Design and Analysis of Computer Experiments

Hongquan Xu UCLA Department of Statistics November 2020

Outline

Introduction

- 2 Modeling Computer Experiments
- Obsigns for Computer Experiments
- Uniform Projection Designs
- **5** Construction Methods

What are computer experiments?

- Computer experiments are increasingly being used to explore the behavior of complex physical systems.
- A computer model is a large computer code that implements a complex mathematical model of a physical process.
 e.g. simultaneous differential solver, finite element analysis computational

e.g., simultaneous differential solver, finite element analysis computational fluid dynamics.

Computer Experiments

A typical engineering model (Page 1 of 3)

 $\rho_{\phi} A_{\phi} \frac{\partial^2 w}{\partial t^2} + E_{\phi} I_{\phi} \frac{\partial^4 w}{\partial t^4}$ $+ \left[\left(p_1, A_1 + p_2, A_1 \right) \frac{\partial^2 w}{\partial x_1} + p_1, A_1 \left(\frac{I_2 + I_1}{2} \right) \left(\frac{\partial^2 u_2}{\partial x_1 - x_1^2} - \frac{I_2 + I_1}{2} \frac{\partial^4 w}{\partial x_1 - x_1 - x_1^2} + \frac{I_1}{2} \frac{\partial^3 \beta}{\partial x_2 - x_1^2} \right) \right]$ $+\rho_{\epsilon}\mathcal{A}_{\epsilon}a(\frac{\partial^{2}u_{k}}{a-z_{\epsilon}}-a\frac{\partial^{4}w}{a-z_{k}}+t,\frac{\partial^{2}\beta}{a+z_{\epsilon}})+C_{11}^{0}f_{\epsilon}\frac{\partial^{4}w}{\partial x^{4}}-E_{\epsilon}\mathcal{A}_{\epsilon}a(\frac{\partial^{2}u_{k}}{\partial x^{4}}-a\frac{\partial^{4}w}{\partial x^{4}}+t,\frac{\partial^{2}\beta}{\partial x^{4}})][\mathcal{H}(x-x_{1})-\mathcal{H}(x-x_{1})]$ (1) + $(p, A, (\frac{l_{b}+l_{i}}{2})(\frac{\partial^{2}u_{b}}{2} - \frac{l_{b}+l_{i}}{2}, \frac{\partial^{2}w}{2} + \frac{l_{i}}{2}, \frac{\partial^{2}\beta}{2}) + p_{e}A_{e}a(\frac{\partial^{2}u_{b}}{2} - a, \frac{\partial^{2}w}{2} + l_{i}, \frac{\partial^{2}\beta}{2})$ $+2C_{11}^{0}I_{\epsilon}\frac{\partial^{3}w}{\partial x^{3}}-2E_{\epsilon}A_{\epsilon}a(\frac{\partial^{2}u_{\delta}}{\partial x^{3}}-a\frac{\partial^{3}w}{\partial x^{3}}+I_{\epsilon}\frac{\partial^{2}\beta}{\partial x^{2}})[\delta(x-x_{1})-\delta(x-x_{2})]$ $+ [C_{11}^{0}I, \frac{\partial^{2}w}{\partial x^{2}} - E, A, aI\frac{\partial u_{5}}{\partial x^{2}} - a\frac{\partial^{2}w}{\partial x^{2}} - I, \frac{\partial\beta}{\partial x}) + bd_{1I}E, aV(t)][\delta(x - x_{1}) - \delta(x - x_{2})] = f(x, t)$ Podo dius - Eodo dius $+(p_1,d_1(\frac{\partial^2 u_5}{\partial u_2}-\frac{t_5+t_1}{2},\frac{\partial^2 w}{\partial u_2}+\frac{t_1}{2},\frac{\partial^2 \beta}{\partial u_1})+p_1d_1(\frac{\partial^2 u_5}{\partial u_2}-\alpha\frac{\partial^2 w}{\partial u_2}+t,\frac{\partial^2 \beta}{\partial u_2})$ (2) $-E_{\varepsilon}A_{\varepsilon}(\frac{\partial^{2}u_{3}}{\partial x}-a\frac{\partial^{2}w}{\partial x}+i,\frac{\partial^{2}\beta}{\partial x^{2}})[H(x-x_{1})-H(x-x_{2})]$ $+\left(-E_{e}A_{e}\left(\frac{\partial u_{s}}{\partial x}-a\frac{\partial^{2}w}{\partial x}+i,\frac{\partial\beta}{\partial x}\right)+bd_{1}E_{e}V(i)\right]\left[\delta\left(x-x_{1}\right)-\delta\left(x-x_{2}\right)\right]=0$ $\left[\rho, A, \frac{t_i}{2} \left(\frac{\partial^2 u_b}{\partial x_i^2} - \frac{t_b + t_i}{2}, \frac{\partial^3 w}{\partial x_i^2} + \frac{t_i}{2} \frac{\partial^2 \beta}{\partial x_i^2}\right) + \rho_e A_e t_i \left(\frac{\partial^2 u_b}{\partial x_i^3} - \sigma \frac{\partial^3 w}{\partial x_i^2} + t_i \frac{\partial^2 \beta}{\partial x_i^3}\right)$ $+A_{s}(G\circ\beta)-E_{s}A_{s}t_{s}(\frac{\partial^{2}u_{s}}{\partial x^{1}}-a\frac{\partial^{3}w}{\partial x^{1}}+t_{s}\frac{\partial^{2}\beta}{\partial x^{2}})][H(x-x_{1})-H(x-x_{2})]$ (3)

