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7-1 Introduction

* The field of statistical inference consists of those
methods used to make decisions or to draw
conclusions about a population.

 These methods utilize the information contained
In a from the population in drawing
conclusions.

* Statistical inference may be divided into two major
areas:

 Parameter estimation

* Hypothesis testing



7-1 Introduction

Suppose that we want to obtain a point estimate of a population parameter. We know that
before the data 1s collected, the observations are considered to be random variables, sav
X, Xo. ... . X,. Theretore, any function of the observation, or any statistic, is also a random
variable. For example, the sample mean Y and the sample variance S* are statistics and thev
are also random variables.

Since a statistic 1s a random variable, it has a probability distribution. We call the proba-
bility distribution of a statistic a sampling distribution. The notion of a sampling distribution
1s verv important and will be discussed and illustrated later in the chapter.

Definition

A point estimate of some population parameter f is a single numerical value f ofa
statistic ®. The statistic ® 1s called the point estimator.




7-1 Introduction

Estimation problems occur frequently in engineering. We often need to estimate

® The mean p of a single population

e The variance ¢~ (or standard deviation o) of a single population

e The proportion p of items in a population that belong to a class of interest
e The difference in means of two populations, p; — >

e The difference in two population proportions, p; — p,



7-1 Introduction

Reasonable point estimates of these parameters are as follows:

e For ., the estimate is L = X, the sample mean.
. . . A0 I .

e For o°, the estimate 1s 6~ = 57, the sample variance.

e For p, the estimate 1s p = x/n, the sample proportion, where x is the number of items
in a random sample of size n that belong to the class of interest.

e For u; — po. the estimate i1s L} — L, = X — X,. the difference between the sample
means of two independent random samples.

e For p, — p,.the estimate i1s p; — p,. the difference between two sample proportions
computed from two independent random samples.



7.2 Sampling Distributions and the
Central Limit Theorem

Statistical inference 1s concerned with making decisions about a
population based on the information contained in a random

sample from that population.

Definitions:

The random variables X}, X, . . ., X, are a random sample of size n if (a) the X5 are in-
dependent random variables, and (b) every X, has the same probability distribution.

A statistic i1s any function of the observations in a random sample.

The probability distribution of a statistic is called a sampling distribution.




7.2 Sampling Distributions
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7.2 Sampling Distributions

Suppose X, ..., X, are a random sample from a population
with mean p and variance 2.

(a) What are the mean and variance of the sample mean?

(b) What 1s the sampling distribution of the sample mean if
the population 1s normal.



7.2 Sampling Distributions and the
Central Limit Theorem

If we are sampling from a population that has an unknown probability distribution, the
sampling distribution of the sample mean will still be approximately normal with mean p. and
variance o-/n, if the sample size n 1s large. This 1s one of the most useful theorems in statis-
tics, called the central limit theorem. The statement 1s as follows:

If X, X;, ..., X, 1s a random sample of size » taken from a population (either finite
or infinite) with mean p and finite variance o, and if X 1s the sample mean, the

limiting form of the distribution of

Z= (7-1)

X —
a/\Vn

as n — @, 1s the standard normal distribution.

If the population is normal, the sampling distribution of Z is exactly standard normal.



7.2 Sampling Distributions and the
Central Limit Theorem

\

Figure 7-1 Distributions s s
of average scores from

throwing dice. [Adapted with | | |
permission from Box, Hunter, 1 54 s 6 x
and Hunter (1978).] '

..ll‘ |||,

fc) T dice

lll‘

1 3

||||5

CLT Simulation

..........



