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Introduction

What are computer experiments?

Computer experiments are increasingly being used to explore the
behavior of complex physical systems.

A computer model is a large computer code that implements a
complex mathematical model of a physical process.
e.g., simultaneous differential solver, finite element analysis
computational fluid dynamics.

References:

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989).
Design and analysis of computer experiments. Statistical Science, 4,
409–423.

Wu, C. F. J. and Hamada, M. S. (2021). Experiments: Planning,
Analysis and Optimization. Chapter 14.
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Computer Experiments
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Figure 1: Computer experiment

Computer model: (complex, expensive to compute)

y(x) = f (x) = f (x1, . . . , xm)

Surrogate: (fast to compute)

y(x) = f̂ (x) = f̂ (x1, . . . , xm)
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Computer Experiments

Characteristics of computer experiments

Mostly deterministic (lack of random error)

May take hours or even days to produce a single output

Many input variables

The performance of the predictor depends upon the choice of the
training data (design).

Principles in traditional DOE are irrelevant

Replication

Blocking

Randomization
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Modeling Computer Experiments: Kriging

For x = (x1, . . . , xm) ∈ Rm, treat the deterministic response y(x) as a
realization of a stochastic process

Y (x) =
k∑

j=1

βj fj(x) + Z (x),

where fj(x) are known functions, βj are unknown parameters and Z (·) is a
Gaussian process with mean 0 and covariance

cov (Z (w),Z (x)) = σ2R(w , x).

This is the Kriging model used in spatial statistics.

Also called Gaussian process model in Machine Learning.

R packages: DiceKriging, kergp, etc.
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Prediction

Given a design D = {x1, . . . , xn} and data yD = (y(x1), . . . , y(xn))
T .

Consider the linear predictor

ŷ(x) = c(x)T yD .

Frequentists replace yD by the random vector
YD = {Y (x1), . . . ,Y (xn)}T , and compute the MSE.
The Best Linear Unbiased Predictor (BLUP): choose c(x) to minimize

MSE [ŷ(x)] = E [c(x)TYD − Y (x)]2

subject to
E [ŷ(x)] = E [c(x)TYD ] = E [Y (x)]
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Notation

Kriging model:
Y (x) = f (x)Tβ + Z (x),

where
f (x) = (f1(x), . . . , fk(x))T ,

β = (β1, . . . , βk)
T

cov (Z (w),Z (x)) = σ2R(w , x).

In matrix form:
YD = Fβ + Z , cov (Z ) = σ2R

F = (f (x1), . . . , f (xn))
T = (fj(x i ))n×k

R = (R(x i , x j))n×n

r(x) = (R(x1, x), . . . ,R(xn, x))T
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GLS and BLUP

The generalized LS estimate and BLUP are

β̂ = (FTR−1F )−1FTR−1YD

ŷ(x) = f (x)T β̂ + r(x)TR−1(YD − F β̂)

MSE [ŷ(x)] = σ2

[
1− (f (x)T r(x)T )

(
0 FT

F R

)−1(
f (x)
r(x)

)]
The GP interpolates the observed data: for any x i ∈ S ,

ŷ(x i ) = y(x i ) and MSE (ŷ(x i )) = 0.
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Correlation Functions

The correlation R(w , x) has to be specified. Commonly used functions:

R(w , x) =
∏

exp(−|wj − xj |pj/θj), 0 < pj ≤ 2,

R(w , x) =
∏

K (|wj − xj |; θj)

where K () is a correlation function such as Matérn correlation function
with parameter ν = 5/2.

K (h; θ) =

(
1 +

√
5h

θ
+

5h2

3θ2

)
exp

(
−
√
5h

θ

)
.

The correlation parameters (e.g., θj , pj) need to be specified or estimated
(by MLE or cross validation)
Given the correlation parameters, the MLEs are

β̂ = (FTR−1F )−1FTR−1YD =GLS estimate

σ̂2 =
1

n
(YD − F β̂)′R−1(YD − F β̂)
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Three Sample Paths from a GP with Gaussian Correlation
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Examples of Matérn ν = 5/2 correlation functions
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A toy example: Kriging
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Data: n = 11; Function: y = sin(2x)/(1 + x);

Kriging: Y = µ+ Z (x).

Black (solid) - prediction, red - 95% prediction intervals, blue - true.
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A toy example: Kriging vs Polynomial models
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Data: n = 11; Function: y = sin(2x)/(1 + x); Kriging: Y = µ+ Z (x).
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Designs for Computer Experiments

Constructing a “good” design is crucial for the success of a computer
experiment.