Figure 1: Computer experiment

Characteristics of computer experiments

- Mostly deterministic (lack of random error)
- May take hours or even days to produce a single output
- Many input variables
- The performance of the predictor depends upon the choice of the training data (design).

Principles in traditional DOE are irrelevant

- Replication
- Blocking
- Randomization

Modeling Computer Experiments: Kriging

For $x \in \mathcal{R}^m$, treat the deterministic response y(x) as a realization of a stochastic process

$$Y(x) = \sum_{j=1}^{k} \beta_j f_j(x) + Z(x),$$

where $f_j(x)$ are known functions, β_j are unknown parameters and $Z(\cdot)$ is a **Gaussian process** with mean 0 and covariance

$$\operatorname{cov}\left(Z(w),Z(x)\right)=\sigma^2R(w,x).$$

• This is the Kriging model used in spatial statistics.

• Also called Gaussian process model in Machine Learning.

R packages: DiceKriging, kergp, etc.

Prediction

Given a design $S = \{s_1, \ldots, s_n\}$ and data $y_S = (y(s_1), \ldots, y(s_n))^T$. Consider the linear predictor

$$\hat{y}(x) = c(x)^T y_S.$$

Frequentists replace y_S by the random vector $Y_S = \{Y(s_1), \ldots, Y(s_n)\}^T$, and compute the MSE.

The **Best Linear Unbiased Predictor** (BLUP): choose c(x) to minimize

$$MSE[\hat{y}(x)] = E[c(x)^T Y_S - Y(x)]^2$$

subject to

$$E[\hat{y}(x)] = E[c(x)^T Y_S] = E[Y(x)]$$

BLUP

Kriging model:
$$Y(x) = f(x)^T \beta + Z(x)$$
, where
 $f(x) = (f_1(x), \dots, f_k(x))^T, \beta = (\beta_1, \dots, \beta_k)^T$

In matrix form:

$$Y_{S} = F\beta + Z, \text{ cov} (Z) = \sigma^{2}R$$
$$F = (f(s_{1}), \dots, f(s_{n}))^{T} = (f_{j}(s_{i}))_{n \times k}$$
$$R = (R(s_{i}, s_{j}))_{n \times n}$$
$$r(x) = (R(s_{1}, x), \dots, R(s_{n}, x))^{T}$$

The generalized LS estimate and BLUP are

$$\hat{\beta} = (F^T R^{-1} F)^{-1} F^T R^{-1} Y_S$$
$$\hat{y}(x) = f(x)^T \hat{\beta} + r(x)^T R^{-1} (Y_S - F \hat{\beta})$$

The GP interpolates the observed data: $\hat{y}(s_i) = y(s_i)$ for $s_i \in S$.

