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14-1 Introduction

 An experiment is a test or series of tests.

* The design of an experiment plays a major role in
the eventual solution of the problem.

e In afactorial experimental design, experimental
trials (or runs) are performed at all combinations of
the factor levels.

e The analysis of variance (ANOVA) will be used as
one of the primary tools for statistical data analysis.



14-2 Factorial Experiments

Definition

Bv a factorial experiment we mean that in each complete trial or replicate of the
experiment all possible combinations of the levels of the factors are investigated.

Table 14-1 A Factorial Experiment with ~ Table 14-2 A Factorial Experiment with

Two Factors Interaction
Factor B Factor B
Factor A B ow Bhlgh Factor 4 BIW Bhigh
Ao 10 20 Aow 10) 20

Abigh 30 40 Anigh 30 0
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Figure 14-3 Factorial Experiment, no interaction.
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Figure 14-4 Factorial Experiment, with interaction.



14-2 Factorial Experiments
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Figure 14-5 Three-dimensional surface plot of the data from
Table 14-1, showing main effects of the two factors A and B.
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Figure 14-6 Three-dimensional surface plot of the data from
Table 14-2, showing main effects of the A and B interaction.
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Figure 14-7 Yield versus reaction time with temperature
constant at 155° F.
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Figure 14-8 Yield versus temperature with reaction time
constant at 1.7 hours.
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Figure 14-9
Optimization
experiment using the
one-factor-at-a-time
method.
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14-3 Two-Factor Factorial Experiments

Table 14-3 Data Arrangement for a Two-Factor Factorial Design

Factor B
l 2 e b Totals Averages

l M M Miz21s Vi22s Vis1s Vigas
«Min cons Vion covs Vitw Y V-
5 Fars b2z Yaz21s Va2, Vab1s Vab2s
Factor A Y21n s Ya2n coes Vo Ya-. Y.
." alls ." al2s ." a2ls .\ a22s .\ ‘abls ." ab2s
a cvv s Valn cvvs Vadn covs Vabn ) Vg
Totals Vel V.o Vop V...
Averages Vol V.o Vb y




14-3 Two-Factor Factorial Experiments

The observations may be described by the linear
statistical model:
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14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model
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14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

The hypotheses that we will test are as follows:

1. Hyty=m=-=1,=0 (no main etfect of factor 4)
H,: at least one 1; # ()

2. HyBy=B,=-=B,=0 (no main effect of factor B)
H,: at least one 3; # 0

3. Hp(B)y=B)p==1B)yp=10 (no interaction)

H,: at least one (73); # 0



14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

The sum ofsqlnr(s identity for a two-factor ANOVA s

> E Z(m

i=1 j=1 k=

or symbolically,

..)2 - bni (V.. — ¥

b b
+ Z E( ui (14'3)

it () 2 S E iy Ak S (14-4)




14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

To test H,: T, = 0 use the ratio

~ MS,
Y MSE

To test Hy: §; = 0 use the ratio

.1[ AS. B
Fo = MS;

To test Hy: (tP);; = 0 use the ratio

MS i3
Fo= MS;




14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

Definition

Computing formulas for the sums of squares in a two-factor analysis of variance.

SSr = 2 Z 2 = ub” (14-5)

ss, = 4 4-¢
i 2 bn alm 52d)
.S.SB — P (IT - i (14- /)
a o "5 ‘.:
SSqp = — ——— — S§S,— 5SS (14-8)
SSp =887 — SSp — SS4— S8 (14-9)




14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

Table 14-4 ANOVA. Table for a Two-Factor Factorial, Fixed-Effects Model

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F,
L . SS.’! .“ ]‘S'A
A treatments SS, a— | MS, = p— VS,
2 ;S b—1 VS, = —2 Ms
treatments 55 — MSy =
¢ CLHS B ? B h— | \]Sg
SS4p MS 15
Interaction SS (a—1)b—1) MS 5 = ‘ :
R A8 ’ B a =)k - 1) MS;
Error SSe abln — 1)
, 5S¢
Total SSr abn — | MSg =

ab(n — 1)




