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9-1 Hypothesis Testing
9-1.1 Statistical Hypotheses

Statistical hypothesis testing and confidence interval
estimation of parameters are the fundamental methods
used at the data analysis stage of a comparative
experiment, in which the engineer is interested, for
example, 1n comparing the mean of a population to a
specified value.

Definition

A statistical hypothesis 1s a statement about the parameters of one or more populations.




9-1 Hypothesis Testing
9-1.1 Statistical Hypotheses

For example, suppose that we are interested 1n the

burning rate of a solid propellant used to power aircrew
escape systems.

* Now burning rate is a random variable that can be
described by a probability distribution.

* Suppose that our interest focuses on the mean burning
rate (a parameter of this distribution).

» Specifically, we are interested in deciding whether or
not the mean burning rate 1s 50 centimeters per second.



9-1 Hypothesis Testing

9-1.1 Statistical Hypotheses
Two-sided Alternative Hypothesis

Hy: o = 50 centimeters per second  null hypothesis

H,: i # 30 centimeters per second  alternative hypothesis

One-sided Alternative Hypotheses

Hy: o = 50 centimeters per second Hy: o = 50 centimeters per second

or

H: << 50 centimeters per second Hy: > 50 centimeters per second



9-1 Hypothesis Testing

9-1.1 Statistical Hypotheses

Test of a Hypothesis
* A procedure leading to a decision about a particular
hypothesis

* Hypothesis-testing procedures rely on using the information
in a random sample from the population of interest.

e [f this information 1s consistent with the hypothesis, then we
will conclude that the hypothesis 1s true; if this information 1s
inconsistent with the hypothesis, we will conclude that the
hypothesis 1s false.



9-1 Hypothesis Testing
9-1.2 Tests of Statistical Hypotheses

Hy: i = 50 centimeters per second
|- M

H

# 50 centimeters per second

Reject Hy Fail to Reject H Reject Hy
u= 50 cm/s =50 cm/s w# 50 cm/s
48.5 50 51.5 x

Figure 9-1 Decision criteria for testing Hy:u = 50 centimeters per
second versus H,:u = 50 centimeters per second.



9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

Table 9-1 Decisions in Hypothesis Testing

Decision H, 1s True H, Is False
Fail to reject H, no error type 11 error
Reject H, type I error no error

Rejecting the null hypothesis A, when it is true is defined as a type I error.
Failing to reject the null hypothesis when it is false is defined as a type Il error.
a = P(type | error) = P(reject Hy when Hy 1s true)

Sometimes the type I error probability is called the significance
level, or the a-error, or the size of the test.



9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

* In the propellant burning rate example, a type I error will occur when

r<d850rx>5135

when the true mean burning rate is u = 50 centimeters per second.
* n=10.

 Suppose that the standard deviation of burning rate is o = 2.5 centimeters per
second and that the burning rate has a normal distribution, so the distribution
of the sample mean is normal with mean p = 50 and standard deviation

o 25
Vn 410
* The probability of making a type I error (or the significance level of our test)

is equal to the sum of the areas that have been shaded in the tails of the normal
distribution in Fig. 9-2.

=(.79




9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

a = P(X < 48.5 when p = 50) + P(X > 51.5 when u = 50)

The z-values that correspond to the critical values 48.5 and 51.5 are

48.5 — 50 S1.5 — 50
I = , = —1.90 and z A
0.79 0.79

[.90

2

Therefore

a = P(Z< —190)+ P(Z > 1.90) = 0.028717 + 0.028717 = 0.057434



9-1 Hypothesis Testing

/2 = 0.0287 / /2 =0.0287
485 u=50 6515 X

Figure 9-2 The critical region for H,: p. = 50
versus H;: p # S0 and n = 10.

a = P(type I error) = P(reject A, when Hj is true)

(9-3)




9-1 Hypothesis Testing

B = P(type Il error) = P(fail to reject A, when H, 1s false) (9-4)

0.6
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>
§ ! probability of type Il
203 \ error when u =52 and
= \ n = 10.
é 0.2 \
& \
0.1 \
\
N\

o

46 48 50 52 54 56

=l




9-1 Hypothesis Testing

B = P(48.5 = ¥ = 51.5 when . = 52)

The z-values corresponding to 48.5 and 51.5 when p = 52 are

48.5 — 52 oA 51.5 =352
R TR —4.43 and Zy =

—0.63

Therefore

B=P(—443=7Z=—-063) = P(Z= —0.63) — P(Z = —4.43)
= 0.2643 — 0.0000 = 0.2643



9-1 Hypothesis Testing

B=P485=X=51.5whenp = 50.5)

0.6
Under Hy:u =50
‘\Under Hy:u =50.5
[
\

0.5

O
B

o
(¥

Probability density
o
w

Figure 9-4 The
probability of type Il

error when u = 50.5
and n =10.



9-1 Hypothesis Testing

B = P(48.5 = X = 51.5 when w = 50.5)

As shown in Fig. 9-4, the z-values corresponding to 48.5 and 51.5 when . = 50.5 are

48.5 — 505 - 51.5 — 50.5
2 = = —2.95 and Zy = =127

0.79 (.79 o

Therefore

B=P(-253=7=<127)=PZ=127) — P(Z=< —2.53)
= (.8980 — 0.0057 = 0.8923



9-1 Hypothesis Testing

Under Ho:u =50 Under Hy:u =52

Figure 9-5 The
probability of type Il

error when u =52 and
n=16.