A “good” design should be space-filling (i.e., cover as much space as
possible), and have good projection properties.

Latin hypercube designs (LHD) [McKay et al. (1979)]
Orthogonal Array-based designs [Owen (1992), Tang (1993), He and Tang

(2013, 2014)]
Maximin and minimax distance designs [Johnson et al. (1990)]
Maximum projection designs [Joseph et al. (2015)]
Uniform designs [Fang et al. (2000, 2006)]
Uniform projection designs [Sun et al. (2019)]

Optimality criteria: maximin distance, minimax distance,
column-orthogonality, uniformity (discrepancy) etc.

R packages: lhs, LHD, SLHD, UniDOE, MaxPro, UniPro, etc.
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Latin Hypercube Design (LHD) - Introduction

Mckay, Beckman and Conover (1979).

An example: p = 2, n = 4:

•
•

•
•

D =


1 2
2 4
3 3
4 1


Each row and column has one and only one point.

Each factor has n levels.

15 / 60



Factorial Design 22

On the other hand, a factorial 22 design is constructed as

• •

• •

D =


1 1
1 4
4 1
4 4


If x1 (or x2) is not significant, replication is wasted for computer
experiments.

“Effect sparsity” principle: only a few factors are expected to be
important.
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Latin Hypercube Design (LHD)

Definition 1

A Latin hypercube design (LHD) with n runs and p inputs variables,
denoted by LHD(n, p), is an n × p matrix, in which each column is a
random permutation of {1, 2, . . . , n}.

How to construct an LHD(n, p)?

Step1 Randomly permute {1, 2, . . . , n} for each x1, . . . , xp.

D =



x1 x2 x3
1 2 7
2 n 9
3 5 1
...

...
...

n 3 2


Step2 D ′ ← D−0.5

n , where D ∈ {1, 2, . . . , n}p. Thus, D ′ ∈ [0, 1]p.

17 / 60



Optimal LHD(n, p)

Thus, there are (n!)p−1 LHDs.

Not all of them are good. For example,

•
•

•
•

D =


1 1
2 2
3 3
4 4


This design is perfectly correlated and not space-filling.

Finding an “optimal” LHD is a challenge.
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Orthogonal Array-based LHD (OALHD) - Introduction

Owen (1992) and Tang (1993).

LHD: one-dimensional balancing property but two and higher
dimensional projections can be very bad.

Orthogonal Array (OA) of strength 2 has two dimensional balancing
property, so use it to generate an LHD.

Fractional factorial designs of resolution R are OAs of strength
t = R − 1.

Strong Orthogonal Arrays (He and Tang 2013) enjoys better
projection properties.

Tian and Xu (2022, Biometrika) introduced a minimum-aberration
type space-filling criterion to rank General Strong Orthogonal
Arrays (including OAs and OALHDs).
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Orthogonal Array-based LHD (OALHD) - Example

For example, n = 9, p = 2,

OA

x1 x2
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3



1→ {1, 2, 3} → {3, 2, 1}
2→ {4, 5, 6} → {4, 5, 6}
3→ {7, 8, 9} → {8, 7, 9}

OA-LHD

x1 x2
1 3
2 4
3 8
4 2
5 5
6 7
7 1
8 6
9 9


Level expansion is not unique.

Level collapsing (inverse map) is unique: ⌊(x + 2)/3⌋.
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Orthogonal Array-based LHD (OA-LHD) - Example

•
•

•
•

•
•

•
•

•
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OA-based Latin Hypercube Design (OALHD) - Properties

Monte Carlo Method: X 1, . . . ,X n is a random sample.

To approximate the population mean E [f (X )] by the sample mean

f (X ) =
1

n

n∑
i=1

f (X i )

Latin hypercube sampling (Stein 1987; Owen 1992) has a smaller
variance than a simple random sampling.

OA-based Latin hypercube sampling (Tang 1993) has an even smaller
variance than Latin hypercube sampling

Voalhs(f (X )) < Vlhs(f (X )) < Vsrs(f (X ))
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Designs Based on Measures of Distance

Johnson, Moore, and Ylvisaker (1990).

Let ρ(·, ·) be a metric.

