Statistical Intervals

for a Single Sample

CHAPTER OUTLINE

8-1
8-2

INTRODUCTION

CONFIDENCE INTERVAL ON THE
MEAN OF A NORMAL DISTRIBU-
TION, VARIANCE KNOWN

8-2.1 Development of the Confidence
Interval and its Basic
Properties

8-2.2 Choice of Sample Size

8-2.3 One-Sided Confidence
Bounds

8-2.4 General Method to Derive a

Confidence Interval

8-2.5 Large-Sample Confidence

Interval for p

CONFIDENCE INTERVAL ON THE
MEAN OF A NORMAL DISTRIBU-
TION, VARIANCE UNKNOWN

8-4

8-5

8-3.1 t Distribution
8-3.2 t Confidence Interval on

CONFIDENCE INTERVAL ON THE
VARIANCE AND STANDARD
DEVIATION OF A NORMAL
DISTRIBUTION

LARGE-SAMPLE CONFIDENCE
INTERVAL FOR A POPULATION
PROPORTION

GUIDELINES FOR CONSTRUCT-
ING CONFIDENCE INTERVALS

TOLERANCE AND PREDICTION
INTERVALS

8-7.1 Prediction Interval for a Future
Observation

8-7.2 Tolerance Interval for a Normal
Distribution




8-1 Introduction

* |n the previous chapter we illustrated how a parameter

can be estimated from sample data. However, it is
important to understand how good is the estimate obtained.

« Bounds that represent an interval of plausible values for
a parameter are an example of an interval estimate.

« Three types of intervals will be presented:
* Confidence intervals
 Prediction intervals

e Tolerance intervals



8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval
and its Basic Properties

Suppose that X, X5, ..., X, 1s a random sample from a normal distribution with unknown
mean p and known variance a?. From the results of ( hlptu 5 we know that the sample
mean X is normally distributed with mean p and variance o/n. We may standardize X
bv subtracting the mean and dividing bv the standard deviation, which results in the
variable

X— .
Z: - — (l\’-J)

Now Z has a standard normal distribution.



8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval
and its Basic Properties

A confidence interval estimate for w 1s an interval of the form / = = w, where the end-
points / and u are computed from the sample data. Because different samples will produce
different values of / and w, these end-points are values of random variables L and U, respec-
tively. Suppose that we can determine values of L and U such that the following probability
statement 1s true:

PiL=p=U}l=1-a (8-4)
where 0 = a = 1. There 1s a probability of | — «a of selecting a sample for which the CI will
contain the true value of .. Once we have selected the sample, so that X} = x. X5 = x5, ...

X, = x,, and computed / and u, the resulting confidence interval for p 1s

l=nw=u (8-3)



8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval and its
Basic Properties

* The endpoints or bounds / and u are called lower- and upper-
confidence limits, respectively.

e Since Z follows a standard normal distribution, we can write:

Now manipulate the quantities inside the brackets by (1) multiplying through by o/Vn, (2)

subtracting X from each term, and (3) multiplving through by — 1. This results in

— _ (02 ) == _ (02 . Q
P \ - —Ct/:' \-; . p, —— \ + -Ct/:‘ \-; — ] - X (1 —())



8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.1 Development of the Confidence Interval and its
Basic Properties

Definition

If x 1s the sample mean of a random sample of size » from a normal population with
. » r . . -
known variance o=, a 100(1 — a)% CI on p 1s given by

X — Zgpnof Vi = p=X-+ :ap_cr/\?; (8-7)

where z,; 1s the upper 100a/2 percentage point of the standard normal distribution.




8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

Example 8-1

ASTM Standard E23 defines standard test methods for notched bar impact testing of metallic
materials. The Charpv V-notch (CVN) technique measures impact energy and 1s often used to
determine whether or not a material experiences a ductile-to-brittle transition with decreasing
temperature. Ten measurements of impact energy (/) on specimens of A238 steel cut at 60°C
arc as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that
impact energy 1s normallv distributed with o = 1J. We want to find a 95% CI for ., the mean
impact energy. The required quantities are z,, = Zggs = 1.96. n = 10, o = 1. and
X = 64.46. The resulting 95% C1 1s found from Equation 8-7 as follows:

_ o -y =7+ o
X — 2,/ === =X AL R
/% \/n i Y \/n
6446 — 196—==pn = 6446 + 1.96 —
V10 V10
63.84 = = 65.08

That 1s, based on the sample data, a range of highly plausible vaules for mean impact energy
for A238 steel at 60°C is 63.84) = . = 65.08.
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Interpreting a Confidence Interval
 The confidence interval 1s a random interval

» The appropriate interpretation of a confidence interval
(for example on w) is: The observed interval [/, u]
brackets the true value of u, with confidence 100(1-o).