7.2 Sampling Distributions and the
Central Limit Theorem

Example 7-1

An electronics company manufactures resistors that have a mean resistance of 100 ohms and a standard
deviation of 10 ohms. The distribution of resistance is normal. Find the probability that a random sam-

ple of n = 25 resistors will have an average resistance less than 95 ohms.
Note that the sampling distribution of X is normal, with mean pg = 100 ohms and a standard

deviation of

Therefore, the desired probability corresponds to the shaded area in Fig. 7-1. Standardizing the point

XY = 95 in@g. 7-2Dwe find that

95 — 100
z = —',) ——

—

~25

and therefore.
P(X < 95) = P(Z < —2.5)
= (.0062



7.2 Sampling Distributions and the
Central Limit Theorem
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Figure 7-2 Probability for Example 7-1
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7.2 Sampling Distributions and the
Central Limit Theorem

Approximate Sampling Distribution of a
Difference in Sample Means

If we have two independent populations with means p) and p,; and variances o1 and
o3 and if X] and X, are the sample means of two independent random samples of
sizes n, and »n, from these populations, then the sampling distribution of

(>
Vaoi/n + o3/n

is approximately standard normal, if the conditions of the central limit theorem
apply. If the two populations are normal, the sampling distribution of Z is exactly

standard normal.




7-3 General Concepts of Point Estimation

7-3.1 Unbiased Estimators

Definition

~

The point estimator ® is an unbiased estimator for the parameter 6 if
E(®) =9

If the estimator 1s not unbiased, then the difference
E(®) — §

is called the bias of the estimator ®.

(7-6)




7-3 General Concepts of Point Estimation

Example 7-4

Suppose that X is a random variable with mean p and variance o”. Let X, X5 .... X, be a
random sample of size n from the population represented by X. Show that the sample mean X'
and sample variance S? are unbiased estimators of w and o=, respectivelv.

First consider the sample mean. In Equation 5.40a in Chapter 5, we showed that E(T) = M.
Therefore, the sample mean X is an unbiased estimator of the population mean .

Now consider the sample variance. We have

2y i=] — 'V — V2
E(S ) E n— 1 n—1 E oy (\’ \ )
] ”A ) — — l ! ) —y
= ES (X2 +Y2-2¥X) = E( \,‘—n.\‘")
1 i > N




7-3 General Concepts of Point Estimation

Example 7-4 (continued)

. . . . ~ C - . 1 I )

The last equality follows from Equation 5-37 in Chapter 5. However, since E(X;7) = p° + o°
-, b ) :

and E{X*) = w° + o°/n, we have

E(S l z 0“ — n(p.:' + 0'3/11)
) o — < ) /|

] p) ) 2 2

- l (nw~ + no” — npu” — o)

n— |

~ . ~ . . . ~ . . )
Therefore, the sample variance S< is an unbiased estimator of the population variance o-.



7-3.2 Variance of a Point Estimator

If we consider all unbiased estimators of 0, the one with the smallest variance 1s
called the minimum variance unbiased estimator (MVUE).

Figure 7-5 The sampling
distributions of two
unbiased estimators

Distribution of @)1

Distribution of © 2

A A

0, and O,.

If X, X, ..., X, 1s a random sample of size » from a normal distribution with mean
w and variance o2, the sample mean X is the MVUE for p.




7-3.3 Standard Error: Reporting a Point Estimate

The standard error of an estimator ® is its standard deviation, given by

-

g = V V(). If the standard error involves unknown parameters that can be esti-
mated, substitution of those values into og produces an estimated standard error,

denoted by &,

Suppose we are sampling from a normal distribution with mean . and variance . Now
the distribution of X" 1s normal with mean w and variance o/n, so the standard error of X is

ag
oy = —F—

\Vn

[f we did not know o but substituted the sample standard deviation .S into the above equation.
the estimated standard error of X" would be

~ ‘S'
Oy T L

\V'n



7-3.3 Standard Error: Reporting a Point Estimate

Example 7-35

An article in the Journal of Heat Transfer (Trans. ASME, Sec. C, 96, 1974, p. 59) described
a new method of measuring the thermal conductivity of Armco iron. Using a temperature of
[00°F and a power input of 550 watts, the following 10 measurements of thermal conductiv-
ity (in Btu/hr-ft-°F) were obtained:

41.60,41.48,42.34,41.95, 41.86,
42.18,41.72,42.26,41.81, 42.04

A point estimate of the mean thermal conductivity at 100°F and 550 watts is the sample mean or

