
Stats 11 (Fall 2004) Lecture Note Instructor: Hongquan Xu
Introduction to Statistical Methods for Business and Economics

Chapter 12 Relationships Between Quantitative Variables: Regres-

sion and Correlation

We start with Chapter 3.1 on plotting and modeling the relationship between two QUANTITATIVE vari-
ables.

Main idea: We wish to study the relationship between two quantitative variables. Generally one variable
is the response variable, denoted by y. The response variable measures the outcome of the study and is
also referred to as the dependent variable. The other variable is the explanatory variable, denoted by x.
It is the variable that is thought to explain the changes we see in the response variable. The explanatory
variable is also referred to as the independent variable.

The first step in examining the relationship is to use a graph – a scatterplot – to display the relationship.
We will look for an overall pattern and see if there are any departures from this overall pattern. If a linear
relationship appears to be reasonable from the scatterplot, we will take the next step of finding a model
(an equation of a line) to summarize the relationship. The resulting equation may be used for predicting
the response for various values of the explanatory variable.

Example: How do children grow?
The pattern of growth varies from child to child, so we can best understand the general pattern by following
the average height of a number of children. The following table presents the mean heights of 161 children in
Kalama village aging 18 to 29 months.

Age (month) Height (cm)
18 76.1
19 77.0
20 78.1
21 78.2
22 78.8
23 79.7
24 79.9
25 81.1
26 81.2
27 81.8
28 82.8
29 83.5

We want to know how children grow, i.e., how high a child would be (on average) if we know its age. In other
words, we hope to see the relationship between age and height, and possibly develop a model to predict the
height of a child based on its age.

Response (dependent) variable (y) is

Explanatory (independent) variable (x) is
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Plotting the Data: Scatterplots

The first step is to examine the data graphically with a scatterplot.

Interpret the scatterplot by looking for

• overall pattern

– form (clusters, lines, curves, etc.)

– direction of association (positive or negative)

– strength of association (weak, moderate, strong)

• deviations from the overall pattern (outliers)

What do you see?

Comments on scatterplots

• Each individual in the data appears as a point on the graph.

• Always plot the explanatory variable (x) on the x axis and the response variable on the y axis.

• Can use colors or symbols to see the effect of a categorical variable.
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Section 12.5 Correlation and Association

We want to add a numerical measure to supplement the graph. We use correlation.

The sample correlation coefficient r (or just correlation r)

• measures the direction and strength of the linear relationship between two quantitative variables.

Notation

• Data on n individuals: (x1, y1), (x2, y2), . . . , (xn, yn).

• (sample) means

x̄ =
1
n

∑
xi and ȳ =

1
n

∑
yi

• (sample) standard deviations

sx =

√
1

n− 1

∑
(xi − x̄)2 and sy =

√
1

n− 1

∑
(yi − ȳ)2

correlation coefficient

r =
1

n− 1

∑ (
xi − x̄

sx

) (
yi − ȳ

sy

)

Example Kalama children growth, n = 12

First from the 12 observations of age

18 19 20 21 22 23 24 25 26 27 28 29

we find
x̄ =

18 + 19 + · · ·+ 29
12

= 23.5

sx =

√
(18− 23.5)2 + (19− 23.5)2 + · · ·+ (29− 23.5)2

12− 1
= 3.6

Next from the 12 observations of height

76.1 77.0 78.1 78.2 78.8 79.7 79.9 81.1 81.2 81.8 82.8 83.5

we find
ȳ =

76.1 + 77.0 + · · ·+ 83.5
12

= 79.85

sy =

√
(76.1− 79.85)2 + (77.0− 79.85)2 + · · ·+ (83.5− 79.85)2

12− 1
= 2.3

Finally, we compute r as
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Properties of correlation

• r > 0 indicates association and r < 0 indicates association.

• r is always a number between −1 and 1, i.e., −1 ≤ r ≤ 1.

• r close to 0 indicates a relationship.

• r close to 1 indicates a linear relationship.

• r close to −1 indicates a linear relationship.

• r measures the strength of only the linear relationship. It does not measure curved relationships.

• Like the mean and standard deviation, r is

• r has no unit. It does not change when we change the units of measures of x, y, or both.

• Correlation does not necessarily imply causation.

• Distinguish correlation ρ between two random variables.

See Fig 12.5.2 (page 542): How the correlation r measures the strength and direction of linear association.

See Fig. 12.5.3 (page 543): What the correlation r does NOT tell?

