Introduction to Design and Analysis of Computer Experiments

Hongquan Xu Department of Statistics and Data Science UCLA

What are computer experiments?

- Computer experiments are increasingly being used to explore the behavior of complex physical systems.
- A computer model is a large computer code that implements a complex mathematical model of a physical process.
 e.g., simultaneous differential solver, finite element analysis computational fluid dynamics.

References:

- Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of computer experiments. *Statistical Science*, **4**, 409–423.
- Wu, C. F. J. and Hamada, M. S. (2021). Experiments: Planning, Analysis and Optimization. Chapter 14.

イロン イヨン イヨン

Computer Experiments

Figure 1: Computer experiment

• Computer model: (complex, expensive to compute)

$$y(\mathbf{x}) = f(\mathbf{x}) = f(x_1, \ldots, x_m)$$

• Surrogate: (fast to compute)

$$y(\mathbf{x}) = \hat{f}(\mathbf{x}) = \hat{f}(x_1, \ldots, x_m)$$

∃ ► < ∃ ►

Characteristics of computer experiments

- Mostly deterministic (lack of random error)
- May take hours or even days to produce a single output
- Many input variables
- The performance of the predictor depends upon the choice of the training data (design).

Principles in traditional DOE are irrelevant

- Replication
- Blocking
- Randomization

4 / 60

Modeling Computer Experiments: Kriging

For $\mathbf{x} = (x_1, \dots, x_m) \in \mathbb{R}^m$, treat the deterministic response $y(\mathbf{x})$ as a realization of a stochastic process

$$Y(\mathbf{x}) = \sum_{j=1}^{k} \beta_j f_j(\mathbf{x}) + Z(\mathbf{x}),$$

where $f_j(\mathbf{x})$ are known functions, β_j are unknown parameters and $Z(\cdot)$ is a **Gaussian process** with mean 0 and covariance

$$\operatorname{cov}(Z(\boldsymbol{w}), Z(\boldsymbol{x})) = \sigma^2 R(\boldsymbol{w}, \boldsymbol{x}).$$

• This is the Kriging model used in spatial statistics.

• Also called Gaussian process model in Machine Learning. R packages: DiceKriging, kergp, etc.

イロト イヨト イヨト ・

Prediction

Given a design $D = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ and data $y_D = (y(\mathbf{x}_1), \dots, y(\mathbf{x}_n))^T$. Consider the linear predictor

$$\hat{y}(\boldsymbol{x}) = c(\boldsymbol{x})^T y_D.$$

Frequentists replace y_D by the random vector $Y_D = \{Y(x_1), \dots, Y(x_n)\}^T$, and compute the MSE. The **Best Linear Unbiased Predictor** (BLUP): choose c(x) to minimize

$$\mathsf{MSE}[\hat{y}(\mathbf{x})] = E[c(\mathbf{x})^T Y_D - Y(\mathbf{x})]^2$$

subject to

$$E[\hat{y}(\boldsymbol{x})] = E[c(\boldsymbol{x})^T Y_D] = E[Y(\boldsymbol{x})]$$

Notation

Kriging model:

$$Y(\boldsymbol{x}) = f(\boldsymbol{x})^T \beta + Z(\boldsymbol{x}),$$

where

$$f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))^T,$$

$$\beta = (\beta_1, \dots, \beta_k)^T$$

$$\operatorname{cov} (Z(\mathbf{w}), Z(\mathbf{x})) = \sigma^2 R(\mathbf{w}, \mathbf{x}).$$

In matrix form:

$$Y_D = F\beta + Z, \text{ cov } (Z) = \sigma^2 R$$
$$F = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))^T = (f_j(\mathbf{x}_i))_{n \times k}$$
$$R = (R(\mathbf{x}_i, \mathbf{x}_j))_{n \times n}$$
$$r(\mathbf{x}) = (R(\mathbf{x}_1, \mathbf{x}), \dots, R(\mathbf{x}_n, \mathbf{x}))^T$$