Probability density




9-1 Hypothesis Testing

-~

B = P(48.5 = ¥ = 51.5 when . = 52)

When n = 16, the standard deviation of X is a/Vn = 2.5/V16 = 0.625, and the z-values

corresponding to 48.5 and 51.5 when p = 52 are

48.5 — 52 o 51.5 — 52 o
= = —5 and 1z, = = —0.8
2 ”()25 . .60 ll]d b ()(125 ().80

Theretfore

B=P-560=7Z=—-080)=PZ=—-080)— P(Z= —5.60)



9-1 Hypothesis Testing

Acceptance Sample
Region Size o Batp =352 Bat w = 505
48.5 <X < 515 10 0.0576 02643 (.8923
48 <x <32 10 0.0114 0.5000 0.9705
48.5 <X < 515 16 0.0164 02119 0.9445
48 <x <32 16 0.0014 0.5000 0.9918

Acceptance Region Sample Size o

Batu=52 Batu =50.5

485<z<515 10 0.0576  0.2643
48 <x <52 10 0.0114 " 53600
48.81 <x<51.19 16 0.0576] [0.0966
48.42 <x<51.58 16 0.0114] [02515

0.8923

0.9705

0.8606

0.9578




9-1 Hypothesis Testing

1. The size of the critical region, and consequently the probability of a
type I error a, can always be reduced by appropriate selection of the
critical values.

2.  Type I and type II errors are related. A decrease in the probability of
one type of error always results in an increase in the probability of
the other, provided that the sample size n does not change.

3. Anincrease in sample size reduces [, provided that a 1s held
constant.

4. When the null hypothesis is false, B increases as the true value of the
parameter approaches the value hypothesized in the null hypothesis.
The value of B decreases as the difference between the true mean and
the hypothesized value increases.



9-1 Hypothesis Testing

Definition

The power of a statistical test is the probability of rejecting the null hypothesis H;
when the alternative hypothesis 1s true.

e The power 1s computed as 1 - B, and power can be interpreted as
the probability of correctly rejecting a false null hypothesis. We
often compare statistical tests by comparing their power properties.

» For example, consider the propellant burning rate problem when
we are testing H , : u = 50 centimeters per second against H | : u not
equal 50 centimeters per second . Suppose that the true value of the
mean 1s uw = 52. When n = 10, we found that § = 0.2643, so the
power of thistestis 1 - 3 =1 -0.2643 =0.7357 when u = 52.




9-1 Hypothesis Testing

9-1.3 One-Sided and Two-Sided Hypotheses
Two-Sided Test:

Hy: e =
Hi e # g
One-Sided Tests:
Hy: = o Hy: = g
Hy: = g Hy: < g

Rejecting H,, 1s a strong conclusion.



9-1 Hypothesis Testing

Example 9-1

Consider the propellant burning rate problem. Suppose that if the burning rate 1s less than
50 centimeters per second, we wish to show this with a strong conclusion. The hypotheses
should be stated as

H

o i = 30 centimeters per second
Hy: o << 50 centimeters per second

Here the critical region lies in the lower tail of the distribution of X'. Since the rejection of H,
1s always a strong conclusion, this statement of the hypotheses will produce the desired out-
come 1f H; 1s rejected. Notice that, although the null hypothesis is stated with an equal sign, it
1s understood to include any value of W not specified by the alternative hypothesis. Therefore,
failing to reject Hy does not mean that p. = 30 centimeters per second exactly, but only that we
do not have strong evidence in support of H,.



9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

P-value = P (test statistic will take on a value that is at least as
extreme as the observed value when the null hypothesis H, is true)

Decision rule:
* If P-value > a , fail to reject H, at significance level a;

* If P-value < a, reject H, at significance level a.

The P-value is the smallest level of significance that would lead to rejection of the
null hypothesis H; with the given data.




9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

Consider the two-sided hypothesis test for burning rate
Hy: =50 H,:p#50

with n = 16 and o = 2.5. Suppose that the observed sample mean 1s x = 51.3 centimeters
per second. Figure 9-6 shows a critical region for this test with critical values at 51.3 and
the symmetric value 48.7. The P-value of the test is the a associated with this critical
region. Any smaller value for a expands the critical region and the test fails to reject the
null hypothesis when X = 51.3. The P-value 1s easy to compute after the test statistic 1s ob-

served. In this example

P-value = 1 — P(48.7 < X < 51.3)
= 1 —P(' < Z <"

| — P(—2.08 < Z < 2.08)
1 — 0.962 = 0.038




9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

0.7

0.6

0.5

0.4

C2

0.3

0.2

Figure 9-6 P-value 0.1
Is area of shaded 0 |
region when x = 51.3. 48 49 50 51 52




9-1 Hypothesis Testing

9-1.5 Connection between Hypothesis Tests and
Confidence Intervals

There is a close relationship between the test of a hvpothesis about any parameter, say 6, and
the confidence interval for §. If [/, u] is a 100(1 — «)% confidence interval for the parameter
B, the test of size a of the hypothesis

H0:0=90
HI:G = 90

will lead to rejection of Hj if and only if 6, 1s not in the 100(1 — «)% CI [/, #]. As an illus-
tration, consider the escape system propellant problem with X = 51.3, ¢ = 2.5, and n = 16.
The null hypothesis Hy: p = 50 was rejected, using a = 0.05. The 95% two-sided CI
on p can be calculated using Equation 8-7. This CI is 51.3 * 1.96(2.5/\/16) and this is
S0.075 = p = 52.525. Because the value py = 50 is not included in this interval, the null
hypothesis H,,: . = 50 is rejected.



9-1 Hypothesis Testing

9-1.6 General Procedure for Hypothesis Tests

1. From the problem context, identify the parameter of interest.
. State the null hypothesis, H,, .

. Specify an appropriate alternative hypothesis, H;.

. Choose a significance level, .

. Determine an appropriate test statistic.

. State the rejection region for the statistic.

N OO O B~ 0N

. Compute any necessary sample quantities, substitute these into the
equation for the test statistic, and compute that value.

