
Bootstrap Method 
> # Purpose:  understand how bootstrap method works 
> obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) 
> n=length(obs) 
> mean(obs) 
[1] 21.64625 
> # estimate of lambda 
> lambda = 1/mean(obs); lambda 
[1] 0.04619738 
> # The exponential distribution with rate=lambda has density f(x) = 
lambda e^(- lambda x) 
> # draw a random sample of size n from exponential(lambda) 
distribution, where lambda is estimated from data 
> x=rexp(n, lambda); x 
[1]  4.451616 12.097513  6.302449 21.942872 37.191007 76.530816  
9.458349 11.386464 
> mean(x) 
[1] 22.42014 
> 1/mean(x)  # Bootstrap estimate of lambda 
[1] 0.04460276 
> # do it again 
> x=rexp(n, lambda); x 
[1]  9.4759699  2.5089895  0.1630891  0.7994896 51.2508151 10.9096888  
9.2945093  2.8122216 
> mean(x) 
[1] 10.90185 
> 1/mean(x)  # Bootstrap estimate of lambda 
[1] 0.09172758 
> # here we do a nonparametrical bootstrape by replacing x=rexp(n, 
lambda) with x=sample(obs, n, replace=T) 
> x=sample(obs, n, replace=T); x 
[1] 11.10 22.38 67.40 31.50  5.03  7.73 11.10 22.38 
> mean(x) 
[1] 22.3275 
> 1/mean(x)  # Bootstrap estimate of lambda 
[1] 0.04478782 
> # do it again 
> x=sample(obs, n, replace=T); x 
[1]  5.03 11.10 11.96 16.07 11.96 31.50 16.07 11.96 
> mean(x) 
[1] 14.45625 
> 1/mean(x)  # Bootstrap estimate of lambda 
[1] 0.06917423 
> # repeat the procedure B times, save the B sample means in xbar and 
sample sd in ss[] 
> B=200; xbar = rep(0, B); ss = rep(0, B) 
> for(i in 1:B) { x=sample(obs, n, replace=T); xbar[i] = mean(x)  } 
> # the B bootstrap estimate of lambda are 
> lambda.bt = 1/xbar 
> summary(lambda.bt) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
0.02127 0.04039 0.04856 0.05142 0.05994 0.09881  
> # bootstrap estimate of standard error 
> sd(lambda.bt) 
[1] 0.01565485 



> # distribution of the bootstrap estimates 
> stem(lambda.bt) 
 
  The decimal point is 2 digit(s) to the left of the | 
 
  2 | 1 
  2 | 55789 
  3 | 00112222333344444444 
  3 | 55556666777888889999 
  4 | 00000011111112222222233344444 
  4 | 5555666666677778888888889999999 
  5 | 00011112222233333333444444444 
  5 | 6666667888889 
  6 | 0000001222334 
  6 | 566677789 
  7 | 0000011222334 
  7 | 57 
  8 | 01124 
  8 | 56667 
  9 | 034 
  9 | 89 
 
> hist(lambda.bt) 
> lambda.bt.sub = lambda.bt-mean(lambda.bt) 
> hist(lambda.bt.sub) 

Histogram of lambda.bt
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> # 5 and 95 percentiles of lambda.bt-mean(lambda.bt) 
> quantile(lambda.bt.sub, c(.05, .95) ) 
         5%         95%  
-0.01940520  0.03217117  
> # 90% bootstrap CI  
> c(lambda-quantile(lambda.bt.sub,.95), lambda-
quantile(lambda.bt.sub,.05) ) 
       95%         5%  
0.01402620 0.06560257  
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Usually B ! 100 or 200 of these bootstrap samples are taken. Let be the
sample mean of the bootstrap estimates. The bootstrap estimate of the standard error of is
just the sample standard deviation of the , or

(S7-1)

In the bootstrap literature, B " 1 in Equation S7-1 is often replaced by B. However, for
the large values usually employed for B, there is little difference in the estimate produced
for .

EXAMPLE S7-1 The time to failure of an electronic module used in an automobile engine controller is tested
at an elevated temperature in order to accelerate the failure mechanism. The time to failure
is exponentially distributed with unknown parameter #. Eight units are selected at random
and tested, with the resulting failure times (in hours): x1 ! 11.96, x2 ! 5.03, x3 ! 67.40,
x4 ! 16.07, x5 ! 31.50, x6 ! 7.73, x7 ! 11.10, and x8 ! 22.38. Now the mean of an expo-
nential distribution is $ ! 1!#, so E(X ) ! 1!#, and the expected value of the sample average
is . Therefore, a reasonable way to estimate # is with . For our sample,

, so our estimate of ! is . To find the bootstrap standard error
we would now obtain B ! 200 (say) samples of n ! 8 observations each from an exponential
distribution with parameter # ! 0.0462. The following table shows some of these results:

!̂ ! 1%21.65 ! 0.0462x ! 21.65
!̂ ! 1%XE1X2 ! 1%!

s&̂

s&̂ !R
a
B

i!1
 1'̂*

i " '*22
B " 1

'̂*
i

&̂
'* ! 11%B2  gB

i!1 '̂*i

7-2.5 Bootstrap Estimate of the Standard Error (CD Only)

There are situations in which the standard error of the point estimator is unknown. Usually,
these are cases where the form of is complicated, and the standard expectation and variance
operators are difficult to apply. A computer-intensive technique called the bootstrap that was
developed in recent years can be used for this problem.