The generalized LS estimate and BLUP are

$$\hat{\beta} = (F^T R^{-1} F)^{-1} F^T R^{-1} Y_D$$
$$\hat{y}(\mathbf{x}) = f(\mathbf{x})^T \hat{\beta} + r(\mathbf{x})^T R^{-1} (Y_D - F \hat{\beta})$$
$$MSE[\hat{y}(\mathbf{x})] = \sigma^2 \left[1 - (f(\mathbf{x})^T r(\mathbf{x})^T) \begin{pmatrix} 0 & F^T \\ F & R \end{pmatrix}^{-1} \begin{pmatrix} f(\mathbf{x}) \\ r(\mathbf{x}) \end{pmatrix} \right]$$

The GP interpolates the observed data: for any $x_i \in S$,

$$\hat{y}(\boldsymbol{x}_i) = y(\boldsymbol{x}_i)$$
 and $MSE(\hat{y}(\boldsymbol{x}_i)) = 0$.

(日) (四) (日) (日) (日)

Correlation Functions

The correlation R(w, x) has to be specified. Commonly used functions:

$$\begin{aligned} R(\boldsymbol{w},\boldsymbol{x}) &= \prod \exp(-|w_j - x_j|^{p_j}/\theta_j), \ 0 < p_j \le 2, \\ R(\boldsymbol{w},\boldsymbol{x}) &= \prod K(|w_j - x_j|;\theta_j) \end{aligned}$$

where K() is a correlation function such as Matérn correlation function with parameter $\nu = 5/2$.

$$\mathcal{K}(h;\theta) = \left(1 + rac{\sqrt{5}h}{ heta} + rac{5h^2}{3 heta^2}
ight) \exp\left(-rac{\sqrt{5}h}{ heta}
ight).$$

The correlation parameters (e.g., θ_j , p_j) need to be specified or estimated (by MLE or cross validation)

Given the correlation parameters, the MLEs are

$$\hat{\beta} = (F^T R^{-1} F)^{-1} F^T R^{-1} Y_D = \text{GLS estimate}$$
$$\hat{\sigma}^2 = \frac{1}{n} (Y_D - F\hat{\beta})' R^{-1} (Y_D - F\hat{\beta})$$

Three Sample Paths from a GP with Gaussian Correlation

10 / 60

Examples of Matérn $\nu = 5/2$ correlation functions

A toy example: Kriging

- Data: n = 11; Function: $y = \frac{\sin(2x)}{(1 + x)}$;
- Kriging: $Y = \mu + Z(x)$.
- Black (solid) prediction, red 95% prediction intervals, blue true.

A toy example: Kriging vs Polynomial models

Data: n = 11; Function: $y = \frac{\sin(2x)}{(1+x)}$; Kriging: $Y = \mu + Z(x)$.

- Constructing a "good" design is crucial for the success of a computer experiment.
- A "good" design should be space-filling (i.e., cover as much space as possible), and have good projection properties.
 - Latin hypercube designs (LHD) [McKay et al. (1979)]
 - Orthogonal Array-based designs [Owen (1992), Tang (1993), He and Tang (2013, 2014)]
 - Maximin and minimax distance designs [Johnson et al. (1990)]
 - Maximum projection designs [Joseph et al. (2015)]
 - Uniform designs [Fang et al. (2000, 2006)]
 - Uniform projection designs [Sun et al. (2019)]
- Optimality criteria: maximin distance, minimax distance, column-orthogonality, uniformity (discrepancy) etc.
- R packages: lhs, LHD, SLHD, UniDOE, MaxPro, UniPro, etc.

- Mckay, Beckman and Conover (1979).
- An example: p = 2, n = 4:

- Each row and column has one and only one point.
- Each factor has *n* levels.

15/60

 $\bullet\,$ On the other hand, a factorial 2^2 design is constructed as

- If x₁ (or x₂) is not significant, replication is wasted for computer experiments.
- "Effect sparsity" principle: only a few factors are expected to be important.

Definition 1

A Latin hypercube design (LHD) with *n* runs and *p* inputs variables, denoted by LHD(n, p), is an $n \times p$ matrix, in which each column is a random permutation of $\{1, 2, ..., n\}$.

