Orthogonal Array Based Big Data Subsampling

Hongquan Xu

University of California, Los Angeles

Joint work with
Lin Wang, Jake Kramer and Weng Kee Wong

Motivation

- Data are big (sometimes redundant)
- Analyzing the full data may be computationally unfeasible
- Storing all of the data may not be possible
- There are a lot of circumstances under which X is big while the label (or response) Y is expensive to obtain

Big X

 Small YPatients' records Performance of a new medicine

Images as visual Brain response stimuli

Linear Regression Setup

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}+\varepsilon
\end{aligned}
$$

Question:

1. If the budget only allows k responses (labels), $k \ll n$, choose which k to label?
2. When all responses are available, to accelerate the computation, how to choose a subsample of size $k \ll n$?

Leverage Subsampling

A subsampling method consists of

- sampling probabilities $\pi_{i}, i=1, \ldots, n, \sum_{i}^{n} \pi_{i}=1$
- a weighted estimator $\hat{\beta}_{s}=\left(X_{s}^{\top} W X_{s}\right)^{-1} X_{s}^{\top} W Y_{s}$, where X_{s} is the subsample taken from X and $W=\operatorname{diag}\left(w_{1}, \ldots, w_{k}\right)$ is a weight matrix

1. Uniform sampling: $\pi_{i}=1 / n, w_{i}=1$
2. Leveraging: $\pi_{i}=h_{i i} /(p+1), w_{i}=1 / \pi_{i}$, where

$$
h_{i i}=\left(X\left(X^{\top} X\right)^{-1} X^{\top}\right)_{i i}
$$

(Drineas et al., 2006; Ma et al., 2015)

Information-based Subsampling

The OLS for a subsample X_{s} is $\hat{\beta}_{s}=\left(X_{s}^{T} X_{s}\right)^{-1} X_{s}^{\top} Y_{s}$

$$
\mathrm{E}\left(\hat{\beta}_{s}\right)=\beta, \quad \operatorname{Var}\left(\hat{\beta}_{s}\right)=\sigma^{2}\left(X_{s}^{\top} X_{s}\right)^{-1}
$$

- The Fisher information matrix for β with subdata is

$$
M_{s}=X_{s}^{\top} X_{s}
$$

- D-optimality: to find X_{s} with k points that maximizes $\operatorname{det}\left(M_{s}\right)$ Available approach: IBOSS (Wang H., Yang, and Stufken, 2018 JASA) Include data points with extreme (largest and smallest) covariate values

Orthogonal Array-based Subsampling

Lemma

Suppose each covariate is scaled to $[-1,1]$. For a subsample X_{s} of size k,

$$
\operatorname{det}\left(M_{s}\right) \leq k^{p+1}
$$

and the equality holds (D-optimal) if and only if X_{s} forms a two-level OA with levels from $\{-1,1\}$ and strength $t \geq 2$.

A Measure of "Similarity"

For $x, y \in[-1,1]$, define

$$
\delta(x, y)= \begin{cases}2-\left(x^{2}+y^{2}\right) / 2, & \text { if } \operatorname{sign}(x)=\operatorname{sign}(y) \\ 1-\left(x^{2}+y^{2}\right) / 2, & \text { otherwise }\end{cases}
$$

J-optimality

For two data points $x_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)$ and $x_{j}=\left(x_{j 1}, \ldots, x_{j p}\right)$, let

$$
\delta\left(x_{i}, x_{j}\right)=\sum_{l=1}^{p} \delta\left(x_{i l}, x_{j l}\right)
$$

and define the J-optimality criterion (Xu 2002, Technometrics) as

$$
J\left(X_{s}\right)=\sum_{1 \leq i<j \leq k}\left[\delta\left(x_{i}, x_{j}\right)\right]^{2}
$$

Theorem

For any k-point subsample X_{s} over $[-1,1]^{p}$,

$$
J\left(X_{s}\right) \geq\left[k^{2} p(p+1)-4 k p^{2}\right] / 8
$$

with equality if and only if X_{s} forms an OA with strength 2.
Question: How to find X_{s} that minimizes $J\left(X_{s}\right)$?

Algorithm: Select and eliminate points simultaneously

Step 0 . Given $n \times p$ matrix X, scale each variable to $[-1,1]$.
Step 1. Find a point that is farthest to the origin. Include it as X_{s} and let $i=1$.

Step 2. For each $x \in X$, compute the J-score

$$
J\left(x, X_{s}\right)=\sum_{x_{s} \in X_{s}} \delta\left(x, x_{s}\right)^{2}
$$

Step 3. Find $x^{*} \in X$ that minimizes $J\left(x, X_{s}\right)$ and add x^{*} to X_{s}.
Step 4. Keep $t=\lfloor n / i\rfloor$ points in X with t smallest $J\left(x, X_{s}\right)$ values. Remove x^{*} and other points from X.

Step 5. Increase i by 1 and repeat Steps $2-4$ until X_{s} contains k points.
Note: The complexity is $O(n p \log (k))$ as $\sum_{i=1}^{k}(1 / i)=O(\log (k))$.

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

A Toy Simulation

Setup: $x_{1}, x_{2} \stackrel{\text { iid }}{\sim}$ Unif[-1, 1], $n=1000, p=2, k=100, \varepsilon \sim N(0,1)$

$$
y=1+2 x_{1}+2 x_{2}+\varepsilon
$$

Full data 1000x2

IBOSS method with $\mathrm{k}=100$

OA-based method with $k=100$

Comparison

MSEs for slope parameters (1000 repetitions)

Theoretical Properties

Assume that the covariates x_{1}, \ldots, x_{p} are i.i.d. with a uniform distribution in $[a, b]^{p}$, and we are considering the model

$$
y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}+\varepsilon
$$

Theorem

The OA-based subsampling minimizes MSE, i.e., the sum of the variances of coefficient estimations, almost surely as $n \rightarrow \infty$.

Model with Interactions

$$
y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}+\beta_{12} x_{1} x_{2}+\cdots+\beta_{(p-1) p} x_{p-1} x_{p}+\varepsilon
$$

Define the J-optimality criterion as

$$
J_{4}\left(X_{s}\right)=\sum_{1 \leq i<j \leq k}\left[\delta\left(x_{i}, x_{j}\right)\right]^{4}
$$

Assume that the covariates x_{1}, \ldots, x_{p} are i.i.d. with a uniform distribution in $[a, b]^{p}$.

Theorem

The OA-based subsampling minimizes MSE, i.e., the sum of variances of coefficient estimations, almost surely as $n \rightarrow \infty$.

Simulation

Setup: $x_{1}, \ldots, x_{p} \stackrel{\text { id }}{\sim}$ Unif $[-1,1], n=10^{4}, p=10, k=128$,
$\varepsilon \sim N\left(0,3^{2}\right)$

$$
y=1+x_{1}+\cdots+x_{10}+x_{1} x_{2}+\cdots+x_{9} x_{10}+\varepsilon
$$

MSEs for slope parameters (100 repetitions)

Summary

- Propose a new framework for subsampling: OA-based subsampling
- Computational complexity: $O(n p \log (k))$
- Minimize $J\left(X_{s}\right)$ for a linear model without interactions, attains optimality for coefficient estimation for large n
- Minimize $J_{4}\left(X_{s}\right)$ for a linear model with interactions, attains optimality for coefficient estimation for large n
- More efficient than leverage sampling and IBOSS

