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11-1 Empirical Models

« Many problems 1n engineering and science involve
exploring the relationships between two or more
variables.

* Regression analysis is a statistical technique that 1s
very useful for these types of problems.

 For example, 1in a chemical process, suppose that the
yield of the product 1s related to the process-operating
temperature.

* Regression analysis can be used to build a model to
predict yield at a given temperature level.



11-1 Empirical Models

Table 11-1  Oxygen and Hydrocarbon Levels

L ] L ]
Observation Hydrocarbon Level Purity : TR '
Nulnbel' x(%) )‘(%) ‘ L ‘ ‘ ‘ . v ‘ N N
1 0.99 90.01 100 oo
2 1.02 89.05
3 1.15 9]1.43 Q3
4 1.29 93,7 , N
5 1.46 96.73 0
6 1.36 94 .45
7 0.87 87.59 — g "
- - ?'l
8 1.23 91.77 ‘- 9‘1 “ o ’ . E 'YL
9 1.55 99.42 £
- o N
10 1.40 93.65 3 9 .
11 1.19 93.54 ‘ '
12 1.15 92.52 ¢ '
" 'YL
13 0.98 90.56 9 R ' e
14 1.01 89.54 ¢ '
15 111 89.85 ar, .
16 1.20 90.39 o
17 1.26 93,25 95
18 1.32 93.41 085 095 105 115 125 135 145 155
19 s i Hydrocarbon kel (x)
20 0.95 87.33




11-1 Empirical Models

Based on the scatter diagram, it 1s probably reasonable to
assume that the mean of the random variable Y is related to x by
the following straight-line relationship:

E(Y|x) = py|x = Bo + By

where the slope and intercept of the line are called regression
coefficients.
The simple linear regression model 1s given by

Y = Bl)+ Bl.\' + €

where ¢ 1s the random error term.



11-1 Empirical Models

We think of the regression model as an empirical model.

Suppose that the mean and variance of € are 0 and o2,
respectively, then

E(Y|x) = E(Bo + By + €) = Bg + Bix + E£(e) = By + B
The variance of Y given x 1s

V(Y|x)=V(Bo + B + € = V(Bg + Bx) + V(e) = 0 + 0° = ¢



11-1 Empirical Models

* The true regression model 1s a line of mean values:
Lyx = Po + P

where (3, can be interpreted as the change 1n the
mean of Y for a unit change 1n x.

 Also, the variability of Y at a particular value of x 1s
determined by the error variance, o°.

» This implies there 1s a distribution of Y-values at
cach x and that the variance of this distribution is the
same at each x.



11-1 Empirical Models
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purity)
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Bo+ B, 1128 True regression line
pylx=Bo+ B1*
=75+ 15«
B o+ By (100
x=100 x=1.25 x(Hydrocarbon level)

Figure 11-2 The distribution of Y for a given value of
x for the oxygen purity-hydrocarbon data.



11-2 Simple Linear Regression

- The case of simple linear regression considers
a single regressor or predictor x and a
dependent or response variable Y.

* The expected value of Y at each level of x is a
random variable:

E(Y|x) =By + Px
 We assume that each observation, Y, can be
described by the model

Y = B() -+ Bl.\' + €



11-2 Simple Linear Regression

- Suppose that we have n pairs of observations
(X1’ y1)’ (X2’ y2)’ "t (Xn’ yn)

—’--..
Observed value ‘l/
Data (y)
q ‘. l

Figure 11-3

Deviations of the . : e i
data from the
estimated

@
regression model.



11-2 Simple Linear Regression

- The method of least squares is used to

estimate the parameters, 3, and [, by minimizing
the sum of the squares of the vertical deviations in

Figure 11-3.

Observed '.'alfs:e.‘I/
Data (y)
‘ |

i
\ o

Figure 11-3 ) \
Deviations of the : egression lie
data from the

estimated

regression model.