• How to construct an LHD(n, p)? Step1 Randomly permute $\{1, 2, ..., n\}$ for each $x_1, ..., x_p$. $D = \begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & 2 & 7 \\ 2 & n & 9 \\ 3 & 5 & 1 \\ \vdots & \vdots & \vdots \\ n & 3 & 2 \end{bmatrix}$ Step2 $D' \leftarrow \frac{D-0.5}{n}$, where $D \in \{1, 2, ..., n\}^p$. Thus, $D' \in [0, 1]^p$.

- Thus, there are $(n!)^{p-1}$ LHDs.
- Not all of them are good. For example,

- This design is perfectly correlated and not space-filling.
- Finding an "optimal" LHD is a challenge.

Orthogonal Array-based LHD (OALHD) - Introduction

- Owen (1992) and Tang (1993).
- LHD: one-dimensional balancing property but two and higher dimensional projections can be very bad.
- Orthogonal Array (OA) of strength 2 has two dimensional balancing property, so use it to generate an LHD.
- Fractional factorial designs of resolution R are OAs of strength t = R 1.
- Strong Orthogonal Arrays (He and Tang 2013) enjoys better projection properties.
- Tian and Xu (2022, *Biometrika*) introduced a **minimum-aberration type space-filling criterion** to rank General Strong Orthogonal Arrays (including OAs and OALHDs).

Orthogonal Array-based LHD (OALHD) - Example

• For example,
$$n = 9, p = 2$$
,

OA x_1 $\begin{vmatrix} x_1 & x_2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 2 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 3 \\ 3 & 1 \\ 3 & 2 \\ 3 & 3 \end{vmatrix}$ $\begin{array}{c} 1 \rightarrow \{1, 2, 3\} \rightarrow \{3, 2, 1\} \\ 2 \rightarrow \{4, 5, 6\} \rightarrow \{4, 5, 6\} \\ 3 \rightarrow \{7, 8, 9\} \rightarrow \{8, 7, 9\} \\ 3 \rightarrow \{7, 8, 9\} \rightarrow \{8, 7, 9\} \end{array}$

9 g

OA-LHD

Level expansion is not unique.

3

• Level collapsing (inverse map) is unique: |(x+2)/3|.

Orthogonal Array-based LHD (OA-LHD) - Example

								٠
		•						
					•			
							٠	
				•				
	٠							
•								
			٠					
						٠		

<ロト < 四ト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

OA-based Latin Hypercube Design (OALHD) - Properties

- Monte Carlo Method: X_1, \ldots, X_n is a random sample.
- To approximate the population mean $E[f(\mathbf{X})]$ by the sample mean

$$\overline{f(\boldsymbol{X})} = \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{X}_i)$$

- Latin hypercube sampling (Stein 1987; Owen 1992) has a smaller variance than a simple random sampling.
- OA-based Latin hypercube sampling (Tang 1993) has an even smaller variance than Latin hypercube sampling

$$V_{oalhs}(\overline{f(\boldsymbol{X})}) < V_{lhs}(\overline{f(\boldsymbol{X})}) < V_{srs}(\overline{f(\boldsymbol{X})})$$

22 / 60

Designs Based on Measures of Distance

- Johnson, Moore, and Ylvisaker (1990).
- Let $\rho(\cdot, \cdot)$ be a metric.

$$\begin{aligned}
\rho(\mathbf{x}_1, \mathbf{x}_2) &= \rho(\mathbf{x}_2, \mathbf{x}_1) \\
\rho(\mathbf{x}_1, \mathbf{x}_2) &\ge 0 \\
\rho(\mathbf{x}_1, \mathbf{x}_2) &= 0 \Leftrightarrow \mathbf{x}_1 = \mathbf{x}_2 \\
\rho(\mathbf{x}_1, \mathbf{x}_2) &\le \rho(\mathbf{x}_1, \mathbf{x}_3) + \rho(\mathbf{x}_3, \mathbf{x}_2)
\end{aligned}$$

For example,

$$\rho(\mathbf{x}, \mathbf{w}) = \{\sum_{j=1}^{p} |x_j - w_j|^k\}^{1/k}$$

- k = 1 : rectangular distance
- k = 2 : Eulidean distance

miniMax Distance Design (mM Design) - Introduction

- Let ρ(x, D) = min_{xi∈D} ρ(x, xi) be the minimum distance to the design.
- Let $\chi = [0, 1]^p$ and

$$h = \max_{\boldsymbol{x} \in \chi} \rho(\boldsymbol{x}, D)$$

be the maximum distance in χ .

