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11-1 Empirical Models 
•  Many problems in engineering and science involve 
exploring the relationships between two or more 
variables.  

•  Regression analysis is a statistical technique that is 
very useful for these types of problems.  

•  For example, in a chemical process, suppose that the 
yield of the product is related to the process-operating 
temperature.  

•  Regression analysis can be used to build a model to 
predict yield at a given temperature level. 
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11-1 Empirical Models  

Based on the scatter diagram, it is probably reasonable to 
assume that the mean of the random variable Y is related to x by 
the following straight-line relationship: 

where the slope and intercept of the line are called regression 
coefficients. 
The simple linear regression model is given by 

where ε is the random error term. 



11-1 Empirical Models  

We think of the regression model as an empirical model. 

Suppose that the mean and variance of ε are 0 and σ2, 
respectively, then 

The variance of Y given x is  



11-1 Empirical Models  

•  The true regression model is a line of mean values: 

where β1 can be interpreted as the change in the 
mean of Y for a unit change in x. 
•  Also, the variability of Y at a particular value of x is 
determined by the error variance, σ2. 
•  This implies there is a distribution of Y-values at 
each x and that the variance of this distribution is the 
same at each x. 



11-1 Empirical Models  

Figure 11-2 The distribution of Y for a given value of 
x for the oxygen purity-hydrocarbon data.             



11-2 Simple Linear Regression  

•  The case of simple linear regression considers 
a single regressor or predictor x and a 
dependent or response variable Y. 

•  The expected value of Y at each level of x is a 
random variable: 

•  We assume that each observation, Y, can be 
described by the model 



11-2 Simple Linear Regression  

•  Suppose that we have n pairs of observations 
(x1, y1), (x2, y2), …, (xn, yn). 

Figure 11-3 
Deviations of the 
data from the 
estimated 
regression model.             



11-2 Simple Linear Regression  

•  The method of least squares is used to 
estimate the parameters, β0 and β1 by minimizing 
the sum of the squares of the vertical deviations in 
Figure 11-3. 

Figure 11-3 
Deviations of the 
data from the 
estimated 
regression model.             



11-2 Simple Linear Regression  

•  Using Equation 11-2, the n observations in the 
sample can be expressed as 

•  The sum of the squares of the deviations of the 
observations from the true regression line is 



11-2 Simple Linear Regression  



11-2 Simple Linear Regression  



11-2 Simple Linear Regression  



11-2 Simple Linear Regression  



11-2 Simple Linear Regression  

Notation 
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11-2 Simple Linear Regression  

Example 11-1 

Figure 11-4 Scatter 
plot of oxygen 
purity y versus 
hydrocarbon level x 
and regression 
model ŷ = 74.20 + 
14.97x.             





11-2 Simple Linear Regression  

Estimating σ2 
The error sum of squares is 

It can be shown that the expected value of the 
error sum of squares is E(SSE) = (n – 2)σ2. 



11-2 Simple Linear Regression  

Estimating σ2 
An unbiased estimator of σ2 is 

where SSE can be easily computed using 
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11-3 Properties of the Least Squares 
Estimators  

•  Slope Properties 

•  Intercept Properties 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.1 Use of t-Tests 

Suppose we wish to test 

An appropriate test statistic would be 



11-4 Hypothesis Tests in Simple Linear 
Regression  

Assumptions: 
To test hypotheses about the slope and intercept of the regression 
model, we must make the additional assumption that the error 
component in the model, ε, is normally distributed.  

Thus, the complete assumptions are that the errors are normally 
and independently distributed with mean zero and variance σ2, 
abbreviated NID(0, σ2). 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.1 Use of t-Tests 

We would reject the null hypothesis if 

The test statistic could also be written as: 



11-4.1 Use of t-Tests 

Suppose we wish to test 

An appropriate test statistic would be 

We would reject the null hypothesis if 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.1 Use of t-Tests 
An important special case of the hypotheses of 
Equation 11-18 is 

These hypotheses relate to the significance of regression. 

Failure to reject H0 is equivalent to concluding that there 
is no linear relationship between x and Y. 



11-4 Hypothesis Tests in Simple Linear 
Regression  

Figure 11-5 The hypothesis H0: β1 = 0 is not rejected.             



11-4 Hypothesis Tests in Simple Linear 
Regression  

Figure 11-6 The hypothesis H0: β1 = 0 is rejected.             



