18 19 17 16 18 102 17.00
make up six test specimens at each concentration level, using a pilot plant. All 24 specimens 20 19 25 2 2 18 20 127 2117
are tested on a laboratory tensile tester, in random order. The data from this experiment are 383 15.96

shown in Table 13-1.



13-2 The Completely Randomized Single-
Factor Experiment

13-2.1 An Example

» The levels of the factor are sometimes called
treatments.

* Each treatment has six observations or replicates.

e The runs are run in random order.

13-2 The Completely Randomized Single-
Factor Experiment
13-2.2 The Analysis of Variance

Suppose there are a different levels of a single factor
that we wish to compare. The levels are sometimes
called

Table 13-2  Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages

1 m Y2 . Vin . V1.

%

2 ¥ Y

a Yal Ya2 . Yan Ya: _‘_I.: .

13-2 The Completely Randomized Single-
Factor Experiment

13-2.1 An Example

Hardwood concentration (%)

Figure 13-1 (a) Box plots of hardwood concentration data.
(b) Display of the model in Equation 13-1 for the completely
randomized single-factor experiment

13-2 The Completely Randomized Single-
Factor Experiment
13-2.2 The Analysis of Variance

We may describe the observations in Table 13-2 by the
linear statistical model:

, i=1,

= (13-1)

o b

The model could be written as

L

ro o

.. n



13-2 The Completely Randomized Single-
Factor Experiment

13-2.2 The Analysis of Variance

The treatment effects are usually defined as deviations
from the overall mean so that:

a
>7=0
i=1

13-2 The Completely Randomized Single-
Factor Experiment

13-2.2 The Analysis of Variance

13-2 The Completely Randomized Single-
Factor Experiment

13-2.2 The Analysis of Variance
We wish to test the hypotheses:

Hyim=m=-=1,=0

Hy:7; # 0 for at least one i

The analysis of variance partitions the total variability
into two parts.

13-2 The Completely Randomized Single-
Factor Experiment

The sum of squares Identity 1s

Z{ Z‘( (=Y =n Z (7. — 7.0+ Z{ > (v — 7P (135

or svmbolically

SST = SSTreatments + S5 (13-6)

13-2.2 The Analysis of Variance

The expected value of the treatment sum of squares 1s
. a
E(SS Treatmenss) = (@ — 1)o” + n E T
=1

and the expected value of the error sum of squares is

F(SSE) = a(n — 1)a?

The ratio MS,c.iments = SSreatments’ (@ — 1) 18 called the
mean square for treatments.



13-2 The Completely Randomized Single-
Factor Experiment

13-2.2 The Analysis of Variance

The appropriate test statistic is

5 SS Treamens/(@ — 1) _ MS Treatments
" SSg/[a(n — 1)] MSg

We would reject H, if £, >

a,a-1,a(n-1)

13-2 The Completely Randomized Single-
Factor Experiment

13-2.2 The Analysis of Variance

Analysis of Variance Table

Table 13-3  The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square Fy
MS Teextmeats
Treatments SS Treatments a—1 MS T cumens %
Mg
Error SSe ain — 1) MSg

Total SSr an — 1

13-2 The Completely Randomized Single-
Factor Experiment

13-2.2 The Analysis of Variance

The sums of squares computing formulas for the ANOVA with equal sample sizes in
each treatment are

a » 2
SSr= 2 X v+ (13-8)
=1 j=1 = N
and
o 2 3
. _ yi. ys o
\‘\Treannems - Z n - T (13-9)

The error sum of squares is obtained by subtraction as

SSg = S57 — SSTreatments (13-10)

where N=na is the total number of observations.

13-2 The Completely Randomized Single-
Factor Experiment

Example 13-1

Consider the paper tensile strength experiment described in Section 13-2.1. We can use the
analysis of variance to test the hypothesis that different hardwood concentrations do not affect
the mean tensile strength of the paper.

The hypotheses are

Hymi=m=m3=7,=10

Hy:7; # 0 forat leastone i .



13-2 The Completely Randomized Single-
Factor Experiment

Example 13-1
We will use @ = 0.01. The sums of squares for the analysis of variance are computed from
Equations 13-8, 13-9, and 13-10 as follows:

408, )2
SSr= 2 20—
i=1 j=1 /
s ) o (3837
= (7 4 8P + - + (20 — =5~ = 51296
. viooo2
SS'I'|‘cmmcm.~‘ = 2 + - T

SSE = SST - SS'I'rcmmcms
= 51296 — 382.79 = 130.17

Table 13-5  Minitab Analysis of Variance Output for Example 13-1

One-Way ANOVA: Strength versus CONC

Analysis of Variance for Strength

Source DF SS MS F P
Conc 3 38279 127.60 19.61 0.000
Error 20 130.17 651
Total 23 51296 Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev e i

5 6 10.000 2.828 (—*—)

10 6 15.667 2.805 (—*—)

15 6 17.000 1.789 (—*—)

20 6 21.167 2.639 (—*—)

et ——— -

Pooled StDev = 2551 10.0 15.0 20.0 25.0

Fisher pairwise comparisons

Family error rate = 0.192
Individual error rate = 0.0500

Critical value = 2.086

Intervals for (column level mean) — (row level mean)
5 10 15
10 —8.739
—2.594
15 —10.072
—-3.928
20 —14.239 —-7.239
—8.004 —1.094

13-2 The Completely Randomized Single-
Factor Experiment

Example 13-1

The ANOVA is summarized in Table 13-4. Since f ;320 = 4.94. we reject Hy and conclude
that hardwood concentration in the pulp significantly affects the mean strength of the paper.
We can also find a P-value for this test statistic as follows:

P = P(F3y5, > 19.60) = 3.59 x 107°
Since P == 3.59 X 107" is considerably smaller than a = 0.01, we have strong evidence to

conclude that Hy is not true.
Table 13-4 ANOVA for the Tensile Strength Data

Source of Degrees of

Variation Sum of Squares Freedom Mean Square o P-value
Hardwood

concentration 382.79 3 127.60 19.60 359E-6
Error 130.17 20 651

Total 51296 23

13-2 The Completely Randomized Single-
Factor Experiment

A 100(1 — a) percent confidence interval on the mean of the ith treatment p; is

_ MSg . MSg .
Yie — Iu,x:.a:,,—lj.\ = Wi = Vit a1 \ T (13-11)

The 95% CI on the mean of the 20% hardwood is

[}_' 12002520y MSE/

[21.167 L (2.086)/6.51/6

19.00 psi = py = 23.34 psi



13-2 The Completely Randomized Single-

Factor Experiment

A 100(1 — a) percent confidence interval on the difference in two treatment means
o iy 18
L 2MSp L 2MSg
Ve =T " lajrdn-n\ T =T W= TNt lapzapeny| "
(13-12)

For the hardwood concentration example,
A 95% CI on the difference in means Y, - Y, is

[-‘_‘3-— ¥, fo.o::::om
[17.00— 15,67 + (2.086)y2(6 51 /6
174 = py — py =440

13-2 The Completely Randomized Single-

Factor Experiment

13-2.3 Multiple Comparisons Following the ANOVA

The least significant difference (LSD) is

2MSg
af2a(n—1) \

LSD =t »
\ A

(13-16)

If the sample sizes are different in each treatment:

LSD = 142 n-a \ MSg (7,- N ’_’/>

13-2 The Completely Randomized Single-
Factor Experiment

An Unbalanced Experiment

The sums of squares computing formulas for the ANOVA with unequal sample sizes
#; in each treatment are

S8y = 2 2},\-,}? = IT (13-13)

.
SSTroatments = O, 7= — 5 (13-14)
=1 - -

and

SSg = SST — SSTreatments (13-15)

13-2 The Completely Randomized Single-
Factor Experiment

Example 13-2

We will apply the Fisher LSD method to the hardwood concentration experiment. There are
a =4 means, n = 6, MS; = 6.51, and fy955,0 = 2.086. The treatment means are

1. = 10.00 psi

V. = 15.67 psi
3. = 17.00 psi
V. = 2117 psi

The value of LSD is LSD = #4025.00V2MSg /n = 2.086V2(6.51)/6 = 3.07. Therefore, any
pair of treatment averages that differs by more than 3.07 implies that the corresponding pair
of treatment means are different.



13-2 The Completely Randomized Single- 13-2 The Completely Randomized Single-

Factor Experiment Factor Experiment
Example 13-2

The comparisons among the observed treatment averages are as follows:

Example 13-2

4vs. 1 =21.17 = 10.00 = 11.17 = 3.07

4vs.2=21.17 — 15.67 = 5.50 = 3.07 5% 105 15% 20%

4vs. 3 =21.17 = 17.00 = 4.17 > 3.07 l l l l

3vs. 1 =17.00 — 10.00 = 7.00 = 3.07

N — 17 _ 1z _ a1 1 . P ™~

3vs.2 =17.00 — 15.67 = 133 < 3.07 0 5 10 15 20 25 psi
2vs. 1 =15.67 — 10.00 = 5.67 = 3.07 —

Figurc 13-2  Results of Fishers LSD method in Example 13-2.
From this analysis, we see that there are significant differences between all pairs of means
except 2 and 3. This implies that 10 and 15% hardwood concentration produce approximately
the same tensile strength and that all other concentration levels tested produce different tensile
strengths. [t is often helpful to draw a graph of the treatment means, such as in Fig. 13-2, with . . , .
the means that are not drift‘crcnt umlcrlinc]d. This graph clearly reveals the results of the exper- Flgure 13-2 Results of Fisher’s LSD method in Example 13-2
iment and shows that 20% hardwood produces the maximum tensile strength.

13-2 The Completely Randomized Single- 13-2 The Completely Randomized Single-
Factor Experiment Factor Experiment

13-2.4 Residual Analysis and Model Checking 13-2.4 Residual Analysis and Model Checking

Table 13-6 Residuals for the Tensile Strength Experiment R
Hardwood .
Concentration (%) Residuals .
5 —3.00 —2.00 5.00 1.00 —1.00 0.00 ' . :
10 -3.67 133 —267 233 333 —0.67 Figure 13-4 Normal 5 {
15 -3.00 1.00 200 000 —100 1.00 probability plot of o :
2 -2.17 3.83 0.8 ’3 -3.17 —-1.17 ; E ‘
20 217 . RESS LS i — residuals from the 5 R
hardwood concentration a .
experiment. .
-4 -2 0 2 4 €

Residual value



13-2 The Completely Randomized Single-
Factor Experiment

13-2.4 Residual Analysis and Model Checking

Figure 13-5 Plot of
residuals versus factor
levels (hardwood
concentration).

5% 10% 15% 20%

Residual value
o

IS

13-4 Randomized Complete Block Designs

13-2 The Completely Randomized Single-
Factor Experiment

Figure 13-6 Plot of
residuals versus J,

13-2.4 Residual Analysis and Model Checking

100 150 20.0 250 it

Residud vaue

-2

13-4 Randomized Complete Block Designs

13-4.1 Design and Statistical Analyses

The randomized block design is an extension of the
paired t-test to situations where the factor of interest has
more than two levels.

Blxck 1 Blck 2 Block 2 Elock 4

1 51 31 1
iz iz 2 iz
3 3 3 3

Figure 13-9 A randomized complete block design.

13-4.1 Design and Statistical Analyses

For example, consider the situation of Example 10-9,
where two different methods were used to predict the
shear strength of steel plate girders. Say we use four
girders as the experimental units.