- h is called fill distance.
 - the largest gap
 - the radius of the largest ball that can be placed in χ which does not contain any point in *D*.
- Thus, find a D to minimize h. That is,

 $\min_{D}\max_{\boldsymbol{x}\in\boldsymbol{\chi}}\rho(\boldsymbol{x},D)$

 \rightarrow miniMax distance design (mM).

miniMax Distance Design (mM Design) - Examples

•
$$p = 1, n = 1$$
:
• $p = 1, n = 2$:
• $p = 1, n = 2$:
• $p = 1, n = 2$:

• *p* = 2, *n* = 4:

- mM designs ensure that all points in χ are not too far from the design.
- Consider the owner of a petroleum corporation who wants to open some gas stations. mM design ensures that no customer is too far from one of the company's gas stations.

Maximin Distance Design (Mm Design) - Introduction

• The minimum distance between any two points in D is

$$2q = \min_{\boldsymbol{x}_1, \boldsymbol{x}_2 \in D} \rho(\boldsymbol{x}_1, \boldsymbol{x}_2),$$

where q is the separation distance or packing radius - the radius of the largest ball that can be placed around every design point such that no two balls overlap.

- A large q ensures numerical stability in Kriging.
- A large q tends to decrease h.
- Thus, find a D to maximize 2q. That is,

 $\max_{D} \min_{\boldsymbol{x}_1, \boldsymbol{x}_2 \in D} \rho(\boldsymbol{x}_1, \boldsymbol{x}_2)$

 \rightarrow Maximin distance design (Mm).

Maximin Distance Design (Mm Design) - Example

• *p* = 2, *n* = 4:

- Mm designs ensure that the points in *D* are as far apart from each other as possible.
- Gas station example: Mm design ensures that no two gas stations are too close to each other. It minimizes the competition from each other by locating the stations as far apart as possible.
- Saturated $OA(n, 2^p)$'s are maximin distance designs when p = n 1 (Xu 1999).

29 / 60

- In mathematics,
 - covering problems: cover \mathbb{R}^p with spheres. \rightarrow miniMax
 - packing problems: pack spheres in \mathbb{R}^{p} . \rightarrow Maximin
- Experimental design problem is different because we need to cover $[0,1]^p$ or pack in $[0,1]^p$. \rightarrow This introduces boundary effects.

(a) Minimum radius.

(b) Maximum radius.

· · · · · · · · ·

- Computationally,
 - miniMax:

 $\min_{D} \max_{\boldsymbol{x} \in \boldsymbol{\chi}} \min_{\boldsymbol{x}_i \in D} \rho(\boldsymbol{x}, \boldsymbol{x}_i) \rightarrow \text{very hard}$

• Maximin:

 $\max_{D} \min_{\pmb{x}_1, \pmb{x}_2 \in D} \rho(\pmb{x}_1, \pmb{x}_2) \to \mathsf{hard}, \ \mathsf{but} \ \mathsf{easier} \ \mathsf{than} \ \mathsf{miniMax}$

- Mak and Joseph (2017): a new hybrid algorithm combining particle swarm optimization and clustering for generating minimax designs on any convex and bounded design space.
- R package: minimaxdesign

イロト イヨト イヨト ・

- Morris and Mitchell (1995).
- Advantage of mM/Mm designs: run size flexibility and "optimal".
- Disadvantage of mM/Mm designs: projections are poor.

Maximin Latin Hypercube Design (MmLHD) - Introduction

• LHD: good 1-dimensional projections, but can be poor in terms of space-filling in higher dimensions.