э

Correlation Functions

The correlation R(w, x) has to be specified. Commonly used functions:

$$R(w, x) = \prod \exp(-\theta_j |w_j - x_j|^{p_j}), \ 0 < p_j \le 2,$$

$$R(w, x) = \prod K(|w_j - x_j|; \theta_j)$$

where K() is Matérn correlation function with parameter $\nu = 5/2$.

$$\mathcal{K}(h; heta) = \left(1 + rac{\sqrt{5}h}{ heta} + rac{5h^2}{3 heta^2}
ight) \exp\left(-rac{\sqrt{5}h}{ heta}
ight).$$

The correlation parameters (e.g., θ_j , p_j) need to be specified or estimated (by MLE or cross validation)

Given the correlation parameters, the MLEs are

$$\hat{\beta} = \text{generalized I.s. estimate}$$

 $\hat{\sigma}^2 = \frac{1}{n} (Y_S - F\hat{\beta})' R^{-1} (Y_S - F\hat{\beta})$

Examples of Matérn $\nu = 5/2$ correlation functions

11 / 40

A toy example: Kriging

Data: $y = \sin(2x)/(1+x)$; Kriging: $Y = \mu + Z(x)$.

A toy example: Kriging vs Polynomial models

Data: $y = \sin(2x)/(1+x)$; Kriging: $Y = \mu + Z(x)$.

Designs for Computer Experiments

- Constructing a "good" design is crucial for the success of a computer experiment.
- A "good" design should be space-filling (i.e., cover as much space as possible), and have good projection properties.
 - Latin hypercube designs (LHD) [McKay et al. (1979)]
 - Maximin and minimax distance designs [Johnson et al. (1990)]
 - Orthogonal Array-based designs [Owen (1992), Tang (1993), He and Tang (2013, 2014)]
 - Uniform designs [Fang et al. (2006)]
 - Maximum projection designs [Joseph et al. (2015)]
 - Uniform projection designs [Sun et al. (2019)]
- Optimality criteria: maximin distance, minimax distance, column-orthogonality, uniformity (discrepancy) etc.
- R packages: lhs, LHD, SLHD, UniDOE, MaxPro, etc.

Design Criteria

Let $\hat{y}(x)$ be BLUE of y(x) given a design $S = \{s_1, \dots, s_n\}$. • Integrated Mean Squared Error (IMSE)

$$\min_{S}: \int_{\mathcal{X}} \mathsf{MSE}\left[\hat{y}(x)\right] \phi(x) dx,$$

where $\phi(x)$ is a given weight function.

• Maximum Mean Squared Error (MMSE)

$$\min_{S}: \max_{x \in \mathcal{X}} \mathsf{MSE}\left[\hat{y}(x)\right].$$

• Entropy (Gaussian process)

$$\max_{S}: \det(R) = \det(R(s_i, s_j)).$$

• Maximin distance criterion:

$$\max_{S}: \min_{i < j} d(s_i, s_j)$$

Figure 2: Maximin LHD (left) and Minimax LHD (right) with n = 7 and m = 2

Maximin distance designs

• For an
$$(n, s^m)$$
 design $D = (x_{ik})_{n \times m}$,

$$d_p(x_i, x_j) = \sum_{k=1}^m |x_{ik} - x_{jk}|^p,$$

• Define the L_p -distance of D as

$$d_p(D) = \min\{d_p(x_i, x_j), 1 \le i < j \le n\}$$

- Maximin distance design: maximize $d_p(D)$ among all designs
- Most constructions are based on stochastic algorithms:
 - Morris and Mitchell (1995), Joseph and Hung (2008), Ba, Myers and Brenneman (2015, R package SLHD), etc.
 - Flexible but are not effective for large designs.
- Low-dimensional projections may not be space-filling.
 - Saturated $OA(n, 2^m)$'s are maximin distance designs when m = n 1 (Xu 1999).

Uniform designs

Idea: choose design points from the design region with empirical distribution as "uniform" as possible (Fang et al, 2006).