11-2 Simple Linear Regression

- Using Equation 11-2, the n observations in the
sample can be expressed as

|
2

“ — BO + Bl.\.‘ + 6". 1. . ’I

« The sum of the squares of the deviations of the
observations from the true regression line 1s

i:= E(‘ = Bo — Bl-".i:)2



11-2 Simple Linear Regression

The least squares estimators of By and By. say. Bg and By. must satisty

al. - |

—| =23 (v B Bix) =0
B [Pob :El ‘

L o~ . .

- - = -/ V: — —_— .\'.).\’. = |
“Bl Bopy ;zl ( i BO BI i)V



11-2 Simple Linear Regression

Simplifying these two equations yields

1=
.

—

-

n
nBo + Py z X
i=1

i—1
i i n
- - ) |
Bo S+ B St = S (11-6)
i=1 i=1 i—1

Equations | 1-6 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimators By and B,.



11-2 Simple Linear Regression

The least squares estimates of the intercept and slope in the simple linear regression
model are

Bo=7— BiX (11-7)

B == — (11-8)
(3

where v = (1/n) 2., y; and ¥ = (1/n) 2], x..




11-2 Simple Linear Regression

The fitted or estimated regression line 15 therefore
V= Bo+ By (11-9)

Note that each pair of observations satisfies the relationship

[l
2

Vi = PBo + Bix; + e i 0

where ¢, = vy, — ¥; 1s called the residual. The residual describes the error in the fit of the
model to the ith observation y,. Later in this chapter we will use the residuals to provide in-
formation about the adequacy of the fitted model.



11-2 Simple Linear Regression

Notation




11-2 Simple Linear Regression

Example 11-1
We will fit a simple hinear regression model to the oxvegen purity data in Table 11-1. The
following quantities may be computed:

20 20
=20 > x=2392 3 y=184321 T= 1190 ¥=921603
i=1 i1

20 20

20
0= 1700445321 S aF =202802 Ny = 22146566
] i~ i~

20 \2
< ( El .\',-) (23.92)°

~ — 2 I — y £ ; — N A0 O
S = 2-‘:‘ - >0 = 202892 — _\'“ = (L.6RONR
i=1 <\ 2U
and
20 20
20 E".i 2 i 3 02 243 0
i1 i1 < A ) (23. )_)(l.o\-‘.\._” L
Sll' = XiVi — ) = 2.214.6566 — >0 = |(.17744



11-2 Simple Linear Regression

Example 11-1

Therefore. the least squares estimates of the slope and intercept are

. Sy 1017744 )
= —= = 14.04748

1 s (YOO
Sex (1.6808R

and

Bo =7 — BT = 92.1605 — (14.94748)1.196 = 74.28331
The fitted simple linear regression model (with the coeflicients reported to three decimal places) 1s
v =T4283 + 14947x

This model 15 plotted in Fig. 1 1-4. along with the sample data.



11-2 Simple Linear Regression

Example 11-1

Figure 11-4 Scatter
plot of oxygen
purity y versus
hydrocarbon level x
and regression
model y = 74.20 +
14.97x.
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Table 11-2  Minitab Outpure for the Oxygen Purity Data in Example 11-1

Regression Analysis
The regression equation is

Purity = 74.3 + 14.9 HC Level

Predictor Coef SE Coef T P

Constant 74283 -3, 1.593 46.62 0.000

HC Level 14947 -3, 1.317 11.35 0.000

S = 1.087 R-Sq = 87.7% R-Sq (adj) = 87.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 152.13 152.13 128.86 0.000
Residual Error 18 21.25 - SS; 1.18 -’

Total 19 173.38

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 89.231 0.354  (88.486, B89.975)  (86.830, 91.632)
Values of Predictors for New Observations

New Obs HC Level
| 1.00




11-2 Simple Linear Regression

Estimating o2

The error sum of squares 1s

SSp= D ei= > (-9
. —

-
—_—
-

It can be shown that the expected value of the
error sum of squares is E(SSg) = (n — 2)02.