33 / 60

Maximin Latin Hypercube Design (MmLHD) - Introduction

• Combine these two ideas \rightarrow Maximin Latin hypercube designs (MmLHD)

$$\max_{D} \min_{\boldsymbol{x}_1, \boldsymbol{x}_2 \in D} \rho(\boldsymbol{x}_1, \boldsymbol{x}_2),$$

where D is an LHD.

It is the same as

$$\min_{D} \left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{\rho^{k}(\mathbf{x}_{i}, \mathbf{x}_{j})} \right)^{1/k}$$

and $k \to \infty$, where D is an LHD. Typically take k = 15 or 50.

• R package SLHD constructed maximin LHDs via simulated annealing algorithm (Morris and Mitchell 1995).

Maximin Latin Hypercube Design (MmLHD) - Examples

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → ���

35 / 60

Maximum Projection Design (MaxPro) - Introduction

- Joseph, Gul, and Ba (2015).
- MmLHDs only ensure good space-fillingness in *p* dimensions and uniform projections in a single dimension, but projection properties in 2,3,..., *p* - 1 dimensions may not be good.
- In practice, we often have 1<the number of important factors< *p*.

Figure 4: Projection in two dimensions for a 10 dimensional MmLHD.

Maximum Projection Design (MaxPro)

- How to calculate distances in a projected subspace? **Answer:** Put weights of 1 on the defining factors and 0 on the remaining factors.
- Weighted Euclidean Distance:

$$d(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta}) = \{\sum_{l=1}^p \theta_l (x_{il} - x_{jl})^2\}^{1/2}.$$

Let $0 \le \theta_l \le 1$ be the weight assigned to the factor l and let $\sum_{l=1}^{p} \theta_l = 1$.

• Then the MmLHD criterion can be modified to

$$\min_{D} \phi_k(D; \boldsymbol{\theta}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{1}{d^k(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta})},$$

where $\theta = (\theta_1, \dots, \theta_{p-1})'$ and $\theta_p = 1 - \sum_{l=1}^{p-1} \theta_l$.

Maximum Projection Design (MaxPro)

- In practice, we often have no idea about the importance of the factors before the experiment.
- Assigning non-informative prior:

$$p(\theta) = rac{1}{(p-1)!}, \theta \in S_{p-1},$$

- where $S_{p-1} = \{ \theta : \theta_1, ..., \theta_{p-1} \ge 0, \sum_{i=1}^{p-1} \theta_i \le 1 \}.$
- The design criterion becomes

$$\min_{D} \mathbb{E}\{\phi_k(D;\boldsymbol{\theta})\} = \int_{\mathcal{S}_{p-1}} \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{1}{d^k(x_i, x_j; \boldsymbol{\theta})} p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

Maximum Projection Design (MaxPro)

Theorem 2

If k = 2p, then under the given prior

$$\mathbb{E}\{\phi_k(D;\boldsymbol{\theta})\} = \frac{1}{\{(p-1)!\}^2} \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{1}{\prod_{l=1}^p (x_{il} - x_{jl})^2}.$$

• Therefore, the MaxPro Criterion is

$$\min_{D} \psi(D) = \left(\frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{\prod_{l=1}^{p} (x_{il} - x_{jl})^2}\right)^{1/p}$$

- Maximum projection (MaxPro) design: maximizes space-filling properties on projections to all possible subsets of factors.
- R package MaxPro: computed at a cost no more than a design criterion that ignores projection properties.

Idea: choose design points from the design region with empirical distribution as "uniform" as possible (Fang et al, 2000, 2006).

For an $n \times m$ design D over $[0,1]^m$,

$$Disc(D) = \left\{ \int_{[0,1]^m} \left| \operatorname{Vol}(J(a_x,x)) - \frac{N(D \cap J(a_x,x))}{n} \right|^2 dx \right\}^{1/2}$$

The (squared) centered L_2 -discrepancy is defined by

$$\mathcal{CD}(D) = \left\{ \sum_{u \subseteq \{1:m\}} \left| \textit{Disc}(D_u) \right|^2
ight\},$$

where *u* is a subset of $\{1, 2, ..., m\}$ and D_u is the projected design of *D* onto dimensions indexed by the elements of *u*.

