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1-1 The Engineering Method and
Statistical Thinking
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Figure 1.1 The engineering method



1-1 The Engineering Method and
Statistical Thinking

The field of statistics deals with the collection,
presentation, analysis, and use of data to

 Make decisions
 Solve problems

* Design products and processes



1-1 The Engineering Method and
Statistical Thinking

» Statistical techniques are useful for describing and
understanding variability.

By variability, we mean successive observations of a
system or phenomenon do not produce exactly the same
result.

* Statistics gives us a framework for describing this
variability and for learning about potential sources of

variability.



1-1 The Engineering Method and
Statistical Thinking

Engineering Example

An engineer 1s designing a nylon connector to be used 1n an
automotive engine application. The engineer is considering
establishing the design specification on wall thickness at 3/32
inch but is somewhat uncertain about the effect of this decision
on the connector pull-off force. If the pull-off force is too low, the
connector may fail when it 1s installed 1n an engine. Eight

prototype units are produced and their pull-off forces measured
(in pounds): 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1.



1-1 The Engineering Method and
Statistical Thinking

Engineering Example

*The dot diagram 1s a very useful plot for displaying a small
body of data - say up to about 20 observations.

 This plot allows us to see easily two features of the data; the
location, or the middle, and the scatter or variability.

12 13 14 15

Pull-off force

Figure 1-2 Dot diagram of the pull-off force
data when wall thickness 1s 3/32 inch.



1-1 The Engineering Method and
Statistical Thinking

Engineering Example

» The engineer considers an alternate design and eight prototypes
are built and pull-off force measured.
* The dot diagram can be used to compare two sets of data
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Figure 1-3 Dot diagram of pull-off force for two
wall thicknesses.



1-1 The Engineering Method and
Statistical Thinking

Engineering Example

* Since pull-off force varies or exhibits variability, 1t 1s a
random variable.

* A random variable, X, can be model by
X=ute

where u 1s a constant and € a random disturbance.



1-1 The Engineering Method and
Statistical Thinking
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Figure 1-4 Statistical inference is one type of reasoning.



1-2 Collecting Engineering Data

Three basic methods for collecting data:
— A retrospective study using historical data
May not be useful
— An observational study
« Cannot tell the cause-effect

— A designed experiment
 Make deliberate changes to observe response

 (an tell the cause-effect



1-3 Mechanistic and Empirical Models

A mechanistic model 1s built from our underlying

knowledge of the basic physical mechanism that relates
several variables.

Ohm’s Law: Current = voltage/resistance
I=E/R or I=E/R+ ¢

An empirical model 1s built from our engineering and
scientific knowledge of the phenomenon, but 1s not
directly developed from our theoretical or first-
principles understanding of the underlying mechanism.



Table 1-2 Wire Bond Pull Strength Data

Observation Pull Strength Wire Length Die Height
Number ¥ x, X5
| 9.95 2 50
2 24.45 8 110
3 31.75 11 120
4 35.00 10 550
5 25.02 8 205
6 16.86 4 200
7 14.38 2 375
8 9.60 2 52
9 24.35 9 100
10 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500
14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69.00 20 600
18 10.30 1 585
19 34.93 10 540
20 46.59 15 250
21 44 88 15 290
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100

25 21.15 5 400
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Figure 1-15 Three-dimensional plot of the wire and pull
strength data.



1-3 Mechanistic and Empirical Models

Pull strength = By + P;(wire length) + P,(die height) + €

In general, this type of empirical model 1s called a
regression model.

The estimated regression line is given by

../\

Pull strength = 2.26 + 2.74(wire length) + 0.0125(die height)
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Figure 1-16 Plot of the predicted values of pull strength
from the empirical model.



4-6 Normal Distribution

Definition

A random variable X with probability density function

1 —(x—p)*

flx) = N Eoe —00 <L x < ® (4-8)

1s a normal random variable with parameters ., where — < p < @, and o > 0.
Also,

EX)=p and V(X)=o (4-9)

and the notation N{(j, o) is used to denote the distribution. The mean and variance
of X are shown to equal w and o?, respectively, at the end of this Section 5-6.




4-6 Normal Distribution
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Figure 4-10 Normal probability density functions
for selected values of the parameters u and 2.



4-6 Normal Distribution

Definition : Standard Normal

A normal random variable with
)
p=0 and o =1

1s called a standard normal random variable and 1s denoted as Z.
The cumulative distribution function of a standard normal random variable 1s
denoted as




4-6 Normal Distribution

Example 4-11

Assume Z i1s a standard normal random variable. Appendix Table Il provides probabilities of
the form P(Z = z). The use of Table Il to find P(Z = 1.5) is illustrated in Fig. 4-13. Read
down the z column to the row that equals 1.5. The probability is read from the adjacent col-
umn, labeled 0.00, to be 0.93319.

The column headings refer to the hundredth’s digit of the value of z in P(Z = z). For ex-
ample, P(Z = 1.53) is found by reading down the z column to the row 1.5 and then selecting
the probability from the column labeled 0.03 to be 0.93699.

P(Z<15)=d(1.5)

= shaded area 0.00 0.01 0.02 0.03

O [ 0.50000 0.50392 0.50398 0.51197

1.5 | 0.93319 0.93448 0.93574 0.93699

0 1.5 z

Figure 4-13 Standard normal probability density
function.



4-6 Normal Distribution

Standardizing

If X is a normal random variable with £(X) = p and V(X) = o, the random variable

7 == (4-10)

1s a normal random variable with E(Z) = 0 and V(Z) = |. That 1s, Z 1s a standard
normal random variable.