8. Decide whether or not H,, should be rejected and report that in the
problem context.



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean
We wish to test:

Ho: o = Wy
Hy:t o # wg

The test statistic 1s:

o/ \Vn (9-8)




9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean

Reject H,, if the observed value of the test statistic z 1s
either:

Zy = Zyyy OT Zy < =Z
Fail to reject H 1f

“Zopn <Zy<Zyp



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

N(O,1)

Critical region \ / Critical region

N(0,1)
Accaptance Foal2

Critical region
(o o)
region

~Zap2 0 Zgp2 Z, 0 Zq Zy ~Za 0

a2\ Acceptance

region

Acceptance
region

(a) (b) (c)
Figure 9-7 The distribution of Z, when H,: i = ., is true, with critical region for (a) the two-sided alternative H,: i # ;.
(b) the one-sided alternative H,: w > ., and (c) the one-sided alternative H, : p < p,,



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-2

Aircrew escape systems are powered by a solid propellant. The burning rate of this pro-
pellant is an important product characteristic. Specifications require that the mean burning
rate must be 50 centimeters per second. We know that the standard deviation of burning
rate 1s o = 2 centimeters per second. The experimenter decides to specify a type | error
probability or significance level of a = 0.05 and selects a random sample of n = 25 and
obtains a sample average burning rate of ¥ = 31.3 centimeters per second. What conclu-

stons should be drawn’?



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-2

We may solve this problem by following the eight-step procedure outlined in Section 9-1.4.
This results in

1. The parameter of interest is ., the mean burning rate.
2. Hy p = 50 centimeters per second

3. H;:p # 50 centimeters per second

4. o= 0.05

S. The test statistic 1s

X = M

<0 — -

o/ \'n




9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-2

6. Reject Hyifzg = 1.96 or if z; << —1.96. Note that this results from step 4, where we

specified a = 0.03, and so the boundaries of the critical region are at zy g5 = 1.96
and —Z0.025 — — [.96.
7. Computations: Since ¥ = 513 and o0 = 2,
51.3 — 50 i
Zp = —— = 3.25
7 /\/ "5
4,,-/ \ ...‘\

8. Conclusion: Since z; = 3.25 = 1.96, we reject Hy: o = 30 at the 0.05 level of
significance. Stated more completely, we conclude that the mean burning rate dif-
fers from 50 centimeters per second, based on a sample of 25 measurements. In
fact, there is strong evidence that the mean burning rate exceeds 50 centimeters

per second.



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean

We may also develop procedures for testing hypotheses on the mean p where the alter-
native hypothesis 1s one-sided. Suppose that we specify the hypotheses as

(9-11)

In defining the critical region for this test, we observe that a negative value of the test statistic
Z, would never lead us to conclude that H;: p = p,, is false. Therefore, we would place the
critical region in the upper tail of the standard normal distribution and reject H, if the com-
puted value of z; is too large. That 1s, we would reject H if

Z0 > Z (9-12)

.‘.0 -~ L



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean (Continued)

as shown 1n Figure 9-7(b). Similarly, to test

Hy: p = po
Hy:p < o (9-13)
we would calculate the test statistic Z, and reject H,, if the value of z; is too small. That 1s, the

critical region 1s in the lower tail of the standard normal distribution as shown in Figure
9-7(c), and we reject H, if

:0 < —Z (9-14)



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean (Continued)
Null hvpothesis: Hg:pe = pig

X — g

alun

Test statistic: Zy=

e nrannnnnrnannnn e e T T SRR

Hy:p# Y, Zo>za/2°f20<'2a/2
H;:p> Y, % Z iy
Hip<dy 2<%

The notation on p. 307 includes n-1, which 1s wrong.



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

P-Values in Hypothesis Tests

The P-value 1s the smallest level of significance that would lead to rejection of the
null hypothesis A, with the given data.

2[1 — D(|zg|)] fora two-tailed test: Hy: . = g Hy:p # g
P=4q1—®d(z) for a upper-tailed test: Hy: i = g Hi: = g (9-15)
D(z;) for a lower-tailed test: Hy: i = g Hi: < g




9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type 11 Error and Choice of Sample Size
Finding the Probability of Type II Error

Consider the two-sided hypothesis

Hy o = Py
Hyt e # o

Suppose that the null hypothesis is false and that the true value of the mean i1s i = g + 8.
say. where & = 0. The test statistic Z; 1s
X — X = (g + 5) " dVn

Ly = = = =
ao/Vn o/ Vi o

Therefore. the distribution of Z; when H, 1s true is

, (8Vn L
Zy~ N{—5—. | (9-16)



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type 11 Error and Choice of Sample Size
Finding the Probability of Type II Error

B = P(type Il error) = P(failing to reject H, when it 1s false)

d\Vn dVn
B — q’(:a/z - ;,}) - q’(—zwz - ;_n) (9-17)




9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type 11 Error and Choice of Sample Size
Finding the Probability of Type II Error

Under Hy: =y Under Hy: =,

" 17 0 ar Sin Z 0
o

Figure 9-7 The distribution of Z, under H; and H,



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type 11 Error and Choice of Sample Size

Sample Size Formulas

For a two-sided alternative hypothesis:

2 AL |
(ZQ/?_ + zp)"0°
82

n = where 0= — (9-19)

For a one-sided alternative hypothesis:

2

(z + :B)zo*
82

n= where 0= 1 — Mg (9-20)




9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-3

Consider the rocket propellant problem of Example 9-2. Suppose that the analyst wishes to
design the test so that if the true mean burning rate differs from 50 centimeters per second by
as much as | centimeter per second. the test \\'ill detect this (1.e.. reject Hy: o = 50) witha high
probability, say 0.90. Now, we note thate = 2.8 = 51 — 30 = |, a = 0.05. and B = 0.10.
Since Z,p = Zgms = 1.96 and zp = 254 = I.Z, the sample size required to detect this
departure from Hy: o = 50 15 found by Equation 9-19 as

(zop + 2p) 0% (196 + 1.28)22
n= & ﬂp =( S ) "—'4:

&° (1)

The approximation is good here. since ®(—z,, — dVa/o) = ®(=1.96 — (1)VE2/2) =
P(—=5.20) = 0, which 1s small relative to B.