ρ(x1, x2) = ρ(x2, x1)

ρ(x1, x2) ≥ 0

ρ(x1, x2) = 0⇔ x1 = x2

ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2)

For example,

ρ(x ,w) = {
p∑

j=1

|xj − wj |k}1/k

k = 1 : rectangular distance

k = 2 : Eulidean distance
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miniMax Distance Design (mM Design) - Introduction

Let ρ(x ,D) = minx i∈D ρ(x , x i ) be the minimum distance to the
design.

Let χ = [0, 1]p and
h = max

x∈χ
ρ(x ,D)

be the maximum distance in χ.

h is called fill distance.

the largest gap
the radius of the largest ball that can be placed in χ which does not
contain any point in D.

Thus, find a D to minimize h. That is,

min
D

max
x∈χ

ρ(x ,D)

→ miniMax distance design (mM).
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miniMax Distance Design (mM Design) - Examples

p = 1, n = 1:
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miniMax Distance Design (mM Design) - Properties

mM designs ensure that all points in χ are not too far from the
design.

Consider the owner of a petroleum corporation who wants to open
some gas stations. mM design ensures that no customer is too far
from one of the company’s gas stations.
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Maximin Distance Design (Mm Design) - Introduction

The minimum distance between any two points in D is

2q = min
x1,x2∈D

ρ(x1, x2),

where q is the separation distance or packing radius - the radius of
the largest ball that can be placed around every design point such
that no two balls overlap.

A large q ensures numerical stability in Kriging.

A large q tends to decrease h.

Thus, find a D to maximize 2q. That is,

max
D

min
x1,x2∈D

ρ(x1, x2)

→ Maximin distance design (Mm).
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Maximin Distance Design (Mm Design) - Example

p = 1, n = 2:
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p = 2, n = 4:

⇒
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Maximin Distance Design (Mm Design) - Properties

Mm designs ensure that the points in D are as far apart from each
other as possible.

Gas station example: Mm design ensures that no two gas stations are
too close to each other. It minimizes the competition from each other
by locating the stations as far apart as possible.

Saturated OA(n, 2p)’s are maximin distance designs when p = n − 1
(Xu 1999).
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Summary

In mathematics,

covering problems: cover Rp with spheres. → miniMax
packing problems: pack spheres in Rp. → Maximin

Experimental design problem is different because we need to cover
[0, 1]p or pack in [0, 1]p. → This introduces boundary effects.

1/4

3/4

1/4 3/4

(a) Minimum radius. (b) Maximum radius.
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Summary

Computationally,

miniMax:
min
D

max
x∈χ

min
x i∈D

ρ(x , x i )→ very hard

Maximin:

max
D

min
x1,x2∈D

ρ(x1, x2)→ hard, but easier than miniMax

Mak and Joseph (2017): a new hybrid algorithm combining particle
swarm optimization and clustering for generating minimax designs on
any convex and bounded design space.

R package: minimaxdesign
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Maximin Latin Hypercube Design (MmLHD) - Introduction

Morris and Mitchell (1995).

Advantage of mM/Mm designs: run size flexibility and “optimal”.

Disadvantage of mM/Mm designs: projections are poor.

Optimal Design Criterion for Computer Experiments

6

Maximin Distance Design Minimax Distance Design

Poor Projections

Use Latin Hypercube Designs (McKay, Conover, Beckman 1979)

(a) Maximin design

Optimal Design Criterion for Computer Experiments

6

Maximin Distance Design Minimax Distance Design

Poor Projections

Use Latin Hypercube Designs (McKay, Conover, Beckman 1979)

(b) Minimax design.
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Maximin Latin Hypercube Design (MmLHD) - Introduction

LHD: good 1-dimensional projections, but can be poor in terms of
space-filling in higher dimensions.

Optimal Design Criterion for Computer Experiments

6

Maximin Distance Design Minimax Distance Design

Poor Projections

Use Latin Hypercube Designs (McKay, Conover, Beckman 1979)
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Maximin Latin Hypercube Design (MmLHD) - Introduction

Combine these two ideas → Maximin Latin hypercube designs
(MmLHD)

max
D

min
x1,x2∈D

ρ(x1, x2),

where D is an LHD.

It is the same as

min
D

n−1∑
i=1

n∑
j=i+1

1

ρk(x i , x j)

1/k

and k →∞, where D is an LHD. Typically take k = 15 or 50.

R package SLHD constructed maximin LHDs via simulated annealing
algorithm (Morris and Mitchell 1995).
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Maximin Latin Hypercube Design (MmLHD) - Examples

Optimal Design Criterion for Computer Experiments

8

• Maximin Latin hypercube design (MmLHD) (Morris and Mitchell 1995)

where       is an LHD.