Section 12.3 Choosing the Best Line

Recall: In the Kalama children growth example, we saw a strong and positive linear relationship between
age and height. We want to find a model to summarize the relationship and to predict the growth of a
child. The model is called a regression line, a straight line that describe how y changes as x changes.

Here is the scatterplot with a regression line for the Kalama data.
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The regression line is
height = 64.93 + 0.635× age

What does the value 0.635 tell us?

How would you predict the height for a child of 32 month old?

Q: How to find the regression line?

Idea: To find a line that comes as close as possible to all points. We use the least-squares methods: make
the sum of squares of the prediction errors as small as possible.

Least-squares regression

Recall Notation

• Data on n individuals: (x1, y1), (x2, y2), . . . , (xn, yn).

• (sample) means x̄ and ȳ

• (sample) standard deviations sx and sy

• correlation r

Equation of the Least-squares regression line of y on x is

ŷ = β̂0 + β̂1x

with slope

β̂1 = r
sy

sx
=

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

and intercept
β̂0 = ȳ − β̂1x̄

NOTE: we use ŷ to denote a predicted (or ideal) response. The difference between observed response y
and predicted response ŷ is called prediction error or residual.

Example: Kalama Data

Recall
x̄ = 23.5, ȳ = 79.85, sx = 3.6, sy = 2.3, r = 0.99.

We can compute the slope β̂1 and intercept β̂0 as
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Note: The sum of prediction errors ∑
(error)2 =

∑
(yi − a− bxi)2

is minimized if slope b = β̂1 = r
sy

sx
and intercept a = β̂0 = ȳ − β̂1x̄.

Interpreting the regression line:

• The slope β̂1 is the at which the predicted response ŷ changes along the line as x changes.

• If x increases by 1 unit, ŷ would change by units.

• The intercept β̂0 is the predicted ŷ when x = 0. We are usually not interested in the intercept.

NOTES:

• The square of correlation, r2, is the of variation in the response that is explained
by the least-squares regression.

• Prediction far outside the range of x (called extrapolation) is often

Section 12.4 Formal Inference for the Simple Linear Model

Recall: To study the relationship between two quantitative variables, we first use a scatterplot to examine
the relationship. We look for an overall pattern and see if there are any departures from this overall pattern.
If a linear relationship appears to be reasonable from the scatterplot, we take the next step of finding a
model (a regression line) to summarize the relationship. Then we use the regression line for predicting the
response for various values of the explanatory variable.

In this section we will assess the significance of the linear relationship and make some confidence intervals
for our estimations and predictions under certain assumptions.

Example: The fat content of the human body has physiological and medical importance. The fat content
is found by measuring body density. High fat content corresponds to low body density. Body density is hard
to measure directly. Research suggests that skinfold thickness can accurately predict body density.

We wish to study the relationship between body density and skinfold thickness. We are interested in
seeing if there is a relationship between the two variables and possibly developing a model to predict the
body density based on the skinfold thickness.

Response (dependent) variable = y =

Explanatory (independent) variable = x =
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Examine the data graphically with a scatterplot.

Here is the scatterplot for body density (DEN) and logarithm of the skinfold thickness (LSKIN).

Describe the scatterplot:

Does a linear relationship between DEN and LSKIN seem plausible based on the scatterplot?

Note: The correlation r = −0.8488.

Here is the summary from Stata.

Variable | Obs Mean Std. Dev. Min Max

-------------+-----------------------------------------------------

lskin | 92 1.567935 .2159596 1 2.08

density | 92 1.064033 .0160599 1.026 1.096

Find the regression line: ŷ = β̂0 + β̂1x.

slope β̂1 = r
sy

sx
=

intercept β̂0 = ȳ − β̂1x̄ =

Predict the body density for LSKIN=1.0.

Note: We observed a value of y = when x = 1.0 (see scatterplot).

The difference between the observed response and predicted response is the
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The Simple Linear Model

The statistical model for simple linear regression assumes that for each value of x, the observed values of the
response y are normally distributed with some mean (that may depend on x in a linear way) and a standard
deviation σ that does not depend on x. These assumptions can be summarized as:

yi = β0 + β1xi + εi

where β0 + β1xi is the mean response when x = xi. The deviation εi are assumed to be independent and
have N(0, σ) distribution.

The parameters of the model are β0, β1, and σ.

Our goals will be:

• Estimate the unknown parameters (β0, β1, σ) based on some data.