Table 13-9 A Randomized Complete Block Design

Treatments Block (Girder)
(Method) 1 2 3 7
1 0t V12 mn Y14
= L ) 7] i Va4
: Vil Y2 J V34




13-4 Randomized Complete Block Designs

13-4.1 Design and Statistical Analyses

General procedure for a randomized complete block
design:
Table 13-10 A Randomized Complete Block Design with @ Treatments and b Blocks

13-4 Randomized Complete Block Designs

Blocks
Treatments 1 2 coo b Totals Averages
1 i 2 . Vi . V-
2 yn V2 .. Vap V2. V.
a Yal Va2 ‘e Vab Va Va
Totals Vo ya Vb Y.
Averages Y Va e Vb y..

13-4 Randomized Complete Block Designs

13-4.1 Design and Statistical Analyses

We are interested in testing:
Hyti=m="=7,=0

Hy:1; # O at least one i

13-4.1 Design and Statistical Analyses

The appropriate linear statistical model:

i=1.

. : L

b

ro b2

We assume

« treatments and blocks are initially fixed effects

* blocks do not interact

e 27 = 0and ::;I Bi=0

13-4 Randomized Complete Block Designs

The sum of squares Identity for the randomized complete block design is

a b a b
Ef E{ (y—y)==0 2} (Ve —¥.) +a Ef ¥y — 7.
: e b : )
+ > D (5 =¥ — ¥ +7.)° (13-27)
i=] j=1

or svmbolically

\‘\‘T = ‘\.\Tre—annems + Sx{%:d‘.\' + 55g

13-4.1 Design and Statistical Analyses

The mean squares are:

. -S'-S“I'rc'mncnl\'
A /.S'l'rcauncnl.\‘ Ca—-1
a— 1
bh—1
SSg

(a—1)b—1)

MSpjocks =

MSg =



13-4 Randomized Complete Block Designs

13-4.1 Design and Statistical Analyses

The expected values of these mean squares are:

=%

5

a—1

b
(12|Bf

F(MSTreatments) = 0~ +

E(MSgjocks) = 07 + =

E(MSg) = o*

13-4 Randomized Complete Block Designs

Example 13-5

An experiment was performed to determine the effect of four different chemicals on the
strength of a fabric. These chemicals are used as part of the permanent press finishing

process. Five fabric samples were selected, and a randomized complete block design
was run by testing each chemical type once in random order on cach fabric sample. The
data are shown in Table 13-12. We will test for differences in means using an ANOVA with
a = 0.01.
Table 13-12  Fabric Strength Data—Randomized Complete Block Design
Treatment Treatment
Fabric Sample Totals Averages
Chemical Type 1 2 3 4 5 ¥y 7,
1 1.3 1.6 0.5 1.2 1.1 57 114
2 22 24 0.4 2.0 1.8 8.8 1.76
3 1.8 1.7 0.6 1.5 1.3 6.9 1.38
4 39 4.4 2.0 4.1 34 17.8 3.56
Block totals y., 9.2 10.1 35 8.8 7.6 39.2(y..)
Block averages¥, 230 253 088 220 190 ) 1.96(7..)

13-4 Randomized Complete Block Designs

13-4.1 Design and Statistical Analyses

Table 13-11 ANOVA for a Randomized Complete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square Fy
S5 s MS .
Treatments SSTreaments a-—1 2 Treatments MS Teatments
a—1 MS;
SShlocks
Blocks SS8locks b—1 —Blocla
b—1
) - . . . SSg
Error SSg (by subtraction) @a—=1)b-=1) m
Total SSr ab -1

13-4 Randomized Complete

Block Designs

Example 13-5

Table 13-13  Analysis of Variance for the Randomized Complete

Block Experiment

Source of Degrees of

Variation Sum of Squares Freedom Mean Square h P-value
Chemical types

(treatments) 18.04 3 6.01 75.13 4.79 E-8
Fabric samples

(blocks) 6.69 1.67

Error 0.96 12 0.08

Total 25.69 19

The ANOVA is summarized in Table 13-13. Since f, = 75.13

> fooran = 3.95 (the P-value

i54.79 X 107%), we conclude that there is a significant difference in the chemical types so far

as their effect on strength is concerned.



13-4 Randomized Complete Block Designs 13-4 Randomized Complete Block Designs

Minitab Output for Example 13-5 13-4.2 Multiple Comparisons
Table 13-14 Minitab Analysis of Variance for the Randomized Complete . . . .
Block Design in Example 13-5 Fisher’s Least Significant Difference for Example 13-5

Analysis of Variance (Balanced Designs)

Factor Type Levels Values }—'1 = 114 l_\ = 1.6 1_ 3 = 138 1_ L= 356
Chemical fixed 4 1 2 3 4 ' “ o *
Fabric S fixed 5 1 2 3 4 5
(2057 _ 5 179, 20008) _ ¢4
C e N = 5 AMOE 2179 22 —

Analysis of Variance for strength LSD=t0.05,12 b A7 3 0.39
Source DF SS MS F P Chemical type
Chemical 3 18.0440 6.0147 75.89 0.000 - we
o e - S - 12 2 a
Fabric S + 6.6930 1.6733 2111 0.000 S <
Error 12 0.9510 0.0792
Total 19 25.6880

R N L ] L ] L L
F-test with denominator: Error Q 1 2 3 4 5 &
Denominator MS = 0.079250 with 12 degrees of freedom -
Numerator DF MS F P . i ,
Chemical 3 6015 7589 0.000 Figure 13-10 Results of Fisher’s LSD method.
Fabric S 4 1.673 21.11 0.000

13-4 Randomized Complete Block Designs 13-4 Randomized Complete Block Designs

13-4.3 Residual Analysis and Model Checking 05

4
2 £l Il:l M L] u »
' B
I
1 ° ! ' il & : (] T . o o
a o 0 s . 1 bij v o |
@ ! N P E R PR T 0 R PR PR
8 . . o, ' ¢ ‘ vl 2 3
= 0 ' o : E v : e |
E o ' 2 4 3 v . !
=} 00 5
-h_l ‘. (1]
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2
B
-050 -025 0 025 050 05

(a) Residuals by block. (b) Residuals by treatment

Residual value

(a) Normal prob. plot of residuals ~ (b) Residuals versus y;