Uniform Designs and Centered L₂-Discrepancy

The centered L_2 -discrepancy has an analytical expression. For $D = (z_{ik})$ over $[0, 1]^m$:

$$CD(D) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \prod_{k=1}^m \left(1 + \frac{1}{2} |z_{ik}| + \frac{1}{2} |z_{jk}| - \frac{1}{2} |z_{ik} - z_{jk}| \right) \\ - \frac{2}{n} \sum_{i=1}^n \prod_{k=1}^m \left(1 + \frac{1}{2} |z_{ik}| - \frac{1}{2} |z_{ik}|^2 \right) + \left(\frac{13}{12} \right)^m.$$

• For a design $D = (x_{ij})$ with s levels $1, 2, \ldots, s$, use $z_{ij} = (x_{ij} - 0.5)/s$.

- Uniform designs may have poor projections in lower dimensional spaces (Zhou et al., 2013).
- There are other types of discrepancy measures, but they have similar formulas and problems.
- R package: UniDOE

- Focus on 2-dim projection uniformity
- Uniform projection criterion (Sun, Wang and Xu, 2019, Annals of Statistics)

$$\phi(D) = \frac{2}{m(m-1)} \sum_{|u|=2} CD(D_u),$$
(1)

where the summation is over all possible 2-column subsets u.

- A design achieving the minimum φ(D) value is a uniform projection design (UPD).
- R package UniPro and Meta4Design

Why we need a new criterion? Four 25×3 LHDs

Uniform D ₁		Ma	aximin	D_2	MaxPro D_3				UPD D ₄			
-18	16	14	0	2	20	 0	6	12	-	2	3	2
19	9	0	1	20	10	1	15	5		4	5	13
11	1	2	2	7	12	2	18	21		0	11	9
16	20	3	3	13	21	3	9	0		3	16	17
20	22	12	4	9	3	4	12	17		1	22	22
14	7	10	5	19	0	5	0	10		8	0	7
4	17	1	6	23	19	6	21	3		6	8	19
12	12	7	7	14	13	7	4	19		9	14	24
10	15	24	8	0	7	8	23	13		5	18	4
22	14	5	9	3	17	9	11	7		7	20	11
2	21	22	10	21	8	10	14	24		12	2	21
15	11	21	11	8	9	11	3	1		10	9	0
1	5	4	12	6	1	12	8	15		14	12	14
3	10	11	13	18	23	13	19	9		13	15	6
23	3	8	14	15	2	14	1	22		11	24	15
Ō	13	15	15	10	18	15	7	4		17	4	10
8	23	6	16	24	16	16	16	18		15	7	5
7	8	18	17	16	11	17	24	6		19	10	18
9	4	13	18	1	15	18	13	11		16	19	20
6	19	_ <u>9</u>	19	22	4	19	22	23		18	23	1
24	18	19	20	4	6	20	2	14		21	1	16
21	6	23	21	5	24	21	17	2		23	6	23
13	24	17	22	12	5	22	10	20		22	13	-3
17	_0	16^{-1}	23	17	22	23	5	8		20	17	12
5	2	20	24	11	14	24	20	16		24	21	8

Bivariate projections of Uniform D_1 and Maximin D_2

Note: 'X' means that there are no points in the grid.

æ

-∢ ∃ ▶

Bivariate projections of MaxPro D_3 and UPD D_4

Note: 'X' means that there are no points in the grid.

э

-∢ ∃ ▶

< 行

Theorem 3

For a balanced (n, s^m) design D and any $2 \le k \le m$,

$$\frac{1}{\binom{m}{k}}\sum_{|u|=k}\phi(D_u)=\phi(D),$$

where D_u is the projected design onto k factors indexed by u.

 UPDs have good space-filling properties not only in two dimensions, but also in all dimensions.

