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Motivation

Data are big (sometimes redundant)

Analyzing the full data may be computationally unfeasible

Storing all of the data may not be possible

There are a lot of circumstances under which X is big while the

label (or response) Y is expensive to obtain

Big X Small Y

Patients’ records Performance of

a new medicine

Images as visual Brain response

stimuli
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Linear Regression Setup

y = β0 + β1x1 + · · ·+ βpxp + ε

Question:

1. If the budget only allows k responses (labels), k � n, choose

which k to label?

2. When all responses are available, to accelerate the computation,

how to choose a subsample of size k � n ?
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Leverage Subsampling

A subsampling method consists of

sampling probabilities πi , i = 1, . . . , n,
∑n

i πi = 1

a weighted estimator β̂s = (XT
s WXs)−1XT

s WYs , where Xs is

the subsample taken from X and W = diag(w1, . . . ,wk) is a

weight matrix

1. Uniform sampling: πi = 1/n, wi = 1

2. Leveraging: πi = hii/(p + 1), wi = 1/πi , where

hii = (X (XTX )−1XT )ii

(Drineas et al., 2006; Ma et al., 2015)
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Information-based Subsampling

The OLS for a subsample Xs is β̂s = (XT
s Xs)−1XT

s Ys

E(β̂s) = β, Var(β̂s) = σ2(XT
s Xs)−1

The Fisher information matrix for β with subdata is

Ms = XT
s Xs

D-optimality: to find Xs with k points that maximizes det(Ms)

Available approach: IBOSS (Wang H., Yang, and Stufken, 2018 JASA)

Include data points with extreme (largest and smallest) covariate

values
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Orthogonal Array-based Subsampling

Lemma

Suppose each covariate is scaled to [−1, 1]. For a subsample Xs of

size k ,

det(Ms) ≤ kp+1,

and the equality holds (D-optimal) if and only if Xs forms a

two-level OA with levels from {−1, 1} and strength t ≥ 2.
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A Measure of “Similarity”

For x , y ∈ [−1, 1], define

δ(x , y) =

{
2− (x2 + y2)/2, if sign(x) = sign(y);

1− (x2 + y2)/2, otherwise.
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1 ≤ δ(x , y) ≤ 2, if sign(x) = sign(y);

0 ≤ δ(x , y) ≤ 1, otherwise.

δ(−1, 1) = δ(1,−1) = 0

δ(−1,−1) = δ(1, 1) = 1
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J-optimality

For two data points xi = (xi1, . . . , xip) and xj = (xj1, . . . , xjp), let

δ(xi , xj) =

p∑
l=1

δ(xil , xjl)

and define the J-optimality criterion (Xu 2002, Technometrics) as

J(Xs) =
∑

1≤i<j≤k
[δ(xi , xj)]2 .

Theorem

For any k-point subsample Xs over [−1, 1]p,

J(Xs) ≥ [k2p(p + 1)− 4kp2]/8,

with equality if and only if Xs forms an OA with strength 2.

Question: How to find Xs that minimizes J(Xs)?
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Algorithm: Select and eliminate points simultaneously

Step 0. Given n × p matrix X , scale each variable to [-1,1].

Step 1. Find a point that is farthest to the origin. Include it as Xs and

let i = 1.

Step 2. For each x ∈ X , compute the J-score

J(x ,Xs) =
∑
xs∈Xs

δ(x , xs)2.

Step 3. Find x∗ ∈ X that minimizes J(x ,Xs) and add x∗ to Xs .

Step 4. Keep t = bn/ic points in X with t smallest J(x ,Xs) values.

Remove x∗ and other points from X .

Step 5. Increase i by 1 and repeat Steps 2–4 until Xs contains k points.

Note: The complexity is O(np log(k)) as
∑k

i=1(1/i) = O(log(k)).
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Algorithm
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Algorithm
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A Toy Simulation

Setup: x1, x2
iid∼ Unif[−1, 1], n = 1000, p = 2, k = 100, ε ∼ N(0, 1)

y = 1 + 2x1 + 2x2 + ε
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Comparison

Unif_Sampling Leveraging IBOSS OA−based
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Theoretical Properties

Assume that the covariates x1, . . . , xp are i.i.d. with a uniform

distribution in [a, b]p, and we are considering the model

y = β0 + β1x1 + · · ·+ βpxp + ε.

Theorem

The OA-based subsampling minimizes MSE, i.e., the sum of the

variances of coefficient estimations, almost surely as n→∞.
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Model with Interactions

y = β0 + β1x1 + · · ·+ βpxp + β12x1x2 + · · ·+ β(p−1)pxp−1xp + ε

Define the J-optimality criterion as

J4(Xs) =
∑

1≤i<j≤k
[δ(xi , xj)]4 .

Assume that the covariates x1, . . . , xp are i.i.d. with a uniform

distribution in [a, b]p.

Theorem

The OA-based subsampling minimizes MSE, i.e., the sum of

variances of coefficient estimations, almost surely as n→∞.
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Simulation

Setup: x1, . . . , xp
iid∼ Unif[−1, 1], n = 104, p = 10, k = 128,

ε ∼ N(0, 32)

y = 1 + x1 + · · ·+ x10 + x1x2 + · · ·+ x9x10 + ε

Unif_Sampling Leveraging IBOSS OA−based
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Summary

Propose a new framework for subsampling: OA-based

subsampling

Computational complexity: O(np log(k))

Minimize J(Xs) for a linear model without interactions, attains

optimality for coefficient estimation for large n

Minimize J4(Xs) for a linear model with interactions, attains

optimality for coefficient estimation for large n

More efficient than leverage sampling and IBOSS
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