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type 11 Error and Choice of Sample Size
Using Operating Characteristic Curves

When performing sample size or type II error calculations, it 1s sometimes more conven-
ient to use the operating characteristic (OC) curves in Appendix Charts Vla and VIb.
These curves plot B as calculated from Equation 9-17 against a parameter d for various
sample sizes n. Curves are provided for both &« = 0.05 and @ = 0.01. The parameter d 1s
defined as

U Th, 0
I | - | =% (9-21)

d



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type 11 Error and Choice of Sample Size

Using Operating Characteristic Curves

so one set of operating characteristic curves can be used for all problems regardless of the
values of g and o. From examining the operating characteristic curves or Equation 9-17 and
Fig. 9-7. we note that

1. The further the true value of the mean w is from py. the smaller the probability of
type Il error B fora given n and e.. That 1s, we see that for a specified sample size and
a. large differences in the mean are easier to detect than small ones.

2. Fora given & and o the probability of type Il error B decreases as n increases. That
I1s. to detect a specified difference & in the mean, we may make the test more power-
ful by increasing the sample size.



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-4

Consider the propellant problem in Example 9-2. Suppose that the analyst is concerned about the prob-
ability of type Il error if the true mean burning rate is o = 51 centimeters per second. We may use the
operating characteristic curves to find B. Note thatd =51 =50 =1, n = 25,0 =2, and a = 0.05. Then
using Equation 9-21 gives

. = ol (3

|
a o - 2

and from Appendix Chart VIla, with » = 25, we find that § = 0.30. That is, if the true mean burning rate
Is i = 51 centimeters per second, there is approximately a 30% chance that this will not be detected by
the test with n = 25.



9-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.3 Large Sample Test

We have developed the test procedure for the null hypothesis H: p = p, assuming that the pop-
ulation is normally distributed and that o is known. In many if not most practical situations o”
will be unknown. Furthermore, we may not be certain that the population 1s well modeled by a
normal distribution. In these situations if » 1s large (say n > 40) the sample standard deviation s
can be substituted for o 1n the test procedures with little effect. Thus, while we have given a test
for the mean of a normal distribution with known o”, it can be easily converted into a large-
sample test procedure for unknown o that is valid regardless of the form of the distribution
of the population. This large-sample test relies on the central limit theorem just as the large-
sample confidence interval on . that was presented in the previous chapter did. Exact treatment

. . 2. . . -
of the case where the population i1s normal, o= i1s unknown, and » 1s small involves use of the
t chstribution and will be deferred until Section 9-3.



9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.1 Hypothesis Tests on the Mean
One-Sample #-Test

Null hypothesis: Hy: = g

. X — mo
Test statistic: ig = =
S/\'n
Alternative hypothesis Rejection criteria
H]I L -+ o o > la2a—-1 OI I < —la2.n—1
Hyiipw = py o = laa—1

Hyipw < o o < —lan-I




9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.1 Hypothesis Tests on the Mean

Figure 9-9 The reference distribution for H,: u = u, with critical
region for (a) Hy: w = py, (b) Hy: w > g, and (c) Hy: p < .



9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6

The increased availabilhity of light matenals with high strength has revolutionized the design and
manufacture of golf clubs. particularly drivers. Clubs with hollow heads and very thin faces can
result in much longer tee shots, especially for players of modest skills. This 1s due partly to the
“spring-like effect” that the thin face imparts to the ball. Firing a golf ball at the head of the club
and measuring the ratio of the outgoing velocity of the ball to the incoming velocity can quantfy
this spring-like effect. The ratio of velocities 1s called the coeflicient of restitution of the ¢lub. An
experiment was performed in which 15 drivers produced by a particular club maker were selected
at random and their coeflicients of restitution measured. In the experiment the golf balls were
fired from an air cannon so that the incoming velocity and spin rate of the ball could be precisely
controlled. It1s of interest to determine 1f there is evidence (with e = 0.05) to support a claim that
the mean coeflicient of restitution exceeds 0.82. The observations follow:

08411 08191 0.8182 08125 0.8750

0.8580 0.8532 0.8483  0.8276  0.7983

0.8042  0.8730 0.8282  0.8359  0.8660



9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6

The sample mean and sample standard deviation are ¥ = 0.83725 and s = 0.02456. The normal
probability plot of the data in Fig. 9-9 supports the assumption that the coeflicient of restitution is
normally distributed. Since the objective of the experimenter 15 to demonstrate that the mean co-
eflicient of restitution exceeds 0.82, a one-sided alternative hypothesis is appropriate.

The solution using the eight-step procedure for hypothesis testing 1s as follows:

_ e 19

:JI

The parameter of interest is the mean coeflicient of restitution, .

Hy =082

Hy: o = 0.82. We want to reject Hy i the mean coefhcient of restitution exceeds 0.82.
o = 005

The test statistic 1s



9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6 0
Figure 9-10 "
Normal probability 80
plot of the ¥ &
coefficient of 3 20
restitution data * 30
from Example 9-6. o

0.78 0.83 0.88
Coefficient of rastitution



9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6
7. Computations: Since X = 0.83725, 5 = 0.02456, pg = 0.82, and n = 15, we have

0.83725 — 0.82

!” = - o - :-‘:
| 0.02456/V 15
8. Conclusions: Since t; = 2.72 = 1.761. we reject Hy, and conclude at the 0.05 level of

significance that the mean coeflicient of restitution exceeds 0.82.