Theorem 4

For a balanced (n, s^m) design $D = (x_{ik})$,

$$\phi(D) = \frac{g(D)}{4m(m-1)n^2s^2} + C(m,s), \qquad (2)$$

where

$$g(D) = \sum_{i=1}^{n} \sum_{j=1}^{n} d_1^2(x_i, x_j) - \frac{2}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} d_1(x_i, x_j) \right)^2$$
(3)

- $\phi(D)$ is a function of pairwise L_1 -distances of the rows of D.
- $\phi(D)$ can be efficiently computed in $O(n^2m)$ operations.
- An equidistant design under the L₁-distance is a UPD (Sun, Wang, Xu 2019).

Application: Design and Modeling Comparison

- A 3-drug combination experiment on lung cancer (Al-Shyoukh et al. 2011; Xiao, Wang and Xu 2019).
- A 512-run and 8-level full factorial design to study 3 drugs.
- The response was the ATP level of the cells after the drug treatments.
- Kriging model with noise: $y(\mathbf{x}) = \mu + Z(\mathbf{x}) + \epsilon$

		Cancer Cell						
	D ₅₁₂	RD_{80}	MPD_{25}	UPD ₂₅	D ₅₁₂	RD_{80}	MPD_{25}	UPD ₂₅
Kriging	0.002	0.21	0.62	0.22	0.003	0.37	1.87	0.21
NN	0.37	1.28	3.12	1.79	0.47	1.57	4.10	2.93
Polynomial	0.48	1.16	3.22	0.74	2.98	6.77	10.04	4.42

Table 1: Comparison of 1000×MSE for different models and designs

RD₈₀: Random 80-run design; MPD₂₅: MaxPro 25-run designs.

We compare four LHD(19, 18)'s:

- The uniform design is from the uniform design website(UD)
- The maximin distance design via R package SLHD (Ba, Myers and Brenneman, 2015, Technometrics).
- The maximum projection (MaxPro) design were constructed via R package MaxPro (Joseph et al., 2015, Biometrika)
- The uniform projection design (UPD): E_b .
- We ran R commands maximinSLHD (with slice parameter t = 1) and MaxProLHD 100 times with default settings and chose the best designs.

Four criteria will be used in the comparison:

- Image: March Ma
- maximum projection criterion (Joseph et al. 2015)

$$\psi(D) = \left\{ \frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{\prod_{k=1}^{m} (x_{ik} - x_{jk})^2} \right\}^{1/m}$$

- \bigcirc relative maximum centered L_2 -discrepancy (CD)
- maximum correlation ρ_{ave} .

For each k, we evaluate all $\binom{m}{k}$ projected designs and determine the worst projection with respect to four criteria.

Figure 5: (a) minimum Euclidean distance (the larger the better), (b) maximum $\psi(D)$ (the smaller the better), (c) relative maximum CD (the smaller the better), and (d) maximum ρ_{ave} (the smaller the better).

(日) (四) (日) (日) (日)

Simulation: The Borehole Simulation

Consider the 8-dim borehole function

$$f(x_1,\ldots,x_8) = \frac{2\pi x_1(x_5-x_8)}{\log(x_6/x_2)[1+\frac{2x_3x_1}{\log(x_6/x_2)x_2^2x_7}+\frac{x_1}{x_4}]}$$

Fit a Kriging model to approximate the borehole function

$$y(\boldsymbol{x}) = \mu + Z(\boldsymbol{x}),$$

where $Z(\mathbf{x})$ is a Gaussian process with mean 0 and covariance function

$$\operatorname{cov}\{Y(\boldsymbol{x} + \boldsymbol{h}), Y(\boldsymbol{x})\} = \sigma^2 \prod_{j=1}^{8} K(h_j; \theta_j),$$
$$K(h; \theta) = \left(1 + \frac{\sqrt{5}h}{\theta} + \frac{5h^2}{3\theta^2}\right) \exp\left(-\frac{\sqrt{5}h}{\theta}\right)$$

K() is the Matérn correlation function with $\nu = 2.5$.