MmLHD(20,2) MmLHD(20,10)
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Maximum Projection Design (MaxPro) - Introduction

Joseph, Gul, and Ba (2015).
MmLHDs only ensure good space-fillingness in p dimensions and
uniform projections in a single dimension, but projection properties in
2, 3, . . . , p − 1 dimensions may not be good.
In practice, we often have 1<the number of important factors< p.

Optimal Design Criterion for Computer Experiments

8

• Maximin Latin hypercube design (MmLHD) (Morris and Mitchell 1995)

where       is an LHD.

MmLHD(20,2) MmLHD(20,10)

Figure 4: Projection in two dimensions for a 10 dimensional MmLHD.
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Maximum Projection Design (MaxPro)

How to calculate distances in a projected subspace? Answer: Put
weights of 1 on the defining factors and 0 on the remaining factors.

Weighted Euclidean Distance:

d(x i , x j ;θ) = {
p∑

l=1

θl(xil − xjl)
2}1/2.

Let 0 ≤ θl ≤ 1 be the weight assigned to the factor l and let∑p
l=1 θl = 1.

Then the MmLHD criterion can be modified to

min
D
ϕk(D;θ) =

n−1∑
i=1

n∑
j=i+1

1

dk(x i , x j ;θ)
,

where θ = (θ1, . . . , θp−1)
′ and θp = 1−

∑p−1
l=1 θl .
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Maximum Projection Design (MaxPro)

In practice, we often have no idea about the importance of the factors
before the experiment.

Assigning non-informative prior:

p(θ) =
1

(p − 1)!
,θ ∈ Sp−1,

where Sp−1 = {θ : θ1, . . . , θp−1 ≥ 0,
∑p−1

i=1 θi ≤ 1}.
The design criterion becomes

min
D

E{ϕk(D;θ)} =
∫
Sp−1

n−1∑
i=1

n∑
j=i+1

1

dk(xi , xj ;θ)
p(θ)dθ.
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Maximum Projection Design (MaxPro)

Theorem 2

If k = 2p, then under the given prior

E{ϕk(D;θ)} = 1

{(p − 1)!}2
n−1∑
i=1

n∑
j=i+1

1∏p
l=1(xil − xjl)2

.

Therefore, the MaxPro Criterion is

min
D
ψ(D) =

 1(n
2

) n−1∑
i=1

n∑
j=i+1

1∏p
l=1(xil − xjl)2

1/p

.

Maximum projection (MaxPro) design: maximizes space-filling
properties on projections to all possible subsets of factors.

R package MaxPro: computed at a cost no more than a design
criterion that ignores projection properties.
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Uniform designs

Idea: choose design points from the design region with empirical
distribution as “uniform” as possible (Fang et al, 2000, 2006).
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Uniform Designs and Centered L2-Discrepancy

For an n ×m design D over [0, 1]m,

Disc(D) =

{∫
[0,1]m

∣∣∣∣Vol(J(ax , x))− N(D ∩ J(ax , x))

n

∣∣∣∣2 dx
}1/2

.

The (squared) centered L2-discrepancy is defined by

CD(D) =

 ∑
u⊆{1:m}

|Disc(Du)|2
 ,

where u is a subset of {1, 2, . . . ,m} and Du is the projected design of D
onto dimensions indexed by the elements of u.
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Uniform Designs and Centered L2-Discrepancy

The centered L2-discrepancy has an analytical expression. For D = (zik)
over [0, 1]m:

CD(D) =
1

n2

n∑
i=1

n∑
j=1

m∏
k=1

(
1 +

1

2
|zik |+

1

2
|zjk | −

1

2
|zik − zjk |

)
−2

n

n∑
i=1

m∏
k=1

(
1 +

1

2
|zik | −

1

2
|zik |2

)
+

(
13

12

)m

.

For a design D = (xij) with s levels 1, 2, . . . , s, use zij = (xij − 0.5)/s.

Uniform designs may have poor projections in lower dimensional
spaces (Zhou et al., 2013).

There are other types of discrepancy measures, but they have similar
formulas and problems.

R package: UniDOE
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Uniform Projection Designs

Focus on 2-dim projection uniformity

Uniform projection criterion (Sun, Wang and Xu, 2019, Annals of
Statistics)

ϕ(D) =
2

m(m − 1)

∑
|u|=2

CD(Du), (1)

where the summation is over all possible 2-column subsets u.

A design achieving the minimum ϕ(D) value is a uniform projection
design (UPD).