9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.2 P-value for a 7-Test

The P-value for a t-test is just the smallest level of significance
at which the null hypothesis would be rejected.

To illustrate, consider the t-test based on 14 degrees of freedom in Example 9-6. The
relevant critical values from Appendix Table 1V are as follows:
Critical Value:  0.258  0.692 1.345 1.761 2.145 2.624 2977 3.326  3.787 4.140
Tail Area: 0.40 025 0.10 005 0.025 001  0.005 0.0025 0.001 0.0005

Notice that {, = 2.72 in Example 9-6, and that this is between two

tabulated values, 2.624 and 2.977. Therefore, the P-value must be

between 0.01 and 0.005. These are effectively the upper and lower
bounds on the P-value.



9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.3 Type 11 Error and Choice of Sample Size

The type II error of the two-sided alternative (for example)
would be

B=Pl—tern-1 =Ty =typ,—1|0 #F 0}

— P'{—,a/.’..n—l = T'" = fa/.’..n—l}

where T, denotes a noncentral ¢ random variable.



9-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-7

Consider the golf club testing problem from Example 9-6. If the mean coefficient of restitution exceeds
(.82 by as much as 0.02, is the sample size n = 15 adequate to ensure that A w = 0.82 will be rejected
with probability at least 0.8

To solve this problem, we will use the sample standard deviation s = 0.02456 to estimate o. Then
d = |8|/o = 0.02/0.02456 = 0.81. By referring to the operating characteristic curves in Appendix
Chart Vg (for o = 0.05) with & = 0.81 and n = 15, we find that 8 = 0.10, approximately. Thus, the
probability of rejecting H,: . = 0.82 if the true mean exceeds this by 0.02 is approximately | — B =
| — 0.10 = 0.90, and we conclude that a sample size of » = 15 Is adequate to provide the desired
sensitivity.



9-3.4 Likelihood Ratio Test (extra!)

Hypothesis testing is one of the most important techniques of statistical inference. Throughout
this book we present many applications of hypothesis testing. While we have emphasized a
heuristic development, many of these hypothesis-testing procedures can be developed using a
general principle called the likelihood ratio principle. Tests developed by this method often
turn out to be “best” test procedures in the sense that they minimize the type II error probabil-
ity 3 among all tests that have the same type I error probability «.

The likelihood ratio principle is easy to illustrate. Suppose that the random variable X has
a probability distribution that is described by an unknown parameter 0, say. f(x, 6). We wish
to test the hypothesis Hy: 0 is in ), versus H;: 0 is in £}, where (), and (), are disjoint sets of
values (such as Hy: p. = 0 versus H;: i < 0). Let X, Xo. ... X, be the observations in a ran-

dom sample. The joint distribution of these sample observations is

(X3, oo x,, 0) = f(x,0) * f(x2,0) * -+ flx,. 0)

Recall from our discussion of maximum likelihood estimation in Chapter 7 that the likeli-
hood function, say L(0), is just this joint distribution considered as a function of the parameter
0. The likelihood ratio principle for test construction consists of the following steps:



9-3.4 Likelihood Ratio Test (extra!)

1. Find the largest value of the likelihood for any 6 in (),. This is done by finding the
maximum likelihood estimator of  restricted to values within {)y and by substituting
this value of 0 back into the likelihood function. This results in a value of the likeli-
hood function that we will call L(£2,).

2. Find the largest value of the likelihood for any 6 in ). Call this the value of the like-
lihood function L({),).

Form the ratio

N

L)
L(Q,)

A

This ratio A is called the likelihood ratio test statistic.

The test procedure calls for rejecting the null hypothesis A, when the value of this ratio A
1s small, say, whenever A < k, where £ is a constant. Thus, the likelihood ratio principle re-
quires rejecting H, when L({,) is much larger than L({),), which would indicate that the sam-
ple data are more compatible with the alternative hypothesis H; than with the null hypothesis
H,. Usually, the constant & would be selected to give a specified value for a, the type I error
probability.



9-3.4 Likelihood Ratio Test (extra!)

* Neyman-Pearson Lemma:

Likelihood-ratio test is the most powerful test of a
specified value a when testing two simple hypotheses.

« simple hypotheses

The likelihood ratio principle is a very general procedure. Most of the tests presented in
this book that utilize the ¢, chi-square, and F-distributions for testing means and variances of
normal distributions are likelihood ratio tests. The principle can also be used in cases where
the observations are dependent, or even in cases where their distributions are different.



9-3.4 Likelihood Ratio Test (extra!)

Suppose that we have a sample of » observations

from a normal population with unknown mean p. and unknown variance o?, say, X, X, ..., X,.
We wish to test the hypothesis Hy: w = g versus H: i # py. The likelihood function of the
sample is

1 .
L= — _:Z:l X; — 26?
<0_\ 217) e &i(x; — p)/(207)

and the xalues of (), and (), are (), = pyand {); = {j: — o< . < o}, respectively. The v alues
of . and o? that maximize L in (), are the usual maximum likelihood estimates for . and o”:

.1 _
=— S x.=X
L= et
1 n
~2 —\2
o ——; (x; — X)

1

Substituting these values in L, we have

1 n/2
(2m/n) 2(x; — f)?‘

L(Qy) = e~ (/2)



9-3.4 Likelihood Ratio Test (extra!)