11-4 Hypothesis Tests in Simple Linear 
Regression  

Example 11-2 



> dat=read.table("table11-1.txt", h=T)!
> g=lm(y~x, dat)!
> summary(g)!
Coefficients:!
            Estimate Std. Error t value Pr(>|t|)    !
(Intercept)   74.283      1.593   46.62  < 2e-16 ***!
x             14.947      1.317   11.35 1.23e-09 ***!

Residual standard error: 1.087 on 18 degrees of freedom!
Multiple R-Squared: 0.8774, !Adjusted R-squared: 0.8706 !
F-statistic: 128.9 on 1 and 18 DF,  p-value: 1.227e-09 !

> anova(g)!
Analysis of Variance Table!

Response: y!
          Df  Sum Sq Mean Sq F value    Pr(>F)    !
x          1 152.127 152.127  128.86 1.227e-09 ***!
Residuals 18  21.250   1.181                      !

R commands and outputs 
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10-5.1 The F Distribution 

The lower-tail percentage points f 1-α,u,ν can be found as follows. 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.2 Analysis of Variance Approach to Test 
Significance of Regression 

The analysis of variance identity is 

Symbolically, 
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11-4.2 Analysis of Variance Approach to Test 
Significance of Regression 

If the null hypothesis, H0: β1 = 0 is true, the statistic 

follows the F1,n-2 distribution and we would reject if 
f0 > fα,1,n-2. 



11-4 Hypothesis Tests in Simple Linear 
Regression  

11-4.2 Analysis of Variance Approach to Test 
Significance of Regression 

The quantities, MSR and MSE are called mean squares. 

Analysis of variance table: 



11-4 Hypothesis Tests in Simple Linear 
Regression  

Example 11-3 



11-4 Hypothesis Tests in Simple Linear 
Regression  
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11-5.1 Confidence Intervals on the Slope and Intercept 

Definition 
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Example 11-4 
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11-5.2 Confidence Interval on the Mean Response 

Definition 
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11-5 Confidence Intervals  

Example 11-5 

Figure 11-7 
Scatter diagram of 
oxygen purity data 
from Example 11-1 
with fitted 
regression line and 
95 percent 
confidence limits 
on µY|x0.             



11-6 Prediction of New Observations  

If x0 is the value of the regressor variable of interest, 

is the point estimator of the new or future value of the 
response, Y0. 



11-6 Prediction of New Observations  

Definition 
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Example 11-6 
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11-6 Prediction of New Observations  

Example 11-6 

Figure 11-8 Scatter 
diagram of oxygen 
purity data from 
Example 11-1 with 
fitted regression line, 
95% prediction limits 
(outer lines) , and 
95% confidence 
limits on µY|x0.             



11-7 Adequacy of the Regression Model  

•  Fitting a regression model requires several 
assumptions. 

1.  Errors are uncorrelated random variables with 
mean zero; 

2.  Errors have constant variance; and, 

3.  Errors be normally distributed. 

•  The analyst should always consider the validity of 
these assumptions to be doubtful and conduct 
analyses to examine the adequacy of the model 



11-7 Adequacy of the Regression Model  

11-7.1 Residual Analysis 

•   The residuals from a regression model are ei = yi - ŷi , where yi 
is an actual observation and ŷi is the corresponding fitted value 
from the regression model.  

•   Analysis of the residuals is frequently helpful in checking the 
assumption that the errors are approximately normally distributed 
with constant variance, and in determining whether additional 
terms in the model would be useful. 
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11-7.1 Residual Analysis 

Figure 11-9 Patterns 
for residual plots. (a) 
satisfactory, (b) 
funnel, (c) double 
bow, (d) nonlinear.  

[Adapted from 
Montgomery, Peck, 
and Vining (2001).]             
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Example 11-7 

Figure 11-10 Normal 
probability plot of 
residuals, Example 
11-7.             
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Example 11-7 

Figure 11-11 Plot of 
residuals versus 
predicted oxygen 
purity, ŷ, Example 
11-7.             



11-7 Adequacy of the Regression Model  

11-7.2 Coefficient of Determination (R2) 

•  The quantity 

  is called the coefficient of determination and is often 
used to judge the adequacy of a regression model. 

•  0 ≤ R2 ≤ 1; 

•  We often refer (loosely) to R2 as the amount of 
variability in the data explained or accounted for by the 
regression model. 
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11-7.2 Coefficient of Determination (R2) 

•  For the oxygen purity regression model,  

    R2 = SSR/SST  

       = 152.13/173.38  

       = 0.877 

•   Thus, the model accounts for 87.7% of the 
variability in the data. 
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11-9 Transformation and Logistic 
Regression 

Example 11-9 

Table 11-5 Observed Values   
and Regressor Variable    for 
Example 11-9.             
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