R package UniPro and Meta4Design
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Why we need a new criterion? Four 25× 3 LHDs

Uniform D1 Maximin D2 MaxPro D3 UPD D4
18 16 14 0 2 20 0 6 12 2 3 2
19 9 0 1 20 10 1 15 5 4 5 13
11 1 2 2 7 12 2 18 21 0 11 9
16 20 3 3 13 21 3 9 0 3 16 17
20 22 12 4 9 3 4 12 17 1 22 22
14 7 10 5 19 0 5 0 10 8 0 7
4 17 1 6 23 19 6 21 3 6 8 19

12 12 7 7 14 13 7 4 19 9 14 24
10 15 24 8 0 7 8 23 13 5 18 4
22 14 5 9 3 17 9 11 7 7 20 11
2 21 22 10 21 8 10 14 24 12 2 21

15 11 21 11 8 9 11 3 1 10 9 0
1 5 4 12 6 1 12 8 15 14 12 14
3 10 11 13 18 23 13 19 9 13 15 6

23 3 8 14 15 2 14 1 22 11 24 15
0 13 15 15 10 18 15 7 4 17 4 10
8 23 6 16 24 16 16 16 18 15 7 5
7 8 18 17 16 11 17 24 6 19 10 18
9 4 13 18 1 15 18 13 11 16 19 20
6 19 9 19 22 4 19 22 23 18 23 1

24 18 19 20 4 6 20 2 14 21 1 16
21 6 23 21 5 24 21 17 2 23 6 23
13 24 17 22 12 5 22 10 20 22 13 3
17 0 16 23 17 22 23 5 8 20 17 12
5 2 20 24 11 14 24 20 16 24 21 8
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Bivariate projections of Uniform D1 and Maximin D2

Note: ‘X’ means that there are no points in the grid.
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Bivariate projections of MaxPro D3 and UPD D4

Note: ‘X’ means that there are no points in the grid.

46 / 60



Some Theoretical Results

Theorem 3

For a balanced (n, sm) design D and any 2 ≤ k ≤ m,

1(m
k

) ∑
|u|=k

ϕ(Du) = ϕ(D),

where Du is the projected design onto k factors indexed by u.

UPDs have good space-filling properties not only in two dimensions,
but also in all dimensions.
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Some Theoretical Results

Theorem 4

For a balanced (n, sm) design D = (xik),

ϕ(D) =
g(D)

4m(m − 1)n2s2
+ C (m, s), (2)

where

g(D) =
n∑

i=1

n∑
j=1

d2
1 (xi , xj)−

2

n

n∑
i=1

( n∑
j=1

d1(xi , xj)

)2

(3)

ϕ(D) is a function of pairwise L1-distances of the rows of D.

ϕ(D) can be efficiently computed in O(n2m) operations.

An equidistant design under the L1-distance is a UPD (Sun, Wang,
Xu 2019).
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Application: Design and Modeling Comparison

A 3-drug combination experiment on lung cancer (Al-Shyoukh et
al. 2011; Xiao, Wang and Xu 2019).

A 512-run and 8-level full factorial design to study 3 drugs.

The response was the ATP level of the cells after the drug treatments.

Kriging model with noise: y(x) = µ+ Z (x) + ϵ

Table 1: Comparison of 1000×MSE for different models and designs

Normal Cell Cancer Cell
D512 RD80 MPD25 UPD25

Kriging 0.002 0.21 0.62 0.22
NN 0.37 1.28 3.12 1.79
Polynomial 0.48 1.16 3.22 0.74

D512 RD80 MPD25 UPD25

0.003 0.37 1.87 0.21
0.47 1.57 4.10 2.93
2.98 6.77 10.04 4.42

RD80: Random 80-run design; MPD25: MaxPro 25-run designs.
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Comparison of projection properties

We compare four LHD(19, 18)’s:

1 The uniform design is from the uniform design website(UD)

2 The maximin distance design via R package SLHD (Ba, Myers and
Brenneman, 2015, Technometrics).

3 The maximum projection (MaxPro) design were constructed via R
package MaxPro (Joseph et al., 2015, Biometrika)

4 The uniform projection design (UPD): Eb.

We ran R commands maximinSLHD (with slice parameter t = 1) and
MaxProLHD 100 times with default settings and chose the best designs.
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Comparison of projection properties

Four criteria will be used in the comparison:

1 minimum Euclidean distance

2 maximum projection criterion (Joseph et al. 2015)

ψ(D) =

 1(n
2

) n−1∑
i=1

n∑
j=i+1

1∏m
k=1(xik − xjk)2


1/m

3 relative maximum centered L2-discrepancy (CD)

4 maximum correlation ρave .