Design of Experiments

with Several Factors

CHAPTER OUTLINE

14-1 INTRODUCTION
14-2 FACTORIAL EXPERIMENTS

14-3 TWO-FACTOR FACTORIAL
EXPERIMENTS

14-3.1 Statistical Analysis of the
Fixed-Effects Model

14-3.2 Model Adequacy Checking
14-3.3 One Observation per Cell

14-4 GENERAL FACTORIAL
EXPERIMENTS

14-5 2*FACTORIAL DESIGNS
14.5.1 22 Design

14-5.2 2% Design for k = 3 Factors

14-5.3 Single Replicate of the 2%
Design

14-5.4 Addition of Center Points to a
2F Design

14-6 BLOCKING AND CONFOUNDING

IN THE 2* DESIGN

14-7 FRACTIONAL REPLICATION OF

THE 2! DESIGN

14-7.1 One-Half Fraction of the 2%
Design

14-7.2 Smaller Fractions: The 28
Fractional Factorial

14.8 RESPONSE SURFACE METHODS

AND DESIGNS

14-2 Factorial Experiments

Definition

14-1 Introduction

* An experiment is a test or series of tests.

* The design of an experiment plays a major role in
the eventual solution of the problem.

* Inafactorial experimental design, experimental
trials (or runs) are performed at all combinations of
the factor levels.

* The analysis of variance (ANOVA) will be used as
one of the primary tools for statistical data analysis.

14-2 Factorial Experiments

By a factorial experiment we mean that in each complete trial or replicate of the
experiment all possible combinations of the levels of the factors are investigated.

Table 14-1 A Factorial Experiment with

Table 14-2 A Factorial Experiment with

Two Factors Interaction
Factor B Factor B
Factor A B Bhign Factor A = Bhign
Ajow 10 20 Alow 10 20
A high 30 40 A high 30 0

50

40 o Bhlgh
5 30 o Blow
2 20 -
b
8 10 .

0

Alow Apigh
Factor A

Figure 14-3 Factorial Experiment, no interaction.



14-2 Factorial Experiments 14-2 Factorial Experiments

50

40
.g 30 o Biow
g 20 @ ,
5 10 .

0 * Bhigh

Alow Ahlgh
Factor A

Figure 14-5 Three-dimensional surface plot of the data from

Figure 14-4 Factorial Experiment, with interaction. _ _
Table 14-1, showing main effects of the two factors A and B.

14-2 Factorial Experiments 14-2 Factorial Experiments

80

70

w
5]

2 3 60
15 >
y
5
50
-5
-15
05 10 15 20 25
Time (hr)
Figure 14-6 Three-dimensional surface plot of the data from Figure 14-7 Yield versus reaction time with temperature

Table 14-2, showing main effects of the A and B interaction. constant at 155° F.



14-2 Factorial Experiments

80

140 150 160 170 1280
Temperature (°F)

Figure 14-8 Yield versus temperature with reaction time
constant at 1.7 hours.

14-3 Two-Factor Factorial Experiments

Table 14-3 Data Arrangement for a Two-Factor Factorial Design

14-2 Factorial Experiments

Figure 14-9 \
Optimization 150 \ \\
experiment using the o |
one-factor-at-a-time 140 )
method. ~—— 6o%

0.5 1.0 1.5 2.0 2.5
Time (hr)

14-3 Two-Factor Factorial Experiments

Factor B
1 2 “ee b Totals Averages
I Y Yizs Yizis Vizzs Yis1s Visas
Vln s Vizm s Vitm Yy i
11 1 1. ) Vasl b
2 -
Factor A s Vaun <oy Voo cos Vopy »2
11 Yal 1) Nab1s Vab
a 1 Vab 1 T:

Totals Vo

1
Averages Vo Voo Vb

The observations may be described by the linear
statistical model:

i=1.2.....a
)’!'l'/\'zlL +Ti+B[.+(TB‘)I:/.+€[:j/\- Jj=1.2.....b
k=1.2,....n



14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model

b n y
L _ Vi
Vi = Vik Viw = — i=1,2,....a
o bn
a n V.je
= . = — = 2 b
) Zl "lely‘ y un j=1,2,.
n Vij-
= . — 2L = 2
) 2'\{‘ Vij = i | 2 e A
k=1 Ji=12,....b
a - e
Voo = 2 Vi Vouo =
i=l j=1 k=l abn

14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model

14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model

The hypotheses that we will test are as follows:

. Hpyty=1="=71,=0 (no main effect of factor 4)

H,: atleast one 1, # 0

2. HeBi=B,="=pB,=0 (no main effect of factor B)

H,: at least one 3; # 0

3. Hp(B)y =By ==(1B)pp =10 (no interaction)

H,: at least one (1) # 0

14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model

To test H: T; = 0 use the ratio

The sum of squares identity for a two-factor ANOVA is

a b n a
> (v — 7.2 = bn D, (T — 7. )?
i=1 j=1 k=1 i=1
b
+ anz(,\J —3..)
Jj=1
a b
+nY D (g — T — Ty A7)
i=l j=1
a b a
+ 2 2 2w =) (14-3)

or symbolically,

SST = SS.‘ + SSB -+ SSAB + SSE (14-4)

_ MS,
T MSg

FD

To test Hy: ;= 0 use the ratio

_ MS,
T MSg

F ‘I:I

To test Hy: (tf);; = 0 use the ratio

MS 3
MS;

FG:




14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model

Definition

14-3 Two-Factor Factorial Experiments

Computing formulas for the sums of squares in a two-factor analysis of variance.