Uniform Designs and Centered L₂-Discrepancy

For an $n \times m$ design D over $[0, 1]^m$,

$$\mathrm{Disc}(\mathrm{D}) = \left\{ \int_{[0,1]^m} \left| \mathrm{Vol}(\mathrm{J}(\mathrm{a}_x,x)) - \frac{\mathrm{N}(\mathrm{D} \cap \mathrm{J}(\mathrm{a}_x,x))}{n} \right|^2 \mathrm{d}x \right\}^{1/2}$$

The (squared) centered L_2 -discrepancy is defined by

$$\mathrm{CD}(\mathrm{D}) = \left\{ \sum_{\mathrm{u} \subseteq \{1:\mathrm{m}\}} \left| \mathrm{Disc}(\mathrm{D}_{\mathrm{u}}) \right|^2
ight\},$$

where D_{u} is the projected design of D onto dimensions indexed by the elements of $\mathrm{u}.$

• Uniform designs may have poor projections in lower dimensional spaces.

Uniform Projection Designs: A New Class of Space-Filling Designs

- Focus on 2-dim projection uniformity
- Uniform projection criterion (Sun, Wang and Xu, 2019, Annals of Statistics)

$$\phi(D) = \frac{2}{m(m-1)} \sum_{|u|=2} CD(D_u),$$
(1)

- A design achieving the minimum φ(D) value is a uniform projection design (UPD).
- The discrepancy has an analytical expression; for $D = (z_{ik})$ over $[0, 1]^m$:

$$CD(D) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \prod_{k=1}^m \left(1 + \frac{1}{2} |z_{ik}| + \frac{1}{2} |z_{jk}| - \frac{1}{2} |z_{ik} - z_{jk}| \right) \\ - \frac{2}{n} \sum_{i=1}^n \prod_{k=1}^m \left(1 + \frac{1}{2} |z_{ik}| - \frac{1}{2} |z_{ik}|^2 \right) + \left(\frac{13}{12} \right)^m.$$

Why we need a new criterion? Four 25×3 LHDs

Uniform D_1			Ma	Maximin D_2			MaxPro D_3				UPD D4		
18	16	14	0	2	20		0	6	12	-	2	3	2
19	9	0	1	20	10		1	15	5		4	5	13
11	1	2	2	7	12		2	18	21		0	11	9
16	20	3	3	13	21		3	9	0		3	16	17
20	22	12	4	9	3		4	12	17		1	22	22
14	7	10	5	19	0		5	0	10		8	0	7
4	17	1	6	23	19		6	21	3		6	8	19
12	12	7	7	14	13		7	4	19		9	14	24
10	15	24	8	0	7		8	23	13		5	18	4
22	14	5	9	3	17		9	11	7		7	20	11
2	21	22	10	21	8		10	14	24		12	2	21
15	11	21	11	8	9		11	3	1		10	9	0
1	5	4	12	6	1		12	8	15		14	12	14
3	10	11	13	18	23		13	19	9		13	15	6
23	3	8	14	15	2		14	1	22		11	24	15
0	13	15	15	10	18		15	7	4		17	4	10
8	23	6	16	24	16		16	16	18		15	7	5
7	8	18	17	16	11		17	24	6		19	10	18
9	4	13	18	1	15		18	13	11		16	19	20
6	19	9	19	22	4		19	22	23		18	23	1
24	18	19	20	4	6		20	2	14		21	1	16
21	6	23	21	5	24		21	17	2		23	6	23
13	24	17	22	12	5		22	10	20		22	13	3
17	0	16	23	17	22		23	5	8		20	17	12
5	2	20	24	11	14		24	20	16		24	21	8

イロト 不得 トイヨト イヨト 二日

Bivariate projections of Uniform D_1 and Maximin D_2

Note: 'X' means that there are no points in the grid.

Bivariate projections of MaxPro D_3 and UPD D_4

Theorem 1

For a balanced (n, s^m) design D and any $2 \le k \le m$,

$$\frac{1}{\binom{m}{k}}\sum_{|u|=k}\phi(D_u)=\phi(D),$$

where D_u is the projected design onto k factors indexed by u.

• UPDs have good space-filling properties not only in two dimensions, but also in all dimensions.

Theorem 2

For a balanced (n, s^m) design $D = (x_{ik})$,

$$\phi(D) = \frac{g(D)}{4m(m-1)n^2s^2} + C(m,s), \qquad (2)$$

where

$$g(D) = \sum_{i=1}^{n} \sum_{j=1}^{n} d_1^2(x_i, x_j) - \frac{2}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} d_1(x_i, x_j) \right)^2$$
(3)

• $\phi(D)$ is a function of pairwise L_1 -distances of the rows of D.