11-2 Simple Linear Regression

Estimating o2

An unbiased estimator of o?is

sS
&t = — (11-13)

where SSg can be easily computed using

SSg = 857 = BiS,, (11-14)

where S, = > (y,=3)* = Yy -ny” =5,
i=1 i=1



11-3 Properties of the Least Squares
Estimators

 Slope Properties

E(B)) = By V(B,) = L

* Intercept Properties

13’(60,) = By and "'([‘3.:)) = o




11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of 7-Tests

Suppose we wish to test

Hy: B1 = B
Hy By # Bio

An appropriate test statistic would be




11-4 Hypothesis Tests in Simple Linear
Regression

Assumptions:

To test hypotheses about the slope and intercept of the regression
model, we must make the additional assumption that the error
component in the model, €, 1s normally distributed.

Thus, the complete assumptions are that the errors are normally

and independently distributed with mean zero and variance 62,
abbreviated NID(0, 62).



11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of 7-Tests

The test statistic could also be written as:
B BI o B 1.0
se(B)

We would reject the null hypothesis 1f

[y

.
IIU‘ ol [a/.".'.n—.’.



11-4.1 Use of z-Tests

Suppose we wish to test

Hy: Bo = Boo
Hy: Bo # Boo
An appropriate test statistic would be
T B() o B(U) . Bl) o Bc).n
"TTTTI 2] selBo)
\ v _; " S1\ J

We would reject the null hypothesis 1f

l’()l = [a/_".n—_’



11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of 7-Tests

An 1mportant special case of the hypotheses of
Equation 11-18 1s

H“: Bl = ()
H|I B| % ()

These hypotheses relate to the significance of regression.

Failure to reject H, 1s equivalent to concluding that there
1s no linear relationship between x and Y.



11-4 Hypothesis Tests in Simple Linear
Regression

(a) - (H)

Figure 11-5 The hypothesis H,: 3, = 0 is not rejected.



11-4 Hypothesis Tests in Simple Linear
Regression

Figure 11-6 The hypothesis H,: 3, = O is rejected.



11-4 Hypothesis Tests in Simple Linear
Regression

Example 11-2
We will test for significance of reg
Example 11-1. The hypotheses are

ression using the model for the oxygen purity data from

H”: Bl = ()
Hll Bl # 0

and we will use @ = 0.01. From Example 11-1 and Table 11-2 we have
B, = 1497 n =20, S_,=0068088, & =1.18

so the f-statistic in Equation 10-20 becomes

B B 14947 _

L]
N

h="—"7T>5— X )8
CoVeYs,, seB) V1.18/0.68088

= 2.88, the value of the test statistic is very far

Since the reference value of #1s #4953
0 should be rejected. The P-value for this test

into the critical region, implying that Hy: 3,
. -~ n—0 . . .
1s P =1.23 X 1077, This was obtained manuallv with a calculator.



R commands and outputs

> dat=read.table("tablell-1.txt", h=T)
> g=lm(y~x, dat)
> summary(g)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 74.283 1.593 46.62 < 2e-16 **%*
X 14.947 1.317 11.35 1.23e-09 **%*

Residual standard error: 1.087 on 18 degrees of freedom
Multiple R-Squared: 0.8774, Adjusted R-squared: 0.8706
F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09

> anova(g)
Analysis of Variance Table

Response: y

Df Sum Sg Mean Sq F value Pr (>F)
X 1 152.127 152.127 128.86 1.227e-09 *=**
Residuals 18 21.250 1.181



10-5.1 The F Distribution

Let W and Y be independent chi-square random variables with « and v degrees of
freedom, respectively. Then the ratio

_‘,’
=W (10-26)
Y/v
has the probability density function
+ v uf2
F(z: : t)(i_l) 2=
0<x<w (10-27)

fx) = , . u+vy2?
r(§)rG)[(E)s 1]

and 1s said to follow the F distribution with « degrees of freedom in the numerator
and v degrees of freedom in the denominator. It is usually abbreviated as F, ,.




10-5.1 The F Distribution

flx)

f(x)

= 5. v=15

fl-a.u, v fa,u.v

Figure 10-5 Upper and lower percentage
points of the F distribution.

V

0 2 R 6 8 10 x

Figure 10-4 Probability density functions of
two F distributions.