SSr = 4-5
r 2 Z Z ubn (14-5)
S 2 lu abn (14-6)
1 1:

SSp= D> ———- 14-7

B san  abn : /
SSp= S oo s (14-8)
ooAB =1 j=1" abn 4 = ;
SSp =SSy — SS,3 — SS; — SSp (14-9)

14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model

Example 14-1

Aircraft primer paints are applied to aluminum surfaces by two methods: dipping and spray-
ing. The purpose of the primer is to improve paint adhesion, and some parts can be primed
using either application method. The process engineering group responsible for this operation
is interested in learning whether three different primers differ in their adhesion properties.
A factorial experiment was performed to investigate the effect of paint primer type and ap-
plication method on paint adhesion. For each combination of primer type and application
method, three specimens were painted, then a finish paint was applied, and the adhesion
force was measured. The data from the experiment are shown in Table 14-5. The circled
numbers in the cells are the cell totals y;. The sums of squares required to perform the
ANOVA are computed as follows: '

14-3.1 Statistical Analysis of the Fixed-Effects Model

Table 14-4 ANOVA Table for a Two-Factor Factorial, Fixed-Effects Madel

Source of Sum of Degrees of
Variation Squares Freedom Mean Square Fy
e , SS.4 MS,
A treatments SS4 a—1 MS, = pr— TSL
B 55 b1 My = —8 M55
treatments - MSy =
catmets . ’ L MSz
: e SS4p MS 5
Interaction SS a—1)b—1) MSyp = - .
eractie 4 @=2 B G- b - 1) MS;
Error SSg ab(n — 1)
e SSg
Total SSr abn — 1 MSg = -

ab(n — 1)

14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model

Example 14-1

Table 14-5 Adhesion Force Data for Example 14-1

Primer Type Dipping Spraying Vi
I 4.0,4.5,43 54.49,5.6 28.7
2 5.6,4.9,54 5.8,6.1,6.3 34.1
3 3.8,3.7.4.0 5.5,5.0,5.0 27.0
AT 40.2 49.6 89.8 = y...
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14-3.1 Statistical Analysis of the Fixed-Effects Model 14-3.1 Statistical Analysis of the Fixed-Effects Model
Example 14-1 Example 14-1

a b n 2 a b 1-7\:. ‘.3. )
o _ 2 SSi = B S S
-S-ST = ; le “~ Vijk m Pinteraction :=zl F= n abn 22 types 29 methods
| . L (89.8)? (12.8)* + (15.9)% + (1157 + (15.9)* + (18.2)* + (15.5)°
= (4.0 + (457 + - + (5.0 — - 10.72 = -
a 2 2 (89.8)* . ] N
SSppes = _ T — 458 —491 =024
TS T A by abn ‘
_ (28.7)" + (34.1)* + (27.0)  (89.8)° 4 and
6 18 e o o o
b2 N SgE = 55— ‘S’Sl_\'pcs - ‘S'Smclhnds — SSinteraction
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14-3 Two-Factor Factorial Experiments 14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model 14-3.1 Statistical Analysis of the Fixed-Effects Model
Example 14-1 Example 14-1

The ANOVA is summarized in Table 14-6. The experimenter has decided to use a = 0.05. Table 14-6  ANOVA for Example 14-1
Sinee fy.052.12 = 3.89 and fi 45112 = 4.75, we conclude that the main effects of primer type and Source of Sum of Degrees of Mean

. - S . - . . Variation Squares Freedom Square fa P-Value
application method affect adhesion force. Furthermore, since 1.5 < fj95212, there is no quares o quare — =

indication of interaction between these factors. The last column of Table 14-6 shows the p“'“‘_‘“-‘lws L 4“ 2 229 3\:‘1 3: x ]2
P-value for each F-ratio. Notice that the P-values for the two test statistics for the main effects I?ll;ﬂhlt:::‘:n methods ;‘,\:_ll l :Ti (::(\, 4'(', \\(\\ll :
are consulcrubl,\: less than 0.05, while the P-value for the test statistic for the interaction is Error 0.99 12 0.08

greater than 0.05. Total 1072 17

A graph of the cell adhesion force averages {7;.} versus levels of primer type for each ap-
plication method is shown in Fig. 14-8. The no-interaction conclusion is obvious in this graph,
because the two lines are nearly parallel. Furthermore, since a large response indicates greater
adhesion force, we conclude that spraying is the best application method and that primer
type 2 is most effective.



14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Effects Model
Example 14-1

\Spl&y‘ing

L]
./”,//’,/,//,.
— 5.0 /
.‘I!J N
a

Dipping
Figure 14-10 Graph 4.0 .
of average adhesion
force versus primer 3.0
types for both 1 5 3
fnpea'r'lzzt:” Primer type

14-3 Two-Factor Factorial Experiments

14-3.2 Model Adequacy Checking

-ri\blc 14-3

Residuals for the Aircraft Primer Experiment in Example 14-1

R commands and outputs

Example 14-1: enter data by row

> Adhesion=c(4.0, 4.5, 4.3, 5.4, 4.9, 5.6, 5.6, 4.9, 5.4, 5.8, 6.1, 6.3,
3.7, 4.0, 5.5, 5.0, 5.0)

> Primer=c(1,1,1,1,1,1, 2,2,2,2,2,2, 3,3,3,3,3,3)
> Method=c(1,1,1,2,2,2, 1,1,1,2,2,2, 1,1,1,2,2,2) # 1=Dipping, 2=Spraying
> g=1lm(Adhesion ~ as.factor (Primer) * as.factor (Method))
> anova (g)
Response: Adhesion
Df Sum Sg Mean Sq F value Pr (>F)

2 4.5811 2.2906 27.8581 3.097e-05

1 4.9089 4.9089 59.7027 5.357e-06
2 0.2411 0.1206 1.4662 0.2693
12 0.9867 0.0822

as.factor (Primer)

as.factor (Method)
as.factor (Primer) :as.factor (Method)
Residuals

> interaction.plot (Primer, Method, Adhesion)

See chl4.R for more commands

14-3 Two-Factor Factorial Experiments

Application Method

Primer Type Dipping Spraying

—0.27. 0.23. 003 0.10,
0.30. —0.40. 0.10
—0.03, —=0.13. 0.17

—0.40. 0.30
—027. 003, 023

0.33. —0.17. =0.17

b b -

14-3.2 Model Adequacy Checking

2.0
1.0 .
% 0.0 .