» Examine Figure 8-1 on the next slide.

 Simulation on CI
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u !

1 2 3 4 5 6 7 8 92 101112 13 14 15 16
Intarval number

Figure 8-1 Repeated construction of a confidence interval for u.
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Confidence Level and Precision of Error

The length of a confidence 1nterval 1s a measure of the
precision of estimation.

. .
=1
T~
P~

Sy
[=x— 2201 ﬁ

Figure 8-2 Error in estimating u with x .

U=X+2,0/rfn
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8-2.2 Choice of Sample Size

If x 1s used as an estimate of p, we can be 100(1 — «)% confident that the error
|X¥ — | will not exceed a specified amount £ when the sample size is

Za20 -
- (R-8)
n ( E ) . |
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Example 8-2

To tllustrate the use of this procedure, consider the CVN test described in Example 8-1, and
suppose that we wanted to determine how manv specimens must be tested to ensure that the
93% Clon W for A238 steel cut at 60°C has a length of at most 1.0/, Since the bound on error
in estimation £ is one-half of the length of the CI, to determine n we use Equation 8-8 with
E=105,0=1,and zyp = 0.025. The required sample size 1s 16

(ZQ/JO'): (lt)())l 12 _
n= = |—— = 1537
E 0.5

and because n must be an integer, the required sample size 1s n = 16.
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8-2.3 One-Sided Confidence Bounds

Definition

A 100(1 — a)% upper-confidence bound for . 1s

.T'—:acr/\.?)_z= = (8-10)




8-2 Confidence Interval on the Mean of a
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8-2.4 General Method to Derive a Confidence Interval

[t 1s easy to give a general method for finding a confidence interval for an unknown parame-
ter . Let X}, X5, ..., X, be a random sample of n observations. Suppose we can find a statistic
a(X, Xo. ..., Xo: 0) with the following properties:

1. g(X,. X, .... X,; 0) depends on both the sample and 0.

2. The probability distribution of g(X. X5...... \,. 0) does not depend on 0 or any other
unknown parameter.



8-2 Confidence Interval on the Mean of a
Normal Distribution, Variance Known

8-2.4 General Method to Derive a Confidence Interval

[n the case considered in this section, the parameter 0 = . The random variable g(X,, X;,....
X ) = (X — w)/(o/Vn) and satisfies both conditions above; it depends on the sample and
on ., and it has a standard normal distribution since o i1s known. Now one must find constants
C'; and Cy; so that

P[C, =g(X. Xs ... X:0)=Cpl =1 — a (S11)
Because of property 2. C; and Cy; do not depend on 0. In our example. C; = —z,,, and
Cpy = zgp- Finally, vou must manipulate the mequalities in the probability statement so that

PILIX) Xy oo X)) =0 = UXp, Xon oo, X)) = 1 — « (8-12)
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8-2.4 General Method to Derive a Confidence Interval

This gives L(X|. X5, ..., X)) and U(X|. X5, ..., X,) as the lower and upper confidence limits
defining the 100(1 — @)% confidence interval for 0. The quantity g(X,. X5, ..., X,; 0) 1s
often called a “pivotal quantity™ because we pivot on this quantity in Equation 8-11 to pro-
duce Equation 8-12. In our example., we nmmpulatul the pl\otal quantity (Y — m,.(,, \Vn)
to obtain L(X, X5,.... X)) =X — Zopo/ Vnand UX, Xy, ..., X)) = X+ Zo20/ V1.
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8-2.5 A Large-Sample Confidence Interval for u

Definition

When » 1s large, the quantity

X — Zos \v.‘-—’.‘—-:l.LS.‘(—.'{":a’/:ﬁ (8-13)

is a large sample confidence interval for p, with confidence level of approximately

100(1 — o)%.
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Example 8-4

An article in the 1993 volume of the Transactions of the American Fisheries Society reports
the results of a study to investigate the mercury contamination in largemouth bass. A sample
of fish was selected from 33 Florida lakes and mercury concentration in the muscle tissue was
measured (ppm). The mercury concentration values are