• An equidistant design under the L_1 -distance is a UPD.

Application: Design and Modeling Comparison

- A 3-drug combination experiment on lung cancer (Al-Shyoukh et al. 2011; Xiao, Wang and Xu 2019).
- A 512-run and 8-level full factorial design to study 3 drugs.
- The response was the ATP level of the cells after the drug treatments.
- Kriging model with noise: $y(x) = \mu + Z(x) + \epsilon$

		Cancer Cell						
	D ₅₁₂	RD_{80}	MPD_{25}	UPD ₂₅	D ₅₁₂	RD_{80}	MPD_{25}	UPD ₂₅
Kriging	0.002	0.21	0.62	0.22	0.003	0.37	1.87	0.21
NN	0.37	1.28	3.12	1.79	0.47	1.57	4.10	2.93
Polynomial	0.48	1.16	3.22	0.74	2.98	6.77	10.04	4.42

Table 1: Comparison of 1000×MSE for different models and designs

RD₈₀: Random 80-run design; MPD₂₅: MaxPro 25-run designs.

We compare four LHD(19, 18)'s:

- The uniform design is from the uniform design website(UD)
- The maximin distance design via R package SLHD (Ba, Myers and Brenneman, 2015, Technometrics).
- The maximum projection (MaxPro) design were constructed via R package MaxPro (Joseph et al., 2015, Biometrika)
- The uniform projection design (UPD): E_b .

We ran R commands maximinSLHD (with slice parameter t = 1) and MaxProLHD 100 times with default settings and chose the best designs.

Four criteria will be used in the comparison:

- Image: March Ma
- maximum projection criterion (Joseph et al. 2015)

$$\psi(D) = \left\{ \frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{\prod_{k=1}^{m} (x_{ik} - x_{jk})^2} \right\}^{1/m}$$

- \bigcirc relative maximum centered L_2 -discrepancy (CD)
- maximum correlation ρ_{ave} .

For each k, we evaluate all $\binom{m}{k}$ projected designs and determine the worst projection with respect to four criteria.

Figure 3: (a) minimum Euclidean distance (the larger the better), (b) maximum $\psi(D)$ (the smaller the better), (c) relative maximum CD (the smaller the better), and (d) maximum ρ_{ave} (the smaller the better).

Construction Methods

- Good Lattice Point (GLP) designs are LHDs and often used to construct uniform designs (Fang and Wang, 1994).
- Let $h_1 < \ldots < h_p$ be p integers (from 1 to n) coprime to n

$$D = (x_{ij})$$
 with $x_{ij} = i \times h_j \pmod{n}$

An example n = 7:

with d(D) = 12(while $d_{upper} = 16$)

GLP designs

Results from Zhou and Xu (2015, Biometrika)

• An upper bound (for L_1 -distance): For any $N \times n$ LHD D,

$$d(D) \leq d_{upper} = \lfloor (N+1)n/3
floor,$$

where $\lfloor x \rfloor$ is the integer part of x.

• Obtain the distances for four classes of GLP designs.

- For an odd prime *n*, the $n \times (n-1)$ GLP design has d(D) = (n+1)(n-1)/4.
- the upper bound is $d_{upper} = (n+1)(n-1)/3$
- The $d_{eff}(D) = d(D)/d_{upper}$ for a GLP design is 75%.
- A surprising result: any linear level permutation of any column does not decrease the distance d(D).

GLP + Linear Permutation

Example: n = 7: Total $7^6 = 117,649$ linear permutations.

• consider only 7 simple permutations: $D_i = D + i \mod n$

$$D \longrightarrow D_1 = D + 1 \mod n$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 3 & 5 \\ 3 & 6 & 2 & 5 & 1 & 4 \\ 4 & 1 & 5 & 2 & 6 & 3 \\ 5 & 3 & 1 & 6 & 4 & 2 \\ 6 & 5 & 4 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 3 & 4 & 5 & 6 & 0 \\ 3 & 5 & 0 & 2 & 4 & 6 \\ 4 & 0 & 3 & 6 & 2 & 5 \\ 5 & 2 & 6 & 3 & 0 & 4 \\ 6 & 4 & 2 & 0 & 5 & 3 \\ 0 & 6 & 5 & 4 & 3 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$d(D) = 12 \qquad d(D_1) = 13$$

• After linear permutations, d_{eff} is about 90% for large *n*.