Figure 14-11 - *
Normal probability o .
plot of the residuals ' o
from Example 14-1 *

“%s " 03 o1 s01 4

ejik, residual

3.8,

o



14-3 Two-Factor Factorial Experiments
14-3.2 Model Adequacy Checking
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Figure 14-14 Plot of residuals versus predicted values.

Table 14-9  Analysis of Variance Table for the Three-Factor Fixed Effects Model

14-4 General Factorial Experiments

Model for a three-factor factorial experiment

Vim=p+7+6+v+ (TB)I_',' + (Ty)a + (B'Y)jk

i=1,2,....a
j=12...b
+ (TBY)i + € k=1.2.... ¢
I=1,2,....n

14-4 General Factorial Experiments

Source of Sum of Degrees of Expected
Variation Squares Freedom Mean Square Mean Squares F,
benS1? MS,
- A 2 i MS4
A sS, a—1 MS, o+ —— s,
B ss b1 MS s CenZf MS
-_— ] - + — —
4 s T MSz
. , | abn3yi MSc
C SSe c—1 MSc o + p— MS;
enZIE(1B)] MSyp
) ss, - 1)k - MS, _—
AB 8 (@=ne-1 1540 @a—1)b-1) MS;g
bnE3(vy)k MS,c
AC ss, = -1 MS,. —_—
c (@=e=1 - @a—1)c—-1) MSg
. , . anZ3(By)i MSge
BC SSpc (b=1)c—1) MSpc e =D S,
X nEZE(By) MS ¢
p - - p— » . = -_ ——
ABC S 45c (a=1)p=1c—1) 1S 15c o’ + @G- 1e =) s,
Error SSg ab(n — 1) MS; a?

Total 5SSy aben — 1

Example 14-2
A mechanical engineer is studying the surface roughness of a part produced in a metal-cutting
operation. Three factors, feed rate (4), depth of cut (£), and tool angle (C), are of interest. All
three factors have been assigned two levels, and two replicates of a factorial design are run.
The coded data are shown in Table 14-10.

Table 14-10 Coded Surface Roughness Data for Example 14-2

Depth of Cut (B)

0.025 inch 0.040 inch
Feed Rate Tool Angle (C) Tool Angle (C)
(A) 15° 25° 15° 25° Vi
9 11 9 10
20 inches per minute 7 10 11 8 75
10 10 12 16
30 inches per minute 12 13 15 14 102




R commands and outputs

Example 14-2: enter data by row

Roughness=c(9,11,9,10, 7,10,11,8, 10,10,12,16, 12,13,15,14)
Feed=c(1,1,1,1, 1,1,1,1, 2,2,2,2, 2,2,2,2)

Depth=c(1,1,2,2, 1,1,2,2, 1,1,2,2, 1,1,2,2)
Angle=c(1,2,1,2, 1,2,1,2, 1,2,1,2, 1,2,1,2)

g=1lm(Roughness ~ Feed*Depth*Angle)

anova (g)

VvV V.V V V Vv

Response: Roughness
Df Sum Sg Mean Sq F value Pr (>F)

Feed 1 45.562 45.562 18.6923 0.002534 **
Depth 1 10.562 10.562 4.3333 0.070931 .
Angle 1 3.062 3.062 1.2564 0.294849
Feed:Depth 1 7.562 7.562 3.1026 0.116197
Feed:Angle 1 0.062 0.062 0.0256 0.876749
Depth:Angle 1 1.562 1.562 0.6410 0.446463
Feed:Depth:Angle 1 5.062 5.062 2.0769 0.187512
Residuals 8 19.500 2.438

> par (mfrow=c(1,3)) #

> interaction.plot (Feed, Depth, Roughness)

> interaction.plot (Feed, Angle, Roughness)

> interaction.plot (Angle, Depth, Roughness

Nonparametric
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Example 14-2

The F-ratios for all three main effects and the interactions are formed by dividing the mean
square for the effect of interest by the error mean square. Since the experimenter has selected
a = 0.05, the critical value for each of these F-ratios is fyg5 .5 = 5.32. Alternately, we could
use the P-value approach. The P-values for all the test statistics are shown in the last column
of Table 14-11. Inspection of these P-values is revealing. There is a strong main effect of feed
rate, since the F-ratio is well into the critical region. However, there is some indication of an
effect due to the depth of cut, since P = 0.0710 is not much greater than a = 0.05. The next
largest effect is the 4B or feed rate X depth of cut interaction. Most likely, both feed rate and

depth of cut are important process variables.

15-1 Introduction

* Most of the hypothesis-testing and confidence
interval procedures discussed in previous chapters
are based on the assumption that we are working
with random samples from normal populations.

* These procedures are often called parametric methods

* In this chapter, nonparametric and distribution free
methods will be discussed.

* We usually make no assumptions about the distribution
of the underlying population.



15-2 Sign Test
15-2.1 Description of the Test

« The sign test is used to test hypotheses about the
median of a continuous distribution.

Hy:p=py Hypu< g
*Let R* represent the number of differences
Xi =W

that are positive.

* What is the sampling distribution of R* under H,?

15-2 Sign Test

15-2.1 Description of the Test

If the following hypotheses are being tested:
Hy: L = Iy
Hy: b= i

The appropriate P-value is

]
P = P<R+ =+ when p = ?>

15-2 Sign Test

15-2.1 Description of the Test

If the following hypotheses are being tested:

Hy: = [
Hy: i< g

The appropriate P-value is

1
P= P(R+ =t when p = ;)

15-2 Sign Test

15-2.1 Description of the Test

If the following hypotheses are being tested:

Hy: i = o
Hy: i # g
If r* <n/2, then the appropriate P-value is

|
P =2P (R+ =" when p = 7)

s

If r* > n/2, then the appropriate P-value is

|
P =2P (R+ =" when p = 7)

P



15-2 Sign Test
Example 15-1

Montgomery, Peck, and Vining (2001) report on a study in which a rocket motor is formed by
binding an igniter propellant and a sustainer propellant together inside a metal housing. The
shear strength of the bond between the two propellant types is an important characteristic. The
results of testing 20 randomly selected motors are shown in Table 15-1. We would like to test
the hypothesis that the median shear strength is 2000 psi. using a = 0.05.