For each k , we evaluate all
(m
k

)
projected designs and determine the worst

projection with respect to four criteria.
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Figure 5: (a) minimum Euclidean distance (the larger the better), (b) maximum ψ(D)
(the smaller the better), (c) relative maximum CD (the smaller the better), and (d)
maximum ρave (the smaller the better).
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Simulation: The Borehole Simulation

Consider the 8-dim borehole function

f (x1, . . . , x8) =
2πx1(x5 − x8)

log(x6/x2)[1 +
2x3x1

log(x6/x2)x22 x7
+ x1

x4
]
.

Fit a Kriging model to approximate the borehole function

y(x) = µ+ Z (x),

where Z (x) is a Gaussian process with mean 0 and covariance function

cov{Y (x + h),Y (x)} = σ2
8∏

j=1

K (hj ; θj),

K (h; θ) =

(
1 +

√
5h

θ
+

5h2

3θ2

)
exp

(
−
√
5h

θ

)
K () is the Matérn correlation function with ν = 2.5.
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Simulation: Designs

Consider nine 121× 8 designs:

Three 11-level factorial designs (orthogonal arrays):

A regular design D
Level permuted regular design Db = D + b (mod 11) (Tang and Xu,
2014)
Level permuted nonregular design Eb = W (Db) (Wang and Xu, 2021)

Six LHDs (with 121 levels):

three LHDs obtained from the 11-level designs by rotation (Steinberg
and Lin, 2006; Wang and Xu, 2021)
randomly generated LHD
maximin-distance LHD (Ba, Myers, and Brenneman, 2015)
repeated 100 times, selected the best, each 6 secs, total 10 mins

maximum-projection LHD (Joseph, Gul, and Ba, 2015)
repeated 100 times, selected the best, each 7 secs, total 12 mins
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Simulation: Data generation

Scale each variable to [0,1]: x = (x1, . . . , x8) is scaled to [0, 1]8

Generate nine data sets based on the nine designs

Build a Kriging model for each data set.

Testing data: 5000 uniformly distributed points in [0, 1]8

MSE for the predicted responses at the testing data points are
examined

MSE =
1

5000

5000∑
i=1

(yi − ŷi )
2,

where yi is the true response and ŷi is the predicted response from
the fitted model at the ith testing data point

The simulation process is repeated for 1000 times.
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Simulation: Result (Comparing 121× 8 Designs)

Reg Linear Perm Proposed LHD Reg LHD Linear Perm LHD proposed Rand Maximin MaxPro

1
2

3
4

logarithm of MSE

Designs matter!

Multilevel designs are as good as LHDs!
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Simulation: Comparing 64× 15 LHDs

random (lhd), maximin, MaxPro, uniform (ud), and strong orthogonal
arrays (soa15lhd, soa20lhd)

Designs matter: Strong orthogonal arrays are better (Shi and Xu
2023+, JASA).
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Summary on Space-Filling Designs

Latin hypercube design:

Good 1-dimensional projections, but might not be space-filling in p
dimensions.

Orthogonal array-based designs:
Good space-filling properties in projections in low dimensions.

miniMax/Maximin distance design:

Run size flexibility and good space-fillingness in p dimensions, but bad
projections.

Maximin Latin Hypercube design:

Good space-fillingness in p dimensions and uniform projections in a
single dimension.

Maximum projection design:

Good space-filling properties in projections to all subsets of factors.

Uniform designs, uniform projection designs:
Better space-filling properties in projections to all subsets of factors.

58 / 60



Summary

The Gaussian Process model provides an efficient framework for
modeling.

The role of the regression part ?
Choice of correlation function – large vs. small correlation ?

There are several types of space-filling designs

which type is the best in terms of prediction or optimization?

Construction of space-filling designs

Meta-heuristic algorithms: simulated annealing, threshold accepting,
genetic algorithms — flexible, but not efficient for constructing large
designs
Theoretical methods such as good lattice point designs (Wang, Xiao
and Xu 2018 AOS) — guaranteed efficiency, but not flexible

Some new developments (Tian and Xu 2022 Biometrika, 2024
JRSSB; Shi and Xu 2023+ JASA)

space-filling hierarchy principle
minimum-aberration type space-filling criterion
How to construct/search space-filling designs?
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