X = 41.924 Btu/hr-ft-°F



7-3.3 Standard Error: Reporting a Point Estimate

Example 7-5 (continued)

The standard error of the sample mean is o¢ = o/ Vn, and since o is unknown, we may GClucc
it by the sample standard deviation s = 0.284 to obtain the estimated standard error of X as

A s ) 84
Oy = —F = = ().0898
‘ \Vn V10

Notice that the standard error 1s about (0.2 percent of the sample mean, implying that we have ob-
tained a relatively precise point estimate of thermal conductivity. I[f we can assume that thermal
conductivity is normally distributed, 2 times the standard error is 26y = 2(0.0898) = 0.1796,
and we are highly confident that the true mean thermal conductivity is with the interval
41.924 £ 0.1756, or between 41.744 and 42.104.



7-3.4 Mean Square Error of an Estimator

The mean squared error of an estimator ® of the parameter  1s defined as

MSE(®) = E(® — §)’ (1-7)

The mean squared error is an important criterion for comparing two estimators. Let ©
and @a be two estlmators of the parameter 6, and let MSE (®l) 'md MSE (@q) be the mean
squared errors of@l and @') Then the relative efficiency of ®, to @l 1s defined as

MSE(®,)
MSE(®,)

(7-8)

If this relative efficiency is less than 1, we would conclude that ®, 1s a more efficient estima-
tor of @ than ®,, in the sense that it has a smaller mean square error.




7-3.4 Mean Square Error of an Estimator

Distribution of © 1

Distribution of & 2

¢ E(0,)

Figure 7-6 A biased estimator ©,that has smaller variance
than the unbiased estimator O,.



7-4 Methods of Point Estimation

e Problem: To find p=P(heads) for a biased coin.

e Procedure: Flip the coin n times.
« Data (a random sample) : X, X,, ..., X

— where X,=1 or 0 if the ith outcome 1s heads or tails.

n

* Question: How to estimate p using the data?



7-4 Methods of Point Estimation

Definition

Let X}, X5, ..., X, be a random sample from the probability distribution f{(x), where
f(x) can be a discrete probability mass function or a continuous probability density
function. The kth population moment (or distribution moment) is E(X*), k =

I,2,....The corresponding kth sample moment is (1/n) P B T

Definition

Let X\, X;5,.... X, be a random sample from either a probability mass function
or probability density function with m unknown parameters 6,,6,.....60,. The

moment estimators ®,,®,, ..., ®,  are found by equating the first m population

moments to the first m sample moments and solving the resulting equations for the
unknown parameters.




7-4 Methods of Point Estimation

Example 7-7: Consider normal distribution N(,62).

Find the moment estimators of p and o2.



7-4 Methods of Point Estimation

7-4.2 Method of Maximum Likelihood

Definition

Suppose that X is a random variable with probability distribution f(x; 6), where 6 1s
a single unknown parameter. Let x|, x5, ..., x, be the observed values in a random
sample of size n. Then the likelihood function of the sample 1s

L(0) = f(x20) « flx2; 0) » =« f(x,2 0) (7-9)

Note that the likelihood function is now a function of only the unknown parameter 6.
The maximum likelihood estimator (MLE) of 6 is the value of 6 that maximizes

the likelithood function L(8).




7-4 Methods of Point Estimation

Example 7-9

Let X be a Bernoulli random variable. The probabilitv mass function is

L M1 —p) ™ x=0,1
Hxip) = {/ ")

(. otherwise

where p 1s the parameter to be estimated. The likelihood function of a random sample of size
nis

L(/)) = /),n(] — /))I—.rlp.r:(l _ /))l—.\‘_a,__l).\‘,, (l _ /))l—.\',,

n N
N —E X

= T p5(1 = p)'=% = p=i(1 = p)' %

i=|



7-4 Methods of Point Estimation

Example 7-9 (continued)

We observe that if p maximizes L( p), p also maximizes In L( p). Therefore,

InL(p) = ( ﬁ: .\',-) Inp + (n — i .\',-) In(1 = p)