• Assess if the linear relationship is statistically significant.

• Provide confidence intervals for our estimates/predictions.

• Understand and check the assumptions of our model.

We know how to estimate β0 and β1.

estimated slope β̂1 = r
sy

sx

estimated intercept β̂0 = ȳ − β̂1x̄

and the least squares regression line (or estimated regression function) is

ŷ = β̂0 + β̂1x

ESTIMATE OF σ2

We need to estimate the common population variance σ2. A variance is computed as a sum of the squared
distances and divided by the degrees of freedom. In regression, the residuals are the distance of the obser-
vations from their estimated mean. So we will compute the sum of the squared residuals and divide by an
appropriate degrees of freedom.

Estimate of σ2 = s2 =
∑

(ei)
2

n−2 =
∑

(yi−ŷi)
2

n−2 = Mean Square Error (or Residuals) = MSE

The estimate of σ is given by
s =

√
s2 =

√
MSE,

The degrees of freedom of s is

In practice, we use software to do the computation.

Here is the Stata command

regress density lskin
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Stata output

Source | SS df MS Number of obs = 92

-------------+------------------------------ F( 1, 90) = 231.89

Model | .016908557 1 .016908557 Prob > F = 0.0000

Residual | .00656234 90 .000072915 R-squared = 0.7204

-------------+------------------------------ Adj R-squared = 0.7173

Total | .023470897 91 .000257922 Root MSE = .00854

------------------------------------------------------------------------------

density | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lskin | -.063119 .0041449 -15.23 0.000 -.0713536 -.0548844

_cons | 1.162999 .0065596 177.30 0.000 1.149967 1.176031

------------------------------------------------------------------------------

(a) Estimated slope β̂1=

(b) Estimated intercept β̂0=

(c) Estimated regression line ŷ = β̂0 + β̂1x :

(d) Estimated standard deviation s=

With our variance estimate in hand, we can now turn to some inference procedures. We first assess if the
linear relationship is statistically significant.

SIGNIFICANT LINEAR RELATIONSHIP?

Consider the following hypotheses:

H0 : β1 = 0 versus H1 : β1 6= 0

What happens if the null hypothesis is true?

There are a number of ways to test this hypothesis. One way is through a t-test statistic (think about why
it is a t and not a z test).

The general form for a t test statistic is:

t =
point estimate− hypothesized value
standard error of the point estimate

We have our point estimate for β1, it is β̂1. And we have the hypothesized value of 0. So we need the
standard error for β̂1, which can be read from the Stata output.
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The standard error for β̂1 = se(β̂1) =

Is there a significant (non-zero) linear relationship between DEN and LSKIN? That is, test H0 : β1 = 0
versus H1 : β1 6= 0.

Observed t statistic = β̂1
seβ̂1

=

Degrees of freedom = n− 2=

p-value =

Decision: (circle one) Reject H0 or Accept H0 at a 5% level.

Conclusion: (circle one) There IS or IS NOT a significant linear relationship between DEN and LSKIN.

Think about it: Would a 95% confidence interval for the true slope β1 contain the value of 0?

Find the 95% CI for true slope β1:

Compute the interval and check your answer:

CI for β1: β̂1 ± t∗se(β̂1) (note: df = n-2 for the t∗ value)

Model Checking: How to check the Assumptions?

The residuals are a random sample from a normal population with mean 0 if the assumptions hold.

• Look at the residual plot to see if there is any pattern.

• Look at the normal quantile plot of the residuals to see if all points are close to a straight line.

Residual plot : residuals vs. the explanatory variable (x).
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The normal quantile plot of the residuals:

What do you think about the assumptions of the simple linear regression model?

Summary for Simple Linear Regression

Model: yi = β0 + β1xi + εi, where εi are assumed to be independent and have N(0, σ) distribution.

Estimates: slope β̂1 = r
sy

sx
, intercept β̂0 = ȳ − β̂1x̄, and regression line ŷ = β̂0 + β̂1x.

Estimate of σ : s =
√

s2 =
√

MSE

Test [ H0 : β1 = 0 vs H1 : β1 6= 0 ] : t = β̂1

se(β̂1)
(note: df = n− 2)

CI for β1: β̂1 ± t∗se(β̂1) (note: df = n− 2 for the t∗ value)

Note: You need to know where to find the estimates, SE, the t statistics and p-values for the significance of
the linear relationship from Stata outputs.
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