Suppose that we are sampling from a population that can be modeled by the probability
distribution . The random sample results in data values and we obtain as
the point estimate of . We would now use a computer to obtain bootstrap samples from the
distribution , and for each of these samples we calculate the bootstrap estimate of '.
This results in

'̂*f 1x; '̂2 '
'̂x1, x2, p , xnf 1x; '2

&̂

Bootstrap Sample Observations Bootstrap Estimate

1

2

B '̂*
Bx*

1, x
*
2, p , x*

n

ooo
'̂*

2x*
1, x

*
2, p , x*

n

'̂*
1x*

1, x
*
2, p , x*

n

Bootstrap Sample Observations Bootstrap Estimate

1 8.01, 28.85, 14.14, 59.12, 3.11, 32.19, 5.26, 14.17
2 33.27, 2.10, 40.17, 32.43, 6.94, 30.66, 18.99, 5.61

200 40.26, 39.26, 19.59, 43.53, 9.55, 7.07, 6.03, 8.94  !̂*
200 ! 0.0459

ooo
 !̂*

2 ! 0.0470
 !̂*

1 ! 0.0485
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The sample average of the (the bootstrap estimates) is 0.0513, and the standard deviation
of these bootstrap estimates is 0.020. Therefore, the bootstrap standard error of is 0.020. In
this case, estimating the parameter ! in an exponential distribution, the variance of the esti-
mator we used, , is known. When n is large, Therefore the estimated standard
error of is . Notice that this result agrees reasonably
closely with the bootstrap standard error.

Sometimes we want to use the bootstrap in situations in which the form of the probabil-
ity distribution is unknown. In these cases, we take the n observations in the sample as the
population and select B random samples each of size n, with replacement, from this popula-
tion. Then Equation S7-1 can be applied as described above. The book by Efron and
Tibshirani (1993) is an excellent introduction to the bootstrap.

7-3.3 Bayesian Estimation of Parameters (CD Only)

This book uses methods of statistical inference based on the information in the sample data.
In effect, these methods interpret probabilities as relative frequencies. Sometimes we call
probabilities that are interpreted in this manner objective probabilities. There is another ap-
proach to statistical inference, called the Bayesian approach, that combines sample informa-
tion with other information that may be available prior to collecting the sample. In this section
we briefly illustrate how this approach may be used in parameter estimation.

Suppose that the random variable X has a probability distribution that is a function of one
parameter !. We will write this probability distribution as This notation implies that
the exact form of the distribution of X is conditional on the value assigned to !. The classical ap-
proach to estimation would consist of taking a random sample of size n from this distribution
and then substituting the sample values xi into the estimator for !. This estimator could have
been developed using the maximum likelihood approach, for example.

Suppose that we have some additional information about ! and that we can summarize
that information in the form of a probability distribution for !, say, f(!). This probability dis-
tribution is often called the prior distribution for !, and suppose that the mean of the prior is
"0 and the variance is . This is a very novel concept insofar as the rest of this book is con-
cerned because we are now viewing the parameter ! as a random variable. The probabilities
associated with the prior distribution are often called subjective probabilities, in that they
usually reflect the analyst’s degree of belief regarding the true value of !. The Bayesian
approach to estimation uses the prior distribution for !, f(!), and the joint probability distri-
bution of the sample, say to find a posterior distribution for !, say,

This posterior distribution contains information both from the sample and
the prior distribution for !. In a sense, it expresses our degree of belief regarding the true value
of ! after observing the sample data. It is easy conceptually to find the posterior distribution.
The joint probability distribution of the sample X1, X2, p , Xn and the parameter ! (remember
that ! is a random variable) is 

and the marginal distribution of X1, X2, p , Xn is

f  1x1, x2, p , xn2 # µ a!  f 1x1, x2, p , xn, !2, ! discrete

!
$

%$
 
f 1x1, x2, p , xn, !2 d!, ! continuous

f 1x1, x2, p , xn, !2 # f 1x1, x2, p , xn 
0

 
!2 f 1!2

f 1! 0  x1, x2, p , xn2. f  1x1, x2, p , xn  0  !2,
&2

0

f 1x 0 !2.

