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Motivation

Data are big (sometimes redundant)

Analyzing the full data may be computationally expensive

Storing all of the data may not be possible

There are a lot of circumstances under which X is big while the

label (or response) Y is expensive to obtain

Big X Small Y

Patients’ records Performance of

a new medicine

Images as visual Brain response

stimuli
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Linear Regression Setup

y = β0 + β1x1 + · · ·+ βpxp + ε

Question:

1. If the budget only allows k responses (labels), k � n, choose

which k to label? (Measurement-Constrained)

2. When all responses are available, to accelerate the computation,

how to choose a subsample of size k � n ?
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Leverage Subsampling

A subsampling method consists of

sampling probabilities πi , i = 1, . . . , n,
∑n

i πi = 1

a weighted estimator β̂s = (XT
s WXs)−1XT

s WYs , where Xs is

the subsample taken from X and W = diag(w1, . . . ,wk) is a

weight matrix

1. Uniform sampling: πi = 1/n, wi = 1

2. Leveraging: πi = hii/(p + 1), wi = 1/πi , where

hii = (X (XTX )−1XT )ii

(Drineas et al., 2006; Ma et al., 2015)
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Information-based Subsampling

The OLS for a subsample Xs is β̂s = (XT
s Xs)−1XT

s Ys

E(β̂s) = β, Var(β̂s) = σ2(XT
s Xs)−1

The Fisher information matrix for β with subdata is

Ms = XT
s Xs

D-optimality: to find Xs with k points that maximizes det(Ms)

(that is, minimizes det(M−1
s ))

Available approach: IBOSS (Wang H., Yang, and Stufken, 2018 JASA)

Include data points with extreme (largest and smallest) covariate

values

Hongquan Xu (UCLA) Orthogonal Subsampling for Big Data 5 / 30



Theoretical Results for Optimality

D-optimality: Minimize the generalized variance of the

estimates.

A-optimality: Minimize the average variance of the estimates.

Theorem

Suppose each covariate is scaled to [−1, 1]. For a subsample Xs of

size k ,

det(Ms) =

p∏
j=0

λj(Ms) ≤ kp+1, (1)

trace(M−1
s ) =

p∑
j=0

1

λj(Ms)
≥ p + 1

k
, (2)

where λj(Ms) are the eigenvalues of Ms . The equalities hold if and

only if Xs forms a two-level OA with levels from {−1, 1}.
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Orthogonal Array

A matrix with entries from a fixed set of levels, say {−1, 1}

All t-tuples of the levels appear the same number of times

The number t is called the strength of the OA

A two-level OA, with strength t = 2


−1 −1 1

−1 1 −1

1 −1 −1

1 1 1


The optimality of orthogonal arrays inspires us to find a

subsample that best approximates an orthogonal array
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How to find an OA subsample?

Exhaustive search requires to check
(n
k

)
subsamples and is

infeasible

An intuitive way is to select data points that match a

prespecified OA

Issue: the available data points typically do not allocate well in the

subspace of a prespecified OA. For example, for a given OA with 10

columns, permuting the columns will generate 10! > 107 OAs in up

to 107 different subspaces. It is unlikely that the observed data

allocate in any randomly specified subspace of them.

We search for an OA that matches the data
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Orthogonal Subsampling: A Discrepancy

Data points in an orthogonal array have two features:

(i). Extreme values: points are located at the corners of the data

domain ([−1, 1]p) and have large distances from the center

(ii). Combinatorial orthogonality: points (or precisely, their signs)

are as dissimilar as possible

Denote x∗i , i = 1, . . . , k , as the data points selected in Xs .

L(Xs) =
∑

1≤i<j≤k

[
p − ‖x∗i ‖2/2− ‖x∗j ‖2/2 + δ(s(x∗i ), s(x∗j ))

]2
.

δ(s(x∗i ), s(x∗j )) =

p∑
l=1

δ1(s(x∗il ), s(x∗jl ))

δ1 is the indicator function and s(x) is the sign of x
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Optimality

Theorem

For any k-point subsample Xs over [−1, 1]p,

L(Xs) ≥ [k2p(p + 1)− 4kp2]/8,

with equality if and only if Xs forms a two-level orthogonal array.

The subsampling problem can be presented as the following

optimization problem:

X ∗
s = arg min

Xs

L(Xs),

s.t. Xs contains k points.

This enables sequential selection of the subsample points.

Hongquan Xu (UCLA) Orthogonal Subsampling for Big Data 10 / 30



Algorithm: Select and eliminate points simultaneously

Step 1. Let i = 1. Find the point in X with the largest Euclidean

norm, denoted as x∗1 . Include x∗1 in Xs and remove it from X . Let

D = (0, . . . , 0) be an (n − 1)-vector with each component

corresponding to each data point in X .
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Algorithm

Step 2. Increase i by 1. For each x ∈ X , add the score

L(x , x∗i−1) =
[
p − ‖x‖2/2− ‖x∗i−1‖2/2 + δ(s(x), s(x∗i−1))

]2
to the corresponding component in D . Find x∗i with the smallest

component in D and add it to Xs .
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Algorithm

Step 3. Keep ti points in X with ti smallest components in D .