10-5.1 The F Distribution

The lower-tail percentage points f

1-a,u,v

can be found as follows.

, | -y —

l

f(l.\'.l(

(10-28)




11-4 Hypothesis Tests in Simple Linear
Regression

11-4.2 Analysis of Variance Approach to Test
Significance of Regression

The analysis of variance 1dentity 1s

n n

D=3 =2 -+ D — i) (11-24)

je=] | i=]

Symbolically,

5SSt = S8y + SS5¢ (11-25)




11-4 Hypothesis Tests in Simple Linear
Regression

11-4.2 Analysis of Variance Approach to Test
Significance of Regression

If the null hypothesis, Hy: B, = 0 1s true, the statistic

oSS/l MS
SSgf(n —2) MSg

(11-26)

follows the F  , distribution and we would reject 1t

JFO >foc,1,n-2‘



11-4 Hypothesis Tests in Simple Linear
Regression

11-4.2 Analysis of Variance Approach to Test
Significance of Regression

The quantities, MSy and MS;, are called mean squares.

Analysis of variance table:

Table 11-3  Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy
Regression SSg = P1Sy 1 MS; MSy/MSg
Error SSg = SS; — B,S,, n—2 MS

Total S8y ' n—1

Note that MSy = &°.



11-4 Hypothesis Tests in Simple Linear
Regression

Example 11-3

We will use the analysis of variance approach to test for significance of re
73

oxvgen purity data model from Example 11-1. Recall that SS; = 17
Sey = 10.17744, and n = 20. The regression sum of squares 1s

gression using the

38, B, = 14.947.

SSp = B1S,, = (14.947)10.17744 = 152.13
and the error sum of squares 1s

SSp = SSp— SSp = 173.38 — 152.13 = 21.2

»n

The analysis of variance for testing Hy: 3, = 0 1s summarized in the Minitab output in
Table 11-2. The test statistic is fu = MSp/MSE = 152.13/1.18 = 128.86, for which we find
that the P-value is P == 1.23 X 1077, so we conclude that 3, is not zero.

There are frequentlv minor differences in terminology among computer packages. For
example, sometimes the regression sum of squares is called the “model” sum of squares, and
the error sum of squares 1s called the “residual™ sum of squares.



11-4 Hypothesis Tests in Simple Linear
Regression

Note that the analvsis of variance procedure for testing for significance of regression is
equivalent to the #-test in Section [ 1-5.1. That 1s, either procedure will lead to the same conclusions.
This 1s easy to demonstrate by starting with the #-test statistic in Equation 11-19 with 3;, = 0, sav

Iy = B—I— (11-27)
\V62/8,.

Squaring both sides of Equation 11-27 and using the fact that &= = MSg results in

—2

B7S,. Sy MS _
B _ Prdwy _ M0k (11-28)
‘ / S E .\ I S E .\I S E

T§ =
Note that 77 in Equation 11-28 is identical to F, in Equation 11-26 It is true, in general, that
the square of a t random variable with v degrees of freedom is an /" random variable, with one
and v degrees of freedom in the numerator and denominator, respectivelv. Thus, the test using
Iy 1s equivalent to the test based on F,. Note, however, that the #-test 1s somewhat more flexi-
ble in that it would allow testing against a one-sided alternative hvpothesis, while the F-test 1s
restricted to a two-sided alternative.



11-5 Confidence Intervals

11-5.1 Confidence Intervals on the Slope and Intercept

Definition

Under the assumption that the observations are normally and mdependently distributed,
a 100(1 — a)% confidence Interval on the slope B, in simple linear regression 1s

= =
Br — a2\ g~ = Br=p + la2n-2\| g

xXx

(11-29)