To maximize L in (), we simply set o = p,o and then find the value of o that maximizes L.
This value is found to be

~
-—

. 1 5
o =75 (x; — o)

which gives

L(Q)y) = [ 1 ]nﬂe-(n/z)
YL@/ 2 - pe)’

The likelihood ratio is

A

_ L(QO) _ [ E(xi — E)g ]n/’_’
L(£),) > (x; — lLo)z



9-3.4 Likelihood Ratio Test (extra!)

we may write the value of the likelihood ratio A as

1 n n/2

A = 1+( 1 )[(E:M)z] )1+ [ - 1)]

n—1 s°/n

It is easy to find the value for the constant & that would lead to rejection of the null hypothe-
sis H,. Since we reject Hy if A < k, this implies that small values of A support the alternative
hypothesis. Clearly, A will be small when #° is large. So instead of specifying k& we can spec-
ify a constant ¢ and reject Hy: u = g if #* > ¢. The critical values of ¢ would be the extreme
values, either positive or negative, and if we wish to control the type I error probability at o,
the critical region in terms of # would be

t < _ta/2,n—l alld I = ta/2J|—1

or, equivalently, we would reject Hy: p = pg if 12 > ¢ = ¢ s2.n—1- Therefore, the likelihood
ratio test for Hy: p = o versus Hy: i # g 1s the familiar single-sample #-test.



9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.1 Hypothesis Test on the Variance

Suppose that we wish to test the hypothesis that the variance of a normal population o“ equals

i 2 . . . .
a specified value, say o7, or equivalently, that the standard deviation o 1s equal to o, Let X,
), CYUTT X, be a random sample of n observations from this population. To test

Hy: 0 = aj

. ; (9-26)
H,:o" # o
we will use the test statistic:
"
(n — 1)8°
X5 = - (9-27)




9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.1 Hypothesis Test on the Variance

If the null hypothesis Hy: 0@ = of is true, the test statistic X7 defined in Equation 9-27
follows the chi-square distribution with n — 1 degrees of freedom. This 1s the reference
distribution for this test procedure. Therefore, we calculate x7, the value of the test statistic X3,
and the null hypothesis Hy: 0@ = of would be rejected if

) p) . o p) )
X0 = Xa/2.n—1 orif  Xj < Xi —of2.n—1
2 ) . ~ .
where Xg/2.,-1 and X1-qp,-1 are the upper and lower 100a/2 percentage points of the chi-

square distribution with » — 1 degrees of freedom, respectively. Figure 9-10(a) shows the
critical region.



9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.1 Hypothesis Test on the Variance

0 X{_apn-1 Xan,n-1 ¥ 0 Xan-1 ¥ 0 X{_an-1

Figure 9- ]l R&klu‘lu dl\lllbll[lOl] tm the test of Hy: o° = o with critical region values for (a) H: o’ # of
(b) Hy: o > of. and (¢) Hy: 0* < of.



9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.1 Hypothesis Test on the Variance

The same test statistic 1s used for one-sided alternative hypotheses. For the one-sided

hypothesis

2 7
Hy: 0 = of

1. 3 (9-28)
H: 0" > oj
we would reject Hy if x§ = x5 ..—1, whereas for the other one-sided hypothesis
p) p)
Hy: 0 = o} oA
(9-29)

p) . )
H,: 0" < o}

. . p) p) . ., . . —
we would reject Hy if x§ < X7—an—1- The one-sided critical regions are shown in Figure
9-10(b) and (c).



9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

Example 9-8

An automatic filling machine 1s used to fill bottles with liquid detergent. A random sample of
20 bottles results in a sample variance of fill volume of s> = 0.0153 (fluid ounces)®. If the
variance of fill volume exceeds 0.01 (fluid ounces)?, an unacceptable proportion of bottles
will be underfilled or overfilled. Is there evidence in the sample data to suggest that the man-
ufacturer has a problem with underfilled or overfilled bottles? Use @ = .05, and assume that
fill volume has a normal distribution.

Using the eight-step procedure results in the following:

1. The parameter of interest is the population variance o”.
2. Hyo®=001
3. Hy:a?> 00l

a = 0.05

The test statistic 1s

:JI

o (n = 1)s7

\

Xo — )

gy




9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

Example 9-8

7. Computations:
19(0.0153)

2 — = 2007
X0 0.01

. ) , ) - .
8. Conclusions: Since x5 = 29.07 < xjos.10 = 30.14, we conclude that there is no
strong evidence that the variance of fill volume exceeds 0.01 (fluid ounces)”.



9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

9-4.2 Type 11 Error and Choice of Sample Size

O

Operating characteristic curves are provided n
* Charts VII(1) and VII(j) for the two-sided alternative

* Charts VII(k) and VII(l) for the upper tail alternative
* Charts VII(m) and VII(n) for the lower tail alternative



9-4 Hypothesis Tests on the Variance and
Standard Deviation of a Normal Distribution

Example 9-9

Consider the bottle-filling problem from Example 9-8. If the variance of the filling process exceeds 0.01

(fluid ounces)®, too many bottles will be underfilled. Thu:.. the hypothesized value of the standard devia-

tion is o, = 0.10. Suppose that if the true standard deviation of the filling process exceeds this value by

25%, we would like to detect this with probability at least 0.8. Is the sample size of n = 20 adequate?
To solve this problem, note that we require

25
LA Ay
a0y 0.10

This is the abscissa parameter for Chart VIIk. From this chart, with » = 20 and A = 1.25, we find that
B = 0.6. Therefore, there is only about a 40% chance that the null hypothesis will be rejected if the true
standard deviation is really as large as o = 0.125 fluid ounce.

To reduce the B-error, a larger sample size must be used. From the operating characteristic curve
with B = 0.20and A = 1.25, we find that » = 75, approximately. Thus, if we want the test to perform as
required above, the sample size must be at least 75 bottles.



9-5 Tests on a Population Proportion

9-5.1 Large-Sample Tests on a Proportion

Many engineering decision problems include hypothesis testing
about p.