2!̂2'n # 210.046222'8 # 0.016!̂

V 1!̂2 # !2'n.!̂

!̂
!̂*

i
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8-2.6 Bootstrap Confidence Intervals (CD Only)

In Section 7-2.5 we showed how a technique called the bootstrap could be used to estimate
the standard error where is an estimate of a parameter !. We can also use the bootstrap
to find a confidence interval on the parameter !. To illustrate, consider the case where ! is the
mean " of a normal distribution with # known. Now the estimator of ! is Also notice that

is the 100(1 $ %/2) percentile of the distribution of , and is 
the 100(%!2) percentile of this distribution. Therefore, we can write the probability statement
associated with the 100(1 $ %)% confidence interval as

or

This last probability statement implies that the lower and upper 100(1 $ %)% confidence lim-
its for " are

We may generalize this to an arbitrary parameter !. The 100(1 $ !)% confidence limits
for ! are

Unfortunately, the percentiles of may not be as easy to find as in the case of the normal
distribution mean. However, they could be estimated from bootstrap samples. Suppose we
find B bootstrap samples and calculate , , p , and and then calculate 

, p , . The required percentiles can be obtained directly from the differences.
For example, if B & 200 and a 95% confidence interval on ! is desired, the fifth smallest and
fifth largest of the differences are the estimates of the necessary percentiles.

We will illustrate this procedure using the situation first described in Example 7-3,
involving the parameter " of an exponential distribution. Following that example, a random
sample of n & 8 engine controller modules were tested to failure, and the estimate of "
obtained was & 0.0462, where is a maximum likelihood estimator. We used 200
bootstrap samples to obtain an estimate of the standard error for .

Figure S8-1(a) is a histogram of the 200 bootstrap estimates , i & 1, 2, p , 200. Notice
that the histogram is not symmetrical and is skewed to the right, indicating that the sam-
pling distribution of also has this same shape. We subtracted the sample average of these
bootstrap estimates & 0.5013 from each . The histogram of the differences , i
& 1, 2, p , 200, is shown in Figure S8-1(b). Suppose we wish to find a 90% confidence inter-
val for ". Now the fifth percentile of the bootstrap samples is $0.0228 and the ninety-
fifth percentile is 0.03135. Therefore the lower and upper 90% bootstrap confidence limits are

 U & "̂$ 5 percentile of "̂*
i $ "*  & 0.0462 $ 1$0.02282 & 0.0690

 L & "̂ $ 95 percentile of "̂*
i $ "* & 0.0462 $ 0.03135 & 0.0149

"̂*
i $ "*

"̂*
i $ "*"̂*

i"*
"̂

"̂*
i

"̂
"̂ & 1'X"̂

!̂*
i $ !*

!̂*
B $ !*!̂*

2 $ !*
!̂*

1 $ !*,!*!̂*
B!̂*

2!̂*
1

!̂ $ !

 U & !̂ $ 1001%'22  percentile of  !̂ $ !

 L & !̂ $ 10011 $ %'22  percentile of  !̂ $ !

 U & X $ 100 1%'22 percentile of  X $ " & X ( z%'2#'1n

 L & X $ 100 11 $ %'22 percentile of  X $ " & X $ z%'2#'1n

P1X $ 10011 $ %'22 percentile ) " ) X $ 1001%'22 percentile2 & 1 $ %

P11001%'22 percentile ) X $ " ) 10011 $ %'22 percentile2 & 1 $ %

$z%'2#'1nX $ "z%'2#'1n
X.

!̂# !̂,
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*The confidence interval is where and are the lower and 
upper !!2 percentage points of the chi-square distribution (which was introduced briefly in Chapter 4 and discussed
further in Section 8-4), and the are the sample observations.nxi

"2
1#!$2,2n"2

!$2,2n"2
!$2,2n$ 12g xi2 % ! % "2

1#!$2,2n$ 12g xi2

8-2

Therefore, our 90% bootstrap confidence interval for ! is 0.0149 % & % 0.0690. There is an
exact confidence interval for the parameter & in an exponential distribution. For the engine
controller failure data following Example 7-3, the exact 90% confidence interval* for ! is
0.0230 % & % 0.0759. Notice that the two confidence intervals are very similar. The length of
the exact confidence interval is 0.0759 # 0.0230 ' 0.0529, while the length of the bootstrap
confidence interval is 0.0690 # 0.0149 ' 0.0541, which is only slightly longer. The per-
centile method for bootstrap confidence intervals works well when the estimator is unbiased
and the standard error of is approximately constant (as a function of (). An improvement,
known as the bias-corrected and accelerated method, adjusts the percentiles in more general
cases. It could be applied in this example (because is a biased estimator), but at the cost of
additional complexity.

8-3.2 Development of the t-Distribution (CD Only)

We will give a formal development of the t-distribution using the techniques presented in
Section 5-8. It will be helpful to review that material before reading this section.

First consider the random variable

This quantity can be written as

(S8-1)
T '

X # )

*1 n
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Figure S8-1 Histograms of the bootstrap estimates of and the differences used in finding the bootstrap
confidence interval.
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