Remove x∗i and other points from X as well as their corresponding

components from D .
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Algorithm

Step 4. Iterate Steps 2 and 3 until Xs contains k points.
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Algorithm
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Algorithm

For ti ,

if n� k , say n > k2, then we have far more candidate points

than needed, eliminate a large proportion

otherwise, eliminate a small portion

r = log(n/k), ti =

{
n/i , if n ≥ k2;

n/i r−1, if n < k2.

When n is large, the complexity of the algorithm is

O(np log(k))
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Parallel Computing

The combination of orthogonal arrays would still be an orthogonal

array.

The proposed algorithm is well suited for distributed and

parallel computing.

Separate the full dataset into g groups and apply the proposed

algorithm simultaneously on the groups, from each of which

k/g data points are selected.

Combine all selected points would lead to a subsample of size k .
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A Toy Example

Setup: x1, x2
iid∼ Unif[−1, 1], n = 1000, p = 2, k = 100, ε ∼ N(0, 1)

y = 1 + 2x1 + 2x2 + ε
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Comparison

Unif_Sampling Leveraging IBOSS OA−based
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Possible Outliers

May select outliers

The proposed algorithm can be combined with outlier

diagnostic methods for better performance

The selected subsample follows the same underlying regression

model as the full data, so outliers are very likely to be identified

in the subsample if they exist in the full data (as long as the

subsample size is not too small).
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Simulation

Covariates are generated according to the following scenarios.

Case 1. xi ’s are independent and have a multivariate uniform

distribution with all covariates independent.

Case 2. xi ’s have a multivariate normal distribution: xi ∼ N(0,Σ), with

Σ =
(

0.51−δ(i ,j)
)
.

The y is generated from the linear model y = Xβ + ε.

True value of β is a 51 dimensional vector of unity. An

intercept is included so p = 50.

σ2 = 9

The simulation is repeated T = 1000 times
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Simulation

Compare three subsampling approaches: uniform subsampling

(Unif), IBOSS, and orthogonal subsampling (OSS).

MSEβ−0 = T−1
T∑
t=1

‖β̂(t)−0 − β−0‖2,

β̂0 = ȳ − x̄T β̂−0,

MSEβ0 = T−1
T∑
t=1

‖β̂(t)0 − β0‖
2,
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Results

MSEs of the slope parameters with p = 50, k = 1000
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Results

Two dimensional projection plots of the subsamples

(p = 50, k = 1000)
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Model misspecification: Robust to Interactions

The true model is

y = β0 + X β̃1 + XI β̃2 + ε,

where p = 10,X : n × p,XI : n ×
(p
2

)
, but we still use a first-order

model y = β0 + Xβ1 + ε to select a subsample with k = 1000.

MSE(β̃1) MSE(β̃2)
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Running times (in seconds)

(a) n = 106, k = 4p, modeling without interactions

p UNI OSS IBOSS FULL

50 0.004 1.243 2.022 4.704

100 0.009 2.086 4.270 14.310

500 0.359 13.536 24.220 —

(b) p = 50, k = 1000, modeling without interactions

n UNI OSS IBOSS FULL

105 0.007 0.223 0.151 0.392

106 0.013 1.264 2.014 4.695

107 2.213 17.641 23.660 64.468

(c) n = 106, k = 1000, modeling with interactions

p UNI OSS IBOSS FULL

10 0.008 0.448 2.263 4.871

20 0.043 0.694 9.426 52.421

30 0.136 1.030 21.476 —
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Real Data I

Individual Household Electric Power Consumption Data

To model the metering: p = 6, n = 2, 075, 259

Bootstrap MSE for k = 4p, 6p, 10p, 20p and 100 bootstrap samples
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Real Data II

Wave Energy Converters Data

p = 48, n = 288, 000, y is the total power output of the farm

Bootstrap MSE for k = 4p, 6p, 10p, 20p and 100 bootstrap samples
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Real Data III

Blog Feedback Data

p = 280, n = 52, 397, y is the number of comments for a blog post

in the upcoming 24 hours

A test dataset with 7,624 data points is provided. We consider the

prediction for the test data with Lasso regression.
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Summary

An orthogonal subsampling framework which is optimal in

minimizing the average variance of estimators and the variance

of predications

Save running time with the proposed subsampling method

Tackle the issue of storage capacity of individual’s computing

resources

Suitable for the measurement-constrained regression

Given some existing work, subsampling for big data is still in its

infancy stage, and starting with linear models is a necessary

first step. Subsampling for other goals and models is

interesting and are extensively studied.

Reference: Wang, L., Elmstedt, J., Wong, W. K., and Xu, H.

(2021). Orthogonal Subsampling for Big Data Linear Regression.

Annals of Applied Statistics, 15(3): 1273-1290.
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