14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

Example 14-1

Aircraft primer paints are applied to aluminum surfaces by two methods: dipping and spray-
ing. The purpose of the primer is to improve paint adhesion, and some parts can be primed
using either application method. The process engineering group responsible for this operation
s interested mn learning whether three different primers differ in their adhesion properties.
A factorial experiment was performed to investigate the effect of paint primer type and ap-
plication method on paint adhesion. For each combination of primer type and application
method, three specimens were painted, then a finish paint was applied, and the adhesion
force was measured. The data from the experiment are shown in Table 14-5. The circled
numbers in the cells are the cell totals y;. The sums of squares required to perform the
ANOVA are computed as follows:



14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

Example 14-1
Table 14-5 Adhesion Force Data for Example 14-1

Primer Type Dipping Spraying Vie-

1 4.0.4.5. 4.3 54.4.9.5.6
> 5.6.4.9. 5.4 5.8 6.1.63 4.1
3 3.8.3.7. 4.0 5.5.5.0. 5.0 27.0

Vs 40.2 49.6 9.8 = y..




14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model
Example 14-1

a b n 3
N
W= T
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14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

Example 14-1
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14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model
Example 14-1

The ANOVA is summarized in Table 14-6. The experimenter has decided to use a = 0.03.
Since fy 95012 = 3.89 and f; 451 12 = 4.75. we conclude that the main effects of primer type and

application method affect adhesion force. Furthermore, since 1.5 < f; 45512, there 1s no
indication of interaction between these factors. The last column of Table 14-6 shows the
P-value for each F-ratio. Notice that the P-values for the two test statistics for the main effects
are considerably less than 0.035, while the P-value for the test statistic for the interaction is
greater than 0.035.

A graph of the cell adhesion force averages { 7.} versus levels of primer type for each ap-
plication method is shown in Fig. 14-8. The no-interaction conclusion is obvious in this graph,
because the two lines are nearly parallel. Furthermore, since a large response indicates greater
adhesion force, we conclude that spraying is the best application method and that primer
type 2 is most effective.



14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model
Example 14-1

Table 14-6 ANOVA for Example 14-1

Source of Sum of Degrees of Mean

Variation Squares Freedom Square fo P-Value
Primer types 4.58 2 2.29 28.63 2.7 X E-5
Application methods 4.91] l 49] 61.38 4.7 X E-7
Interaction 0.24 2 0.12 [.50 0.2621
Error 0.99 |2 0.08

Total 10.72 |




14-3 Two-Factor Factorial Experiments

14-3.1 Statistical Analysis of the Fixed-Eftects Model

Example 14-1

Figure 14-10 Graph
of average adhesion
force versus primer
types for both
application
methods.
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R commands and outputs

Example 14-1: enter data by row

> Adhesion=c(4.0, 4.5, 4.3, 5.4, 4.9, 5.6, 5.6, 4.9, 5.4, 5.8, 6.1, 6.3, 3.8,
3.7, 4.0, 5.5, 5.0, 5.0)

> Primer=c(1,1,1,1,1,1, 2,2,2,2,2,2, 3,3,3,3,3,3)

> Method=c(1,1,1,2,2,2, 1,1,1,2,2,2, 1,1,1,2,2,2) # 1=Dipping, 2=Spraying
> g=lm(Adhesion ~ as.factor (Primer) * as.factor (Method))

> anova (qg)

Response: Adhesion

Df Sum Sg Mean Sqg F wvalue Pr (>F)
as.factor (Primer) 2 4.5811 2.2906 27.8581 3.097e-05
as.factor (Method) 4.9089 4.9089 59.7027 5.357e-06
as.factor (Primer) :as.factor (Method) 2 0.2411 0.1200 1.406062 0.2693
Residuals 12 0.9867 0.0822

> interaction.plot (Primer, Method, Adhesion)

See chl4.R for more commands



14-3 Two-Factor Factorial Experiments

14-3.2 Model Adequacy Checking

Table 14-8 Residuals for the Aircraft Primer Experiment in Example 14-1

Application Method

Primer Type Dipping Spraying

| —0.27. 0.23. 0.03 0.10, —0.40, (.30
2 0.30. =040, 0.10 —027. 003, 023
3 —0.03. —=0.13. 0.17 0.33. —0.17. —=0.17




14-3 Two-Factor Factorial Experiments

14-3.2 Model Adequacy Checking
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14-3 Two-Factor Factorial Experiments

14-3.2 Model Adequacy Checking

+0.5
® o0
o o
S
€iik _ an
0 a
e 4 5 o
. za
o "
oo
-0.5

Figure 14-14 Plot of residuals versus predicted values.