Simularly, a 100(1 — a)% confidence Interval on the Intercept B, 1s

. 1 | ¥°
2
Bo — fapgm-21\ (’*[7 *3 ]

xXx

. B
=Bo=PBo t fazn-2 02[7 +5_] s




11-6 Confidence Intervals

Example 11-4

We will find a 95% confidence interval on the slope of the regression line using the data in
Example 11-1. Recall that B8, = 14.947, 5., = 0.68088, and ¢° = 1.18 (see Table 11-2).
Then, from Equation 10-31 we find

ll ()'_

62 |
BI fUU 518 \ S_ = B = Bl + [().‘)IS.IS\.."S._
Mrx

~

or

LIS 14.947 + 2,101 |—S_
\ 0.68088 =B \/ 0.68088

A

14.947 — 2.101

A

This simplifies to

[2.197 = 3, = 17.697



11-5 Confidence Intervals

11-5.2 Confidence Interval on the Mean Response
Ly|x, = B(‘) T Bl-\'n

Definition

A 100(1 — a)% confidence Interval about the mean response at the value of
X = Xg, SAY LY |x, 1S gIven by

I (x — -‘_')2]

N ~2
P¥py = ’a»"l"‘Q\ A <

xXx

(11-31)

1 (¥ — -‘_')2]

; 2
= Wy = By T ’“’Q'”"z\ - [7 ! Sax

where Ly |, = Bo + Bixpis computed from the fitted regression model.




11-5 Confidence Intervals

Example 11-5

We will construct a 953% confidence interval about the mean response for the data in Example
[1-1. The fitted model is fuy,, = 74.283 + 14.947x;, and the 95% confidence interval on
ly|x, 18 found from Equation 11-31 as

iy = 21014 118 (xg — 1.1960)" ]
Bl = <200 11015, 0.68088

Suppose that we are interested in predicting mean oxvgen purity when x; = 1.00%. Then
Ly, = /4283 + 14.947(1.00) = 89.23

and the 95% confidence interval 1s

(1.00 — 1.1960)*7 }

89.23 = 2,101,/ 1.18 | — + —
{ ’ \ 20 0.68088



11-5 Confidence Intervals

or
89.23 = (.75
Therefore, the 95% confidence interval on py g 1s
88.48 = pyj100 = 89.98

Minitab will also perform these calculations. Refer to Table 11-2. The predicted value of v at
x = 1.00 is shown along with the 95% CI on the mean of vy at this level of x.

By repeating these calculations for several different values for x; we can obtain confi-
dence limits for each corresponding value of py . Figure 11-7 displays the scatter diagram
with the fitted model and the corresponding 95% confidence limits plotted as the upper and
lower lines. The 95% confidence level applies only to the interval obtained at one value of x
and not to the entire set of x-levels. Notice that the width of the confidence interval on pwy

Increases as |X; — X| increases.

xp



11-5 Confidence Intervals

Example 11-5

102

Figure 11-7
Scatter diagram of
oxygen purity data
from Example 11-1
with fitted
regression line and %0
95 percent :
confidence limits 087 1.07 1.27 1.47 1.67

Hydrocarbon level (%)

Oon Wyxo- p

Oxygen purity y (%)
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11-6 Prediction of New Observations

If x, 1s the value of the regressor variable of interest,

)f".j;o = B(} T BI-\.U

1s the point estimator of the new or future value of the
response, Y,,.



11-6 Prediction of New Observations

Definition

A 100(1 — a) % prediction Interval on a future observation Y, at the value x;, 1s
given bv

S

| | Xog — X )2 .
< =50+ tmeny @1 3+ ] @y

The value vy 1s computed from the regression model vy = Bo + Bixo.




11-6 Prediction of New Observations

Example 11-6

To tllustrate the construction of a prediction interval, suppose we use the data in Example 11-1
and find a 95% prediction interval on the next observation of oxygen purity at x, = 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that 3y = 89.23, we find that the
prediction interval 1s

N -

1 (1.00 — 1.1960)
N .
20 0.68088

89.23 — 2.1()1\," 1181 +

< 8923 + 2101+ 1.18] 1 + L 4 (00 = L1960)"]
= Y, =89.23 + 2. (A8 T+ =—+ |
0 ) \ 2() 0.68088




11-6 Prediction of New Observations

Example 11-6

which simplifies to
x()(\,B S .““ S t)l()j’

Minitab will also calculate prediction intervals. Refer to the output in Table 11-2. The 95% PI
on the future observation at x, = 1.00 1s shown in the display.