[.230 0.490 (.490 [.080 0.590 ().280 0.180 0.100 0.940
[.330 0.190 [.160 ().980 0.340 (0.340 0.190 0.210 0.400
0.040 0.830 0.050 0.630 0.340 (0.750 0.040 ().860 0.430
0.044 0.810 0.150 0.560 0).840 (.870 0.490 0.520 (0.250
[.200 0.710 (0.190 0.410 0.500 0.560 [.100 0.650 0.270
0.270 0.500 0.770 0.730 0.340 0.170 0.160 0.270

wh)



Fraquency
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Example 8-4 (continued)
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Figure 8-3 Mercury concentration in largemouth bass
(a) Histogram. (b) Normal probability plot
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Example 8-4 (continued)

Figure 8-3(a) and (b) presents the histogram and normal probability plot of the mercury
concentration data. Both plots indicate that the distribution of mercury concentration is not nor-
mal and is positively skewed. We want to find an approximate 95% CI on . Because n > 40,
the assumption of normality is not necessary to use Equation 8-13. The required quantities are
n =353, XY= 05250,5 = 0.3486, and z j5 = 1.96.The approximate 95% CI on w 1s

s S

X —Znms——== W =X+ Znms —=

0.02° NG L 0.02¢ n
o ().3486 o (0.3486
0.5250 — 1.96 —_— =)= 0.5250 + 1.96 —
V' 53 V33

04311 = p = 0.6189

This interval 1s fairly wide because there 1s a lot of variability in the mercury concentration

measurements.
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A General Large Sample Confidence Interval

9— :a’/zoé = 9 = 6+ :a;fzaé

(8-14)




8-3 Confidence Interval on the Mean of a
Normal Distribution, Variance Unknown

8-3.1 The ¢ distribution

Let X}, X;, ..., X, be a random sample from a normal distribution with unknown
mean . and unknown variance . The random variable

_X-u

I'= —
S/\Vn

has a  distribution with n — | degrees of freedom.
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8-3.1 The ¢ distribution

- k=10

k = 0 [.N’ (0. l)]

Q X

Figure 8-4 Probability density functions of several t
distributions.
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8-3.1 The ¢ distribution

o X

£l —ak = —ta,2 O Lo, R ¢

Figure 8-5 Percentage points of the t distribution.
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8-3.2 The 7 Confidence Interval on p

If x and s are the mean and standard deviation of a random sample from a normal
. - . . . - - -
distribution with unknown variance o<, a 100(1 — «) percent confidence interval

on g is given by
X — fa/.)__”_lS/\'; == X+ faﬂ,n—ls/\; (8-18)

where #,/5,,— is the upper 100a/2 percentage point of the ¢ distribution with n — |
degrees of freedom.

on the mean are found by replacing

{

o/2,n-

| In Equation 8-18 with 7 , ;.




8-3 Confidence Interval on the Mean of a
Normal Distribution, Variance Unknown

Example 8-5

An article in the journal Materials Engineering (1989, Vol. I1, No. 4, pp. 275-281) describes the results
of tensile adhesion tests on 22 U-700 alloy specimens. The load at specimen failure is as follows (in
megapascals):

19.8 10.1 14.9 7.5 154 154
154 18.5 19 12.7 11.9 11.4
11.4 4.1 17.6 16.7 158
19.5 8.8 13.6 11.9 1.4

The sample mean is x = 13.71, and the sample standard deviation is s = 3.55.nhow
a box plot and a normal probability plot of the tensile adhesion test data, respectively. These displays
provide good support for the assumption that the population is normally distributed. We want to find
a 95% Cl on . Since n = 22, we have n — | = 21 degrees of freedom for ¢, 5o #, 45, = 2.080. The
resulting CI is

X~ typa-15/VR = WET + typ,-15/Vn
w = 13.71 + 2.080(3.55)/V22

13.71 — 2.080(3.55)/ V22
w= 1371+ 1.57
12.14 = p = 1528

A

o et W

371 = 157 =

The CT is fairly wide because there is a lot of variability in the tensile adhesion test measurements.
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20.5 o Normal probability plot
18.0 95
g S0
E . 80
@ 155 c 70
o &0
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§ 1o
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5 10 15 20 25
Load at failure

Figure 8-6/8-7 Box and Whisker plot and Normal probability
plot for the load at failure data in Example 8-5.