This problem can be solved using the eight-step hvpothesis-testing procedure introduced
in Chapter 9:

1. The parameter of interest is the median of the distribution of propellant shear strength.

2. Hy: i = 2000 psi

3. Hp: o # 2000 psi

4. a=0.05

5. The test statistic is the observed number of plus differences in Table 15-1, or
=14,

6. We will reject H, if the P-value corresponding to " = 14 is less than or equal to
a = 0.05.

15-2 Sign Test

Example 15-1

7. Computations: Since " = 14 is greater than n/2 = 20/2 = 10, we calculate the
P-value from

]
|

1
=2pP (R+ = 14 when p = ;)
20 N
( )(0.5)'(0.5)-""

=0.1153

Il
(3]
M

8. Conclusions: Since P = 0.1153 is not less than a = 0.05, we cannot reject the null
hypothesis that the median shear strength is 2000 psi. Another way to say this is that
the observed number of plus signs " = 14 was not large or small enough to indi-
cate that median shear strength is different from 2000 psi at the a = 0.05 level of
significance.

Table 15-1 Propellant Shear Strength Data

Observation Shear Strength Differences
Example 15-1 ) . € o — 2000 Sign
1 2158.70 +158.70 +
2 1678.15 —321.85 -
3 2316.00 +316.00 +
4 2061.30 +61.30 +
5 +207.50 +
6 708.3 —=291.70 -
7 1784.70 —=215.30 -
8 2575.10 +575.10 +
9 2357.90 +357.90 +
10 2256.70 +256.70 +
11 2165.20 +165.20 +
12 239955 +300.55 +
13 1779.80 —220.20 -
14 2336.75 +336.75 +
15 1765.30 —234.70 -
16 2053.50 +53.50 +
17 2414.40 +414.40 +
18 2200.50 +200.50 +
19 2654.20 +654.20 +
20 1753.70 —246.30 -

15-2 Sign Test

15-2.2 Sign Test for Paired Samples

The sign test can also be applied to paired observations drawn from continuous populations.
Let (X Xy). j = 1,2,. . ..nbeacollection of paired observations from two continuous pop-
ulations, and let

Di=X—=Xy j=12....n

=/

be the paired differences. We wish to test the hypothesis that the two populations have a
common median, that is, that fi; = f,. This is equivalent to testing that the median of the
differences fLp = 0. This can be done by applying the sign test to the n observed differences
d, as illustrated in the following example.

See Example 15-3.



15-2 Sign Test

15-2.3 Type II Error for the Sign Test

* Depends on both the true population distribution and alternative value!

Figure 15-1
Calculation of f
for the sign test.
(a) Normal
distributions. (b)
Exponential
distributions

g=1

-1 0 1 2 3

Under Hy : i=2

=2 pu=289

Under Hy : =2

4 5

0.1587 -

-1 0 1 2 3 4 5 &

Under Hy : i =3

A

2 u=4.33

Under Hy : i=3

15-3 Wilcoxon Signed-Rank Test

* 15-3.1 Description of the Test

* Assume that X, X,, ..

., X,, 1s a random sample from a continuous

and symmetric distribution with mean (and median) L.

Procedure:

» Compute the differences X; —p,,1=1, 2, ..., n.

+ Rank the absolute differences |X; — |, i=1, 2, ..., n in ascending

order.

* Give the ranks the signs of their corresponding differences.
* Let W' be the sum of the positive ranks and W~ be the absolute

value of the sum of the negative ranks.

* Let W=min(W*, W).

15-3 Wilcoxon Signed-Rank Test

* The Wilcoxon signed-rank test applies to the case
of symmetric continuous distributions.

* Under this assumption, the mean equals the median.

* The null hypothesis is Hy: u =,

15-3 Wilcoxon Signed-Rank Test

Decision rules:
Appendix Table IX contains critical values of W, say | *

&

If the alternative is H: Y # Yo, reject Hy: U= Yo if |

If the alternative is H : 4 > Y,, reject Hy: P = Y if | — W

If the alternative is H,: Y < Yg, reject Hy: P = Yy if |+ u,;f‘

Appendix Table IX provides significance levels of @ =0.10, @ =
0.05,x=0.02, ¢ =0.01 for the two-sided test.

The significance levels for one-sided tests provided in Appendix
Table IX are « = 0.05,0.025,0.01, and 0.005.



Example 15-4 _ ) -
1 5_3 WllCOXOIl Slgned-Rank Test 7. Computations: The signed ranks from Table 15-1 are shown in the following table

Observation Difference x; — 2000 Signed Rank

Example 15-4 16 #5350 +1
TR - . L 4 +61.30 +2
We will illustrate the Wilcoxon signed-rank test by applying it to the propellant shear strength | 15870 “
data from Table 15-1. Assume that the underlying distribution is a continuous symmetric dis- 1" +£165.20 4
tribution. The eight-step procedure is applied as follows: 18 +200.50 +5
o . . - PRI - 5 +207.50 +6
1. The parameter of interest is the mean (or median) of the distribution of propellant - 21530 -
shear strength. 13 22020 _3
2. Hy o= 2000 psi 15 —234.70 -9
. 20 —246.30 =10

3. : 2 ;
3. Hp: #2000 psi 0 +256.70 .
4. a=0.05 6 -201.70 -12
= L 3 316.00 3
5. The test statistic is - +316. +13
2 —321.85 —14
+ 14 +336.75 +15
w=min(w",w") 9 +357.90 +16
12 +399.55 +17
L. . . £n £ «m 17 +414.40 +18