By repeating the foregoing calculations at different levels of x;, we mayv obtain the 93%
prediction intervals shown graphically as the lower and upper lines about the fitted regression
model n Fig. 11-8. Notice that this graph also shows the 95% confidence limits on wy/,,
calculated in Example 11-5. It illustrates that the prediction limits are always wider than the

confidence limits.



11-6 Prediction of New Observations

Example 11-6

102

Figure 11-8 Scatter %
diagram of oxygen
purity data from
Example 11-1 with
fitted regression line,
95% prediction limits
(outer lines) , and
95% confidence ) 2 AR et . e |
limits on Wy x0- |  Mpdrocarben level (%) |

X
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11-7 Adequacy of the Regression Model

Fitting a regression model requires several
assumptions.

1. Errors are uncorrelated random variables with
mean zero;

2. Errors have constant variance; and,
3. Errors be normally distributed.

The analyst should always consider the validity of
these assumptions to be doubtful and conduct
analyses to examine the adequacy of the model



11-7 Adequacy of the Regression Model

11-7.1 Residual Analysis

* The residuals from a regression model are e, = y, - y, , where y,
1s an actual observation and y;, is the corresponding fitted value
from the regression model.

« Analysis of the residuals is frequently helpful in checking the

assumption that the errors are approximately normally distributed
with constant variance, and in determining whether additional

terms 1n the model would be useful.



11-7 Adequacy of the Regression Model

11-7.1 Residual Analysis
Figure 11-9 Patterns

for residual plots. (a) ot pale
satisfactory, (b) . . '
funnel, (c) double

bow, (d) nonlinear. @ ®

[Adapted from
Montgomery, Peck,

and Vining (2001).] AP



11-7 Adequacy of the Regression Model

Example 11-7

The regression model for the oxygen purity data in Example 11-1 is v = 74.283 + 14.947x. Table
11-4 presents the observed and predicted values of y at each value of x from this data set, along with
the corresponding residual. These values were computed using Minitab and show the number of dec-
imal places typical of computer output. A normal probability plot of the residuals is shown in Fig. 11-10.
Since the residuals fall approximately along a straight line in the figure, we conclude that there is no

severe departure from normality. The residuals are also plotted against the predicted value ¥;in Fig. 11-11
and against the hydrocarbon levels x, in Fig. 11-12. These plots do not indicate any serious model in-
adequacies.

Table 11-4  Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals
Hydrocarbon Oxygen Predicted  Residual Hydrocarbon Oxygen Predicted  Residual

Level, x Purity,y  Value,y e=yp -7 Level, x Purity,y  Value, ¥ e=y— ¥
| 0.99 90.01 89.069009 0.940991 11 1.19 93.54 92063189 1.476811
2 1.02 89.05 89.518136 —0.468136 12 1.15 92.52 91.614062 0.905938
3 1.15 91.43 91.464353 —0.034353 13 0.98 90.56 88.919300 1.640700
4 1.29 93.74  93.560279 0.179721 14 1.01 89.54 89.368427 0171573
5 1.46 96.73 96.105332 0.624668 15 1.11 89.85 90.865517 —1.015517
6 1.36 94.45 94.608242 —0.158242 16 1.20 90.39 92212898 —1.822898
7 0.87 87.59 87.272501 0.317499 17 1.26 93.25 93111152 0.138848
8 1.23 91.77 92.662025 —0.892025 I8 1.32 93.41 94.009406 —0.599406
9 1.55 99.42 97.452713 1.967287 19 1.43 9498 95.656205 —0.676205
10 1.40 93.65 95.207078 —1.557078 20 0.95 87.33 88.470173 —1.140173




11-7 Adequacy of the Regression Model

Example 11-7

Q5.9
. 9
:‘é
Figure 11-10 Normal E
probability plot of -
residuals, Example E 54
11-7. T
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Residuals



11-7 Adequacy of the Regression Model

Example 11-7

Figure 11-11 Plot of
residuals versus
predicted oxygen
purity, y, Example

11-7.
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11-7 Adequacy of the Regression Model

11-7.2 Coefficient of Determination (R?)