How About Nonlinear Permutations?

• Given an integer n, for $x = 0, \ldots, n-1$,

$$W(x) = \left\{ egin{array}{ll} 2x, & {
m for} \ 0 \leq x < n/2; \ 2(n-x)-1, & {
m for} \ n/2 \leq x < n. \end{array}
ight.$$

• The W is a permutation of $\{0, \ldots, n-1\}$.

n = 7

The W has been useful in

- Latin squares, Williams (1949) 1
- Orthogonal designs, Bailey (1982), 2 Edmondson (1993)
- 3 Orthogonal LHDs under a second-order Fourier model. Butler (2001)

GLP + Williams Transformation

d(D) = 12

Algorithm (Wang, Xiao and Xu, 2018, Annals of Statistics) Step 1. Generate an $n \times p$ GLP design D. Step 2. For b = 0, ..., n - 1, generate $D_b = D + b \pmod{n}$. Step 3. Let $E_b = W(D_b)$. Step 4. Find the best E_b which maximizes $d(E_b)$. Example: n = 7, b = 1

 $d(D_1) = 13$

34 / 40

 $d(E_1) = 16 (= d_{upper})$

Comparison of Various $n \times (n-1)$ LHDs

35 / 40

Key Result

Let

$$b = W^{-1}\left(\frac{n-1}{2} \pm c\right)$$

where $c = \lfloor \sqrt{(n^2 - 1)/12} \rfloor$.

Theorem 3

Given a prime n and p = n - 1, such defined b leads the best E_b , with

$$d_{eff}(E_b) \geq 1 - 2/\sqrt{3(n^2 - 1)}.$$

As $n \to \infty$, $d_{eff}(E_b) \to 1$.

- No need for computer search: $D \rightarrow D_b \rightarrow E_b = W(D_b)$
- Guaranteed efficiency
- Larger *n*, better design

For any $n \times p$ design $D = (x_{ij})$, define

$$ho_{\mathsf{ave}}(D) = rac{\sum_{j
eq k} |
ho_{jk}|}{
ho(
ho-1)},$$

where ρ_{ik} is the correlation between columns *j* and *k* of *D*.

Comparison of ρ_{ave} for $n \times (n-1)$ Designs

Method I: $\rho_{ave}(E_b) < 2/(n-2)$

Summary

- Many available algorithms for constructing space-filling designs, but not efficient for constructing large designs
- A breakthrough Wang, Xiao and Xu (2018) constructed maximin distance designs via good lattice points and a nonlinear transformation without computer search.
 - Large distance efficiencies: $d_{eff} = 1 \; ({
 m or} o 1)$
 - Low average correlation $\rho_{\textit{ave}} \rightarrow 0$ as $\textit{n} \rightarrow \infty$
 - Asymptotically optimal under the uniform projection criterion.
- A new class of space-filling designs Uniform projection designs
 - suitable when only a subset of the input variables are active.
 - good space-filling not only in two dimensions, but also in all dimensions.
 - equivalent to maximin L_1 -distance criterion if L_1 -equidistant designs exist.
 - robust under other design criteria.
- There are still many open problems to be investigated.

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Selected References

- Fang, K. T., Li, R. Z. and Sudjianto, A. (2006). *Design and Modeling for Computer Experiments*. Chapman and Hall/CRC, New York.
- Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance designs. J. Statist. Plan. Infer. 26, 131–48.
- Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of computer experiments. *Statistical science*, 4, 409–423.
- Santner, T. J., Williams, B. J., and Notz, W. (2003). The design and analysis of computer experiments. Springer.
- Sun, F., Wang, Y. and Xu, H. (2019), "Uniform Projection Designs," Annals of Statistics, 47, 641–661.
- Wang, L., Xiao, Q. and Xu, H. (2018), "Optimal Maximin L1-distance Latin Hypercube Designs Based on Good Lattice Point Designs," Annals of Statistics, 46, 3741-3766.
- Xiao, Q., Wang, L. and Xu, H. (2019). "Application of Kriging Models for a Drug Combination Experiment on Lung Cancer," *Statistics in Medicine*, 