Simulation: Designs

Consider nine 121×8 designs:

- Three 11-level factorial designs (orthogonal arrays):
 - A regular design D
 - Level permuted regular design $D_b = D + b \pmod{11}$ (Tang and Xu, 2014)
 - Level permuted nonregular design $E_b = W(D_b)$ (Wang and Xu, 2021)
- Six LHDs (with 121 levels):
 - three LHDs obtained from the 11-level designs by rotation (Steinberg and Lin, 2006; Wang and Xu, 2021)
 - randomly generated LHD
 - maximin-distance LHD (Ba, Myers, and Brenneman, 2015) repeated 100 times, selected the best, each 6 secs, total 10 mins
 - maximum-projection LHD (Joseph, Gul, and Ba, 2015) repeated 100 times, selected the best, each 7 secs, total 12 mins

54 / 60

- Scale each variable to [0,1]: $\mathbf{x} = (x_1, \dots, x_8)$ is scaled to $[0,1]^8$
- Generate nine data sets based on the nine designs
- Build a Kriging model for each data set.
- Testing data: 5000 uniformly distributed points in $[0,1]^8$
- MSE for the predicted responses at the testing data points are examined

$$\mathsf{MSE} = \frac{1}{5000} \sum_{i=1}^{5000} (y_i - \hat{y}_i)^2,$$

where y_i is the true response and \hat{y}_i is the predicted response from the fitted model at the *i*th testing data point

• The simulation process is repeated for 1000 times.

55 / 60

Simulation: Result (Comparing 121×8 Designs)

logarithm of MSE

- Designs matter!
- Multilevel designs are as good as LHDs!

Simulation: Comparing 64×15 LHDs

- random (lhd), maximin, MaxPro, uniform (ud), and strong orthogonal arrays (soa15lhd, soa20lhd)
- Designs matter: Strong orthogonal arrays are better (Shi and Xu 2023+, JASA).

Summary on Space-Filling Designs

- Latin hypercube design:
 - Good 1-dimensional projections, but might not be space-filling in *p* dimensions.

• Orthogonal array-based designs:

- Good space-filling properties in projections in low dimensions.
- miniMax/Maximin distance design:
 - Run size flexibility and good space-fillingness in *p* dimensions, but bad projections.
- Maximin Latin Hypercube design:
 - Good space-fillingness in *p* dimensions and uniform projections in a single dimension.
- Maximum projection design:
 - Good space-filling properties in projections to all subsets of factors.
- Uniform designs, uniform projection designs:
 - Better space-filling properties in projections to all subsets of factors.

< ロト < 同ト < ヨト < ヨト

Summary

- The Gaussian Process model provides an efficient framework for modeling.
 - The role of the regression part ?
 - Choice of correlation function large vs. small correlation ?
- There are several types of space-filling designs
 - which type is the best in terms of prediction or optimization?
- Construction of space-filling designs
 - Meta-heuristic algorithms: simulated annealing, threshold accepting, genetic algorithms flexible, but not efficient for constructing large designs
 - Theoretical methods such as good lattice point designs (Wang, Xiao and Xu 2018 AOS) guaranteed efficiency, but not flexible
- Some new developments (Tian and Xu 2022 Biometrika, 2024 JRSSB; Shi and Xu 2023+ JASA)
 - space-filling hierarchy principle
 - minimum-aberration type space-filling criterion
 - How to construct/search space-filling designs?

Selected References

- Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of computer experiments. *Statistical science*, 4, 409–423.
- Wu, C. F. J. and Hamada, M. S. (2021). Experiments: Planning, Analysis and Optimization. Chapter 14.
- Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance designs. J. Statist. Plan. Infer. 26, 131–48.
- Joseph, V. R., Gul, E. and Ba, S. (2015). Maximum projection designs for computer experiments. *Biometrika* 102, 371–380.
- Fang, K. T., Lin, D. K. J., Winker, P. and Zhang, Y. (2000). Uniform design: theory and application. *Technometrics* **42**, 237–248.
- Sun, F., Wang, Y. and Xu, H. (2019). Uniform Projection Designs. Annals of Statistics, 47, 641–661.
- Xiao, Q., Wang, L. and Xu, H. (2019). Application of Kriging Models for a Drug Combination Experiment on Lung Cancer. *Statistics in Medicine*, 38, 236–246.
- Tian, Y. and Xu, H. (2022). A Minimum Aberration Type Criterion for Selecting Space-Filling Designs. *Biometrika*, 109(2), 489–501.