* The quantity
. 5SS SSr
RR=—"==1-—=
SSy SSy
1s called the coefficient of determination and 1s often
used to judge the adequacy of a regression model.

*0<R?=<1;

« We often refer (loosely) to R? as the amount of
variability 1n the data explained or accounted for by the
regression model.



11-7 Adequacy of the Regression Model

11-7.2 Coefficient of Determination (R?)

 For the oxygen purity regression model,
R2 =SS./SS;
=152.13/173.38
=0.877

e Thus, the model accounts for 87.7% of the
variability 1n the data.



11-9 Transformation and Logistic Regression

We occasionally find that the straight-line regression model ¥ = B, + B,x + € 1s inappropri-
ate because the true regression function 1s nonlinear. Sometimes nonlinearity 1s visually de-
termined from the scatter diagram, and sometimes, because of prior experience or underlying
theorv, we know 1n advance that the model 1s nonlinear. Occasionally, a scatter diagram wall
exhibit an apparent nonlinear relationship between ¥ and x. In some of these situations, a non-
linear function can be expressed as a straight line by using a suitable transformation. Such
nonlinear models are called Intrinsically linear.



11-9 Transformation and Logistic
Regression

Example 11-9

A research engineer is investigating the use of a windmill to generate electricity and has collected data
on the DC output from this windmill and the corresponding wind velocity. The data are plotted in Figure
11-14 and listed in Table 11-5.

Observation Wind Velocity DC Output,
Number, i (mph), x, Vi
1 5.00 1.582
2 6.00 1.822
3.40 1.057
4 2.70 0.500
5 10.00 2236
6 9.70 2.386
7 9.55 2.294
8 3.05 0.558
9 8.15 2.166
10 6.20 1.866
11 2.90 0.653
12 6.35 1.930
13 4.60 1.562
14 5.80 1.737
15 7.40 2.088
16 3.60 1.137
17 7.85 2.179
Table 11-5 Observed Values y, o 550 212
1 20 5.45 1.501
and Regressor Variable x for
22 10.20 2.310
Example 1 1 _9 23 4.10 1.194
' 24 3.95 1.144
25 245 0.123




11-9 Transformation and Logistic
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Figure 11-14  Plot of DC output y versus wind velocity x

for the windmull data.
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11-9 Transformation and Logistic
Regression
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Figure 11-16 Plot of .
DC output versus o0 010 020 030 040 050
x" = l/x for the wind- 1
mill data. ¥=3
Figure 11-16 1s a scatter diagram with the transformed varable x* = 1/x. This plot appears linear, indicat-

ing that the reciprocal transformation is appropriate. The fitted regression model is

y = 2.9789 — 6.9345x’

The summary statistics for this model are R* = 0.9800, MS; = 6% = 0.0089, and F, = 1128.43
(the P value is <0.0001).
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Regression

04
04
0.2 T
o ® . -
0.2 ¢ ° o - **° *
@ . eee®
L B
0 . o ® ) .....

o ‘ ® “ i e

0.2 * . -0.2 «**

e <
-0.4 -0.4
. s
e o
-0.6 -0.6
o 1 2 3 -2 -1 o 1 2
¥ z;

Figure 11-17  Plot of residuals versus Figure 11-18 Normal probability plot of
fitted values y, for the transformed model the residuals for the transformed model for
for the windmill data. the windmill data.

A plot of the residuals from the transformed model versus y is shown in Figure 11-17. This plot
does not reveal any serious problem with inequality of variance. The normal probability plot, shown in
Figure 11-18, gives a mild indication that the errors come from a distribution with heavier tails than the
normal (notice the slight upward and downward curve at the extremes). This normal probability plot has
the z-score value plotted on the horizontal axis. Since there is no strong signal of model inadequacy, we
conclude that the transformed model is satisfactory.