Hy: p = po
Hl: /) # /)(')
An appropriate test statistic 1s
.X’ — npy
7. =
" Vapg(T — po) (9-32)

and reject Hy: p = pg if

— S - -~

..0 — -a“.‘-) O[' :(' -~

1



9-5 Tests on a Population Proportion

Example 9-10

A semiconductor manufacturer produces controllers used in automobile engine applications.
The customer requires that the process fallout or fraction defective at a critical manufacturing
step not exceed 0.05 and that the manufacturer demonstrate process capability at this level of
quality using a = 0.05. The semiconductor manufacturer takes a random sample of 200
devices and finds that four of them are defective. Can the manufacturer demonstrate process
capability for the customer?

We may solve this problem using the eight-step hypothesis-testing procedure as follows:

1. The parameter of interest is the process fraction defective p.
2. Hyp=20.05
3.

H,: p < 0.05
This formulation of the problem will allow the manufacturer to make a strong claim
about process capability if the null hypothesis Hy: p = 0.035 1s rejected.

4, o =0.05



9-5 Tests on a Population Proportion

Example 9-10

S. The test statistic 1s (from Equation 9-32)

-

X — npy

Vapo(1 — po)

— —

0

where x = 4, n = 200, and p, = 0.05.
Reject Hy: p = 0.051f zg << — 2505 = —1.645
7.  Computations: The test statistic 1s

4 — 200(0.05) ]

20 = = —1.95

“ T \/200{0.05)(0.95)

8. Conclusions: Since zp = —1.95 << —z;,05 = —1.643, we reject H, and conclude that the
process fraction defective p is less than 0.05. The P-value for this value of the test statistic
Zo 18 P = 0.0256, which is less than o = 0.05. We conclude that the process is capable.



9-5 Tests on a Population Proportion

Another form of the test statistic Z 1s

X/n — p P — p
Ly = — “_ > or Ly = '
\, /).::,l\ ] - /)“")‘;’ I

Vpoll — po)/n

Think about: What are the distribution of Z, under H, and H,?



9-5 Tests on a Population Proportion

9-5.2 Type 11 Error and Choice of Sample Size

For a two-sided alternative

8= 0 (/’o =Ptz Vpoll — /n;.),-"'n) % (/’u —p — Za 2 Vpoll — /)u)/"n> 9.3
Vp(l = p)/n Vp(l = p)/n )

I the alternative 1s p <p,

o — P — ZVpoll — po)/n
B=1-— (])(/ s — /“. Po) l) (9-335)
Vp(l —p)/n

If the alternative 1s p > p,

g = (])(/J,-, —p + z, \--""'p(‘,(l — /J.J:)f-"'lz (9.36)
a— " . - )
Vp(l —p)/n




9-5 Tests on a Population Proportion

9-5.3 Type 11 Error and Choice of Sample Size

For a two-sided alternative

Zo2VPo(l — po) + zgVp(l — p) 72 o A
n= }) — })0 (9‘37)
For a one-sided alternative
2o Vol — po) + 2 V(1 — p) 72 .
n= P — Do (9-38)




9-5 Tests on a Population Proportion

Example 9-11

Consider the semiconductor manufacturer from Example 9-10. Suppose that its process fall-
out is really p = 0.03. What is the B-error for a test of process capability that uses n = 200
and a = 0.05?

The B-error can be computed using Equation 9-335 as follows:

0.05 — 0.03 — (1.645)V0.05(0.95)/200 | |
— =1 = ®(—044) = 0.67
V0.03(1 — 0.03)/200 -

B:]—(])

Thus, the probability 1s about 0.7 that the semiconductor manufacturer will fail to con-
clude that the process 1s capable if the true process fraction defective 1s p = 0.03 (3%). That
1s, the power of the test against this particular alternative is only about 0.3. This appears to be
a large B-error (or small power), but the difference between p = 0.05 and p = 0.03 1s fairly

small, and the sample size n = 200 1s not particularly large.



9-5 Tests on a Population Proportion

Example 9-11

Suppose that the semiconductor manufacturer was willing to accept a B-error as large as
0.10 1f the true value of the process fraction defective was p = 0.03. If the manufacturer con-
tinues to use a = .05, what sample size would be required?

The required sample size can be computed from Equation 9-38 as follows:

1.645V/0.05(0.95) + 1.28V/0.03(0.97) 12

. 0.03 — 0.05

I

832

where we have used p = 0.03 in Equation 9-38. Note that n = 832 is a very large sample size.
However, we are tryving to detect a fairly small deviation from the null value py = 0.05.



9-7 Testing for Goodness of Fit

» The test 1s based on the chi-square distribution.

» Assume there 1s a sample of size n from a population whose
probability distribution 1s unknown.

» Arrange n observations in a frequency histogram.
* Let O, be the observed frequency 1n the ith class interval.
* Let £, be the expected frequency 1n the ith class interval.

The test statistic 1s

~

., & (0; - E)
Xg=Y ( = ) (9-39)
i=| i

which has approximately chi-square distribution with df=k-p-1.




9-7 Testing for Goodness of Fit

Example 9-12

A Poisson Distribution
The number of defects in printed circuit boards 1s hypothesized to follow a Poisson distribution. A ran-
dom sample of » = 60 printed boards has been collected, and the following number of defects observed.

Number of Observed
Defects Frequency
0 32
| 15
2 0
3 4




9-7 Testing for Goodness of Fit

Example 9-12

The mean of the assumed Poisson distribution in this example is unknown and must be estimated
from the sample data. The estimate of the mean number of defects per board is the sample average, that
is, (32:0 + 15-1 + 9:2 + 4:3)/60 = 0.75. From the Poisson distribution with parameter 0.75, we may
compute p;, the theoretical, hypothesized probability associated with the ith class interval. Since each
class interval corresponds to a particular number of defects, we may find the p, as follows:

e~"73(0.75)"

pr=PX=10)= o) = 0.472
e”"(0.75)"

py=PX=1)= T = (354
e~ 075075 )

p;=PX=2)= 57 = (.133



9-7 Testing for Goodness of Fit

Example 9-12

The expected frequencies are computed by multiplying the sample size n = 60 times the probabilities p;.
That is, E; = np;. The expected frequencies follow:

Number of Expected
Defects Probability Frequency

0 0.472 28.32

| 0.354 21.24

2 0.133 7.98

3 (or more) 0.041 2.46




9-7 Testing for Goodness of Fit

Example 9-12

Since the expected frequency in the last cell is less than 3, we combine the last two cells:

Number of Observed Expected
Defects Frequency Frequency

0 32 28.32

| 15 21.24

2 (or more) 13 10.44

The chi-square test statistic in Equation 9-39 will havek — p — 1 = 3 — | — 1 = | degree of freedom,
because the mean of the Poisson distribution was estimated from the data.