4-6 Normal Distribution

Example 4-13

Suppose the current measurements in a strip of wire are assumed to follow a normal distribu-
. . - " . _ . 2 . .
tion with a mean of 10 milliamperes and a variance of 4 (milliamperes)=. What 1s the proba-
bility that a measurement will exceed 13 milliamperes?

et X denote the current in milliamperes. The requested probability can be represented as
P(X = 13). Let Z = (X — 10)/2. The relationship between the several values of X and the
transformed values of Z are shown in Fig. 4-15. We note that X' = 13 corresponds to Z > 1.5.
Therefore, from Appendix Table I1.

PX=13)=PZ=15)=1—-PZ=15)=1—10.93319 = 0.06681
Rather than using Fig. 4-15, the probability can be found from the inequality X' > 13. That is,

o (X —10) (13 = 10) o
PX>13) =P > — = P(Z > 1.5) = 0.0668]

P

P



4-6 Normal Distribution
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Figure 4-15 Standardizing a normal random
variable.



4-6 Normal Distribution

To Calculate Probability

- - - - -
Suppose X 1s a normal random variable with mean p and variance o~. Then,

X—p x-
P(Xs.r)=P( G”‘s‘a"“)=P(25:) (4-11)

(x — p)

= is the z-value

where Z i1s a standard normal random variable, and z =
obtained by standardizing X.
The probability is obtained by entering Appendix Table II with z = (x — p)/o.




4-6 Normal Distribution

Example 4-14 (continued)
Determine the value for which the probability that a current measurement is below
this value 1s 0.98. The requested value is shown graphically in Fig. 4-16. We need the value of
x such that P(X < x) = 0.98. By standardizing, this probability expression can be written as

P(X < x) = P((X — 10)/2 < (x — 10)/2)
= P(Z < (x — 10)/2)
= 0.98

Appendix Table II 1s used to find the z-value such that P(Z << z) = 0.98. The nearest proba-
bility from Table II results in

P(Z < 2.05) = 0.97982
Therefore, (x — 10)/2 = 2.05, and the standardizing transformation is used in reverse to solve
for x. The result 1s

x = 2(2.05) + 10 = 14.1 milliamperes



4-6 Normal Distribution

Example 4-14 (continued)

10 X

Figure 4-16 Determining the value of x to meet a
specified probability.



5-5 Linear Combinations of Random
Variables

Definition

Given random variables X, X, ..., X, and constants ¢, ¢,, ... , ¢,,

P p?
Y=rclXi+ Xy + 7 + ¢, X, (5-34)
i1s a linear combination of X, X, ... ,Xp.
Mean of a Linear Combination
IfY=cX) + Xy + - + ¢, X,
E(Y) = c\E(X)) + E(Xy) + - + ¢, E(X) (5-35)




5-5 Linear Combinations of Random
Variables

Variance of a Linear Combination

If X, X5, ..., X, are random variables, and ¥ = ¢/ X| + 2 Xy + - + ¢, X, then in
general

NY) = V(X)) + aaV(Xn) + - + VX)) + 2D D) cijeov(X, X)) (5-36)
i<<j

IfX,, X ..., Xp are independent,

NY)=c

—l2

V(X1) + VX) + - + GH(X,) (5-37)




5-5 Linear Combinations of Random
Variables

Example 5-33

An important use of equation 5-37 is in error propagation that is presented in the following example.

A semiconductor product consists of three layers. If the variances in thickness of the first, second, and
third layers are 25, 40, and 30 nanometers squared, what is the variance of the thickness of the final

product.

Let X, X,, X;, and X be random variables that denote the thickness of the respective layers, and the final
product. Then

X=X+X5+X
The variance of X is obtained from equaion 5-39
MX) = V(X)) + V(%) + V(X3) = 25 + 40 + 30 = 95 nm®

Consequently, the standard deviation of thickness of the final product is 95”2 = 9.75 nm and this shows
how the variation in each layer is propagated to the final product.



5-5 Linear Combinations of Random
Variables

Mean and Variance of an Average

fFX=(X +X+ +X)/pwith EX) = pfori=1,2,...,p

EX)=p (5-38a)

if X, Xy, ..., X}, are also independent with V(X)) = o fori=1,2,....p,

"
a-
p

NX) =




5-5 Linear Combinations of Random
Variables

Reproductive Property of the Normal Distribution

If X}, X, ..., X, are independent, normal random variables with E(X) = p, and
YN — 2 fari —
MX)=oifori=1,2,...,p,

Y= Cl‘\l + (‘2.-\"2 + -+ Cp‘kp
1s a normal random variable with
E(}) =C| + opy o+ Cplp

and




5-5 Linear Combinations of Random
Variables

Example 5-34

Let the random variables X; and X, denote the length and width, respectively, of a manufactured part.
Assume that X, is normal with E(X,) = 2 centimeters and standard deviation 0.1 centimeter and that
X, is normal with E(X,) = 5 centimeters and standard deviation 0.2 centimeter. Also, assume that X,
and X, are independent. Determine the probability that the perimeter exceeds 14.5 centimeters.

Then, ¥ = 2X, + 2X; i1s a normal random variable that represents the perimeter of the part. We
obtain, E(¥) = 14 centimeters and the variance of ¥1s

MY)=4x01°+4x02*=02
Now,

P(Y > 145) = P[(Y = py)/oy > (145 - 14)/V02]
= P(Z> 1.12) = 0.13



Some useful results to remember

f(x)

w—30 u-20 p—o “ w+o u+20 u+ 30 x
[«— 68% —>|
|~ 95% >
= 99.7%

For any normal random variable
Plu—o<X<pu+ o)=0.6827

Pp — 20 < X<+ 20) = 0.9545
P(p — 30 < X<+ 30) = 0.9973

Y