8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

Definition

Let X}, X5, ..., X, be a random sample from a normal distribution with mean p. and
- ) ~ - -
variance o, and let 5° be the sample variance. Then the random variable

. (n—1)5?
.\’-=( 02) (8-19)

has a chi-square (x*) distribution with n — 1 degrees of freedom.
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f (x)

Figure 8-8 Probability
density functions of
several y? distributions.




8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

Definition

2 - - - - - -
[f s 1s the sample variance from a mndom sample of n observations from a normal dls-
tribution with unknown variance o, then a 100(1 — «)% confidence interval on o is

(n — l)s (n — 1)s°

Xq/",n— Xl -/ 201

(8-21)

where xiﬁ -1 and xi_,, /2.0-1 are the upper and lower 100a/2 percentage points of
the chi-square distribution with » — | degrees of freedom, respectively. A confidence
interval for o has lower and upper limits that are the square roots of the correspon-
ding limits in Equation 8-21.




8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

One-Sided Confidence Bounds

The 100(1 — a)% lower and upper confidence bounds on o~ are

) 3]
n— 1)s* . ,  An— 1)
( . =¢g- and o = ( R (8-22)
Xc-x..v— | XT —aa—1

respectively.




8-4 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

Example 8-6

An automatic filling machine is used to fill bottles with liquid detergent. A random sample of 20 bottles
results in a sample variance of fill volume of s* = 0.0153 (fluid ounces)®. If the variance of fill volume
is too large, an unacceptable proportion of bottles will be under- or overfilled. We will assume that the
fill volume is approximately normally distributed. A 95% upper-confidence interval is found from
Equation 8-22 as follows:

o (n—= 1)
X0.95.19
or
(19)0.0153

Lo

= 0.0287 (fluid ounce)?

qQ
A

10.117

This last expression may be converted into a confidence interval on the standard deviation o by taking
the square root of both sides, resulting in

o=0.17

Therefore, at the 95% level of confidence, the data indicate that the process standard deviation could be
as large as 0.17 fluid ounce.



8-5 A Large-Sample Confidence Interval
For a Population Proportion

Normal Approximation for Binomial Proportion

If 1 1s large, the distribution of

7 = X—np P— p
Vap(l — p) p(l1 — p)

\ n

1s approximately standard normal.

The quantity v/2(1- p)/n is called the standard error of the point
estimator P .




8-5 A Large-Sample Confidence Interval
For a Population Proportion

If p is the proportion of observations in a random sample of size n that belongs to a
class of interest, an approximate 100(1 — «)% confidence interval on the proportion

p of the population that belongs to this class 1s

“ p(1 = p) ) p(l —p)
P — Zap \ n =EpPp=Ep -tz \ n (8-25)

where z_, is the upper a/2 percentage point of the standard normal distribution.




8-5 A Large-Sample Confidence Interval
For a Population Proportion

Example 8-7

[n a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish that
1s rougher than the specifications allow. Therefore, a point estimate of the proportion of bear-
ings in the population that exceeds the roughness specification is p = x/n = 10/85 = 0.12.
A 95% two-sided confidence interval for p is computed from Equation 8-235 as

) [p(1 = p) i [p(1 — p)
P = Zoos\[ T =p=p T Zoos NV n
or
[0.12(0.88) [0.12(0.88)
0.12 — 1.96 | —— =p=0.12 + 1.96 —
\V 85 V85

which simplifies to

0.05<p=0.19
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Choice of Sample Size

The sample size for a specified value E 1s given by

n= (b%q)-p(l — p) (8-26)

An upper bound on 7 1s given by

Za2\
o 0.25 8-27)
n ( 3 ) (0.25) (8-27)




8-5 A Large-Sample Confidence Interval
For a Population Proportion

Example 8-8

Consider the situation in Example 8-7. How large a sample is required if we want to be 95% confident
that the error in using p to estimate p is less than 0.05? Using p = 0.12 as an initial estimate of p, we find
from Equation 8-26 that the required sample size is

-~

Znms \° [.96 : . - ‘
— —_— - — - — — ’} { (o]
R ( ) p(l —p) (().05) 0.12(0.88) = 163

If we wanted to be at least 95% confident that our estimate p of the true proportion p was within 0.05
regardless of the value of p, we would use Equation 8-27 to find the sample size

Znms 2 ) 1.96 - i
=|——) (025) =|——] (0.25) == 385
. ( E ) (0.25) (0_05) (025)

Notice that if we have information concerning the value of p, either from a preliminary sample or from
past experience, we could use a smaller sample while maintaining both the desired precision of estima-
tion and the level of confidence.
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One-Sided Confidence Bounds

The approximate 100(1 — «)% lower and upper confidence bounds are

: p(1-p) : p(1 — p)
P=Zu\["n =p and p=p+z, \ 7 (8-28)

respectively.




8-6 Guidelines for Constructing
Confidence Intervals

The most difficult step in constructing a confidence interval is often the match of the appro-
priate calculation to the objective of the study. Common cases are listed in Table 8-1 along
with the reference to the section that covers the appropriate calculation for a confidence inter-

val test. Table 8-1 provides a simple road map to help select the appropriate analysis. Two
primary comments can help identify the analysis:

1. Determine the parameter (and the distribution of the data) that will be bounded by the
confidence interval or tested by the hypothesis.

2. Check if other parameters are known or need to be estimated.



8-7 Tolerance and Prediction Intervals

8-7.1 Prediction Interval for Future Observation

A 100(1 = @)% prediction interval on a single future observation from a normal
distribution is given by

| o

= {a/g._,,_ls \ | + = ‘.X-’H_H =X+ ta/_a_,,_ls\- | + n (8-29)

The prediction interval for X ., will always be longer than the
confidence interval for .




8-7 Tolerance and Prediction
Intervals

Example 8-9

Reconsider the tensile adhesion tests on specimens of U-700 alloy described in Example 8-5. The
load at failure for n = 22 specimens was observed, and we found that x = 13.71 and s = 3.55. The
05% confidence interval on p was 12.14 = p = 15.28. We plan to test a twenty-third specimen.

A 95% prediction interval on the load at failure for this specimen is

| l
T_ ,0}'2..'1“15\ ] +;S‘\"3+l ST"' {(!('2..""]5\ l +7
- 1 - l
13.71 = (2080)3.55 /1 + — = Xpy = 1371 + (2.080)3.55 | /1 +
6.16 = X5, = 21.26

Notice that the prediction interval is considerably longer than the CL



8-7 Tolerance and Prediction
Intervals

8-7.2 Tolerance Interval for a Normal Distribution

Consider a population of semiconductor processors. Suppose that the speed of these
processors has a normal distribution with mean Y4 = 600 megahertz and standard
deviation O = 30 megahertz. Then the interval from 600 - 1.96(30) = 541.2 to 600 +
1.96(30) = 658.8 megahertz captures the speed of 95% of the processors in this
population because the interval from -1.96 to 1.96 captures 95% of the area under the
standard normal curve. The interval from 4 -z, ,0to Y + 2,0 is called a tolerance

interval.

If 4 and O are unknown, we can use the data from a random sample of size » to
compute x and s, and then form the interval (x - 1.96s, x + 1.96s). However, because of
sampling variability in x and s, it is likely that this interval will contain less than 95% of
the values in the population. The solution to this problem is to replace 1.96 by some
value that will make the proportion of the distribution contained in the interval 95%
with some level of confidence. Fortunately, it is easy to do this.
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8-7.2 Tolerance Interval for a Normal Distribution

Definition

A tolerance interval for capturing at least y% of the values in a normal distribution
with confidence level 100(1 — a)% 1s

X — ks, X + ks

where £k 1s a tolerance interval factor found in Appendix Table XII. Values are given
for y = 90%, 95%, and 99% and for 90%, 95%, and 99% confidence.




8-7 Tolerance and Prediction
Intervals

EXAMPLE 8-10 Alloy Adhesion

Let's reconsider the tensile adhesion tests originally described in Example 8-5.
The load at failure for » = 22 specimens was observed, and we found that x =
13.71 and s = 3.55. We want to find a tolerance interval for the load at failure
that includes 90% of the values in the population with 95% confidence. From
Appendix Table XII the tolerance factor & for n = 22, y = 0.90, and 95%
confidence is k= 2.264. The desired tolerance interval is

(% —ks. T +4ks) or [13.71—(2.264)3.55.13.71 + (2.264)3.55]

which reduces to (5.67, 21.74). We can be 95% confident that at least 90% of
the values of load at failure for this particular alloy lic between 5.67 and 21.74
megapascals.

Simulation on Tolerance Intervals