Yijk



14-4 General Factorial Experiments

Model for a three-factor factorial experiment
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Table 14-9  Analysis of Variance Table for the Three-Factor Fixed Effects Model
Source of Sum of Degrees of Expected
Variation Squares Freedom Mean Square Mean Squares F,
ben =T MS
— A - . —
A SS, a—1 1S, ol + —— T
acn EB} MSg
b— A 2 4 =2
B SS, ! 1S, o +—— s
, abnZyi MSc
C SSc c—1 MSc o +—— WS,
cnZZ(TB ),‘} MS, 5
— )b - A 2+
AB SS 5 (a—1)b—1) AS .5 o PERVE 3S,
bn TE(1y)k MS o
C SS — 1)ec—1 MS 2
A ac @=1e-1 B (@— 1)c—1) MS;
2
) anZZ(Ry) MSpe
BC SSse (b — 1)c—1) MSe AR e S,
nEZZ(BY)i MS ipc
| — )b — 1)(c— ! ? 4+ ‘
ABC Xy (@— Db —1)c—1) 1S 45c S v s MS;
Error SSe abc(n — 1) MS; a?
Total SS; aben — |




14-4 General Factorial Experiments

Example 14-2
A mechanical engineer is studying the surface roughness of a part produced in a metal-cutting
operation. Three factors, feed rate (4), depth of cut (£), and tool angle (C'), are of interest. All
three factors have been assigned two levels, and two replicates of a factorial design are run.
The coded data are shown in Table 14-10.

Table 14-10 Coded Surface Roughness Data for Example 14-2

Depth of Cut (B)
0.025 inch 0.040 inch
Feed Rate Tool Angle (C) Tool Angle (C)
(4) 15° A5 15° 25° Vi
u |1 Q 10
20 inches per minute 7 10 [ 8 75
10 10 12 16
30 inches per minute 12 13 ) 14 102




R commands and outputs

Example 14-2: enter data by row

VvV V. V V V V

Roughness=c(9,11,9,10,

Feed=c(1,1,1,1, 1,1,1,1,

Depth=c(1,1,2,2, 1,1,2,2,
Angle=c(1,2,1,2, 1,2,1,2,

7,10,11,8,
2,2,
1,1,2,2,
1,2,1,2,

2,2, 2,2,2,2)

g=1m (Roughness ~ Feed*Depth*Angle)

anova (g)

Response: Roughness

Feed 1 45.562 45.
Depth 1 10.562 10.
Angle 1 3.062 3.
Feed:Depth 1 7.562 7
Feed:Angle 1 0.062 0
Depth:Angle 1 1.562 1.
Feed:Depth:Angle 1 5.062 5
Residuals 8 19.500 2
> par (mfrow=c (1,3)) #

> interaction.plot (Feed,

> interaction.plot (Feed, Angle,
> interaction.plot (Angle,

1,1,2,2)
1,2,1,2)

Df Sum Sgq Mean Sqgq F wvalue

Depth, Roughness)

.562
.062

.062

562 18.

562
062

562

N © O W B~ b

.438

0923
.3333
.25604
.1026
.0256
.6410
.0769

Depth, Roughness)

Roughness)

O O O O o o o

10,10,12,16, 12,13,15,14)

Pr (>F)

.002534 **
.070931
.294849
.116197
.876749
.446463
.187512



14-4 General Factorial Experiments

Example 14-2

The F-ratios for all three main effects and the interactions are formed by dividing the mean
square for the effect of interest by the error mean square. Since the experimenter has selected
a = (.03, the critical value for each of these F-ratios 1s f 4515 = 3.32. Alternately, we could
use the P-value approach. The P-values for all the test statistics are shown in the last column
of Table 14-11. Inspection of these P-values is revealing. There 1s a strong main effect of feed
rate, since the F-ratio is well into the critical region. However, there 1s some indication of an
effect due to the depth of cut, since P = 0.0710 is not much greater than a = 0.05. The next
largest effect is the AB or feed rate X depth of cut interaction. Most likely, both feed rate and
depth of cut are important process variables.