Ne w o100 y o= ok = 5?2 fr / a ¢ T -V

6. Wewill reject Hy if w = wios = 52 from Appendix Table VIII. g +575.10 10
19 +654.20 +20

15-3 Wilcoxon Signed-Rank Test 15-3 Wilcoxon Signed-Rank Test

Example 15-4 15-3.2 Large-Sample Approximation

. . . . c - Therefore, a test of Hy: . = g can be based on the statistic
The sum of the positive ranksisw™ = (1 + 2+ 3 +4+5+6+ 11+ 13+ 15+ i ° e

16 + 17 + 18 + 19 + 20) = 150, and the sum of the absolute values of the negative
ranksisw™ =(74+ 8+ 9 + 10 + 12 + 14) = 60. Therefore,

W —n(n+1)/4
® 7 \Vn(n + 1)2n + 1)/24

w = min(150, 60) = 60

8. Conclusions: Since w = 60 is not less than or equal to the critical value wy s = 52,
we cannot reject the null hypothesis that the mean (or median, since the population is

assumed to be symmetric) shear strength is 2000 psi. Z, is approximately standard normal when n is large.



15-4 Wilcoxon Rank-Sum Test

Suppose that we have two independent continuous populations X, and X, with means p; and
2. Assume that the distributions of X| and X; have the same shape and spread and differ only
(possibly) in their locations. The Wilcoxon rank-sum test can be used to test the hypothesis
Hy: .y = p,. This procedure is sometimes called the Mann-Whitney test, although the Mann-
Whitney test statistic is usually expressed in a different form.

15-4.1 Description of the Test

Let Xyp, X, . . ., Xjp and Xy, Xoa. . . ., Xgy, be two independent random samples of sizes i) =
n, from the continuous populations X, and X; described carlier. We wish to test the hypotheses

Hy: ey = o
Hyspy # o

15-4 Wilcoxon Rank-Sum Test

Example 15-6

The mean axial stress in tensile members used in an aircraft structure is being studied. Two alloys
are being investigated. Alloy 1 is a traditional material, and alloy 2 is a new aluminum-lithium al-
lov that is much lighter than the standard material. Ten specimens of each alloy type are tested,
and the axial stress is measured. The sample data are assembled in Table 15-3. Using ae = 0.05, we
wish to test the hypothesis that the means of the two stress distributions are identical.
TABLE 15-3
Axial Stress for Two Aluminum-Lithium Alloys
Alloy 1 Alloy 2
3238 psi 3254 psi 3261 psi 3248 psi
3195 3229 3187 3215
3246 3225 3209 3226
3190 3217 3212 3240
3204 3241 3258 3234

15-4 Wilcoxon Rank-Sum Test

15-4.1 Description of the Test

The test procedure is as follows. Arrange all 7, + n, observations in ascending order of

magnitude and assign ranks to them. If two or more observations are tied (identical), use the
mean of the ranks that would have been assigned if the observations differed.

Let I, be the sum of the ranks in the smaller sample (1), and define W, to be the sum of

the ranks in the other sample. Then,

(my + m)(my + ny + 1)
2

Wy = -w (15-7)

Now if the sample means do not differ, we will expect the sum of the ranks to be nearly equal
for both samples after adjusting for the difference i sample size. Consequently, if the sums of
the ranks differ greatly, we will conclude that the means are not equal.

15-4 Wilcoxon Rank-Sum Test

Example 15-6

We will apply the eight-step hypothesis-testing procedure to this problem:

1. The parameters of interest are the means of the two distributions of axial stress.
2. Hppy = o

30 Hip # e

4. a=0.05

5. We will use the Wilcoxon rank-sum test statistic in Equation 15-7,

(my + my)(my + ny + 1)
7

Wy =

—w

6. Since a = 0.05 and n; = n, = 10, Appendix Table IX gives the critical value as wygs =
78. If either wy or wy is less than or equal to wyes = 78, we will reject Hy: by = .



Example 15-6

7. Computations: The data from Table 15-3 are analyzed in ascending order and ranked as

follows:

Alloy Number Axial Stress Rank
2 3187 psi 1
1 3190 2
1 3195 3
1 3204 4
2 3209 5
2 3212 6
2 3215 7
1 3217 8
1 3225 9
2 3226 10
1 3229 11
2 3234 12
1 3238 13
2 3240 14
1 3241 15
1 3246 16
2 3248 17
1 3254 18
2 3258 19
2 3261 20

15-5 Nonparametric Methods in the
Analysis of Variance

The single-factor analysis of variance model for
comparing a population means is

. i=1,2, ,a
C A A VRPN
The hypothesis of interest is
Hypp = pa =" =,

The Kruskal-Wallis test (w/o assumption of normality)

« Basic idea: Use ranks instead of actual numbers

15-4 Wilcoxon Rank-Sum Test

Example 15-6

The sum of the ranks for alloy 1 is

w=2+34+4+8+9+11+13+15+16+18=99
and for alloy 2

n + m)ny +ny + 1 (10 + 10)(10 + 10 + 1
W::(l _)(J’ 2 )—“'|=\ )(7 )—‘)9:111

8. Conclusions: Since neither wy nor w, is less than or equal to wges = 78, we cannot
reject the null hypothesis that both alloys exhibit the same mean axial stress.

Parametric vs. Nonparametric Tests

*  When the normality assumption is correct, t-test or F-test is
more powerful.
— Wilcoxon signed-rank or rank-sum test is approximately 95% as
efficient as the t-test in large samples.
* On the other hand, regardless of the form of the
distributions, nonparametric tests may be more powerful.
— Wilcoxon signed-rank or rank-sum test will always be at least 86%
as efficient.
* The efficiency of the Wilcoxon test relative to the t-test is
usually high if the underlying distribution has heavier tails
than the normal

— because the behavior of the t-test is very dependent on the sample
mean, which is quite unstable in heavy-tailed distributions.