Now

dni(p) & ("_ 2'\")

i=1 i=1

dp P | —p

. . . ~ . ~ - n ~ .
Equating this to zero and solving for p vields p = (1/n) X, x;. Therefore, the maximum
likelihood estimator of p 1s

-

l 7

P = 7 ’,; Xi



7-4 Methods of Point Estimation

Examples 7-6 and 7-11

The time to failure of an electronic module used 1n an automobile engine
controller 1s tested at an elevated temperature to accelerate the failure
mechanism. The time to failure is exponentially distributed. Eight
units are randomly selected and tested, resulting in the following failure

time (in hours): 11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38.
Here X 1s exponentially distributed with parameter A.
(a)What 1s the moment estimate of A?

(b) What is the MLE estimate of A?
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0.0
:
-32.61
= -0.1
. E
b4 -32.63 o
E’ ; -0.2
-_— Q@
g‘) -32.65 lq&:
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Figure 7-7 Log likelihood for the exponential distribution, using the
failure time data. (a) Log likelihood with n = 8 (original data). (b)
Difference in Log likelihood if n = 8, 20, and 40.



7-4 Methods of Point Estimation

Example 7-12

’ . . . . ) .
Let X be normallv distributed with mean w and variance o, where both w and o~ are

unknown. The likelthood function for a random sample of size n 1s

n l

L. o%) = — o~ wPA2Y) = -
(. o) ,I:[, oV2m (270°)

l n

o269 S (- )
nj2 i=1

and

. . l 2
In L{p, 0°) = —% In(2mo”) — ) z (v, — )°

L L0 i=1



7-4 Methods of Point Estimation

Example 7-12 (continued)

Now

a1n L(p. o

) = i Z (v =) =0

dL ;
dIn L{, 03) n | & .
. - = — Y + , \’ - c = ()
d(o”) 200 20" ,; ( )

The solutions to the above equation yield the maximum likelithood estimators

— > l 1 —
=X occ== > (X;— X
= |

Once again, the maximum likelihood estimators are equal to the moment estimators.
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Cramer-Rao Inequality (extra!)

Let Xl,Xz,-

If © is an unbiased estimator of 6, then

1
nl(0)

”’Xn be a random sample with pdf f (x,0).

Var((:D) >

where

 In £(X:6)

10)=E|

=-FE|—=1In f(X;0)

}2 52
967

1s the Fisher information.



7-4 Methods of Point Estimation

Properties of the Maximum Likelithood Estimator

Under very general and not restrictive conditions, when the sample size » 1s large and
if ® 1s the maximum likelihood estimator of the parameter 6,
(1) @ is an approximately unbiased estimator for 0 [E(@) = 0],

(2) the variance of @ is nearly as small as the variance that could be obtained
with any other estimator, and

(3) ® has an approximate normal distribution.
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The Invariance Property

Let 8, ®,, ..., ®; be the maximum likelithood estimators of the parameters 6,

B,. .... 0. Then the maximum likelihood estimator of any fupction h(B, 85, ..., 08
of these parameters is the same function A(®, ®,, ..., ®;) of the estimators

0,0, ...,0.

. . . . . . . ~ 2 ~ 7

[n the normal distribution case, the maximum likelihood estimators of w and o were L = X
A n T\ . . . . . - . .

and 6 = X, (X; = X)7/n. To obtain the maximum likelihood estimator of the function

Zi=il

2 ’."' 2 . . A ~D . ~ . . .
hip, 0°) = Vo~ = o, substitute the estimators . and o into the function 4, which yields
_ | /2
A /~2 _ | L ;T\
= VE= |5 3 w-T)
’=

Thus, the maximum likelihood estimator of the standard deviation o is not the sample
standard deviation S.



7-4 Methods of Point Estimation

Complications in Using Maximum Likelihood Estimation

* It 1s not always easy to maximize the likelithood
function because the equation(s) obtained from dL(0)/
d0 = 0 may be difficult to solve.

It may not always be possible to use calculus
methods directly to determine the maximum of L(0).

* See Example 7-14.