9-7 Testing for Goodness of Fit

Example 9-12

The eight-step hypothesis-testing procedure may now be applied, using a = 0.03, as
follows:

1. The variable of interest is the form of the distribution of defects in printed circuit boards.
2. Hy: The form of the distribution of defects is Poisson.

3. H,: The form of the distribution of defects 1s not Poisson.

4. = (.05

S. The test statistic 1s




9-7 Testing for Goodness of Fit

Example 9-12

6. Reject Hyif X2 > xGos1 = 3.84.
7. Computations:
(32 —28.32)7 (15 —21.24)% (13 — 10.44)’

5 = + + = 2.9¢
X0 78.32 21.24 10.44 i

- . . ) , o) — . .

8. Conclusions: Since x5 = 2.94 << g 051 = 3.84, we are unable to reject the null hypothesis
that the distribution of defects in printed circuit boards is Poisson. The P-value for the
test 1s P = 0.0864. (This value was computed using an HP-48 calculator.)



9-8 Contingency Table Tests

Many times, the n elements of a sample from a
population may be classified according to two different
criteria. It is then of interest to know whether the two
methods of classification are statistically independent;

Table 9-2 Anr X ¢ Contingency Table

Columns

| 2 c
l 0,, 0, . 0,.
2 0, O,, . 0,.

Rows




9-8 Contingency Table Tests

We are interested in testing the hypothesis that the row-and-column methods of classifi-
cation are independent. If we reject this hypothesis, we conclude there 1s some interaction be-
tween the two criteria of classification. The exact test procedures are difficult to obtain, but an
approximate test statistic is valid for large n. Let p;; be the probability that a randomly selected
element falls in the ijth cell, given that the two classifications are independent. Then Pij = UV,
where ; 1s the probability that a randomly selected element falls in row class i and v; is the
probability that a randomly selected element falls in column class j. Now, assuming inde-
pendence, the estimators of u; and v; are

. —
11,:]_1 EOU

J=1

l r

== i (9-40)



9-8 Contingency Table Tests

Therefore, the expected frequency of each cell 1s
E;; = niy; ZOUEO,I
i=|
Then, for large n, the statistic
)
c E )_

—:,Z:’E

I j=I '/

(9-41)

(9-42)

has an approximate chi-square distribution with (# — 1)(¢ — 1) degrees of freedom if the null
hypothesis 1s true. Therefore, we would reject the hypothesis of independence if the observed

~ . . 2 g
value of the test statistic xp exceeded Xg —1yc—1y-



9-8 Contingency Table Tests

Example 9-14

A company has to choose among three pension plans. Management wishes to know whether
the preference for plans i1s independent of job classification and wants to use a = 0.035. The
opinions of a random sample of 500 emplovees are shown in Table 9-3.

To find the expected frequencies, we must first compute ;= (340/500) = 0.68, i1, =
(160/500) = 0.32, v, = (200/500) = 0.40, v, = (200/500) = 0.40, and v; = (100/500) =
(0.20. The expected frequencies may now be computed from Equation 9-41. For example, the
expected number of salaried workers favoring pension plan 1 1s

The expected frequencies are shown in Table 9-4.



9-8 Contingency Table Tests

Example 9-14
Table 9-3 Okbserved Data for Example 9-14

Pension Plan

Job Classification | 2 3 Totals
Salaried workers 160 140 40 340
Hourly workers 40 60 60 160
Totals ZTQO ﬁ) W) %

Table 9-4 Expected Frequencies for Example 9-14

Pension Plan

Job Classification | 2 3 Totals
Salaried workers 136 136 68 340
Hourly workers 64 64 32 160

Totals 200 ZW) 100 ﬁ




9-8 Contingency Table Tests

Example 9-14

The eight-step hypothesis-testing procedure may now be applied to this problem.

1. The variable of interest 1s employee preference among pension plans.
2. Hy: Preference 1s independent of salaried versus hourly job classification.

3. H,: Preference is not independent of salaried versus hourly job classification.

4. a=0.05
S. The test statistic 1s
S
Xi= > 2
Ak
6. Since r = 2 and ¢ = 3, the degrees of freedom for chi-square are (¥ — 1)(¢c — 1) =

(1)(2) = 2, and we would reject Hy if xi = X505, = 3.99.



9-8 Contingency Table Tests

Example 9-14

7. Computations:

i 2 3 (g, — [5..)3
0= 33U
160 — 136)* (140 — 136)* (40 — 68)" (40 — 64)
=().\))+( ,,))+( )+( )
136 [36 68 64
(60 — 64) (60 — 32)° |
- = 4L P
+ ()4 + 32 4).(1‘5

8. Conclusions: Since xj = 49.63 > x3 052 = 5.99, we reject the hypothesis of inde-
pendence and conclude that the preference for pension plans is not independent of
job classification. The P-value for xj = 49.63 is P = 1.671 x 107!, (This value
was computed using a hand-held calculator.) Further analysis would be necessary to
explore the nature of the association between these factors. It might be he lptu] to
examine the table of observed minus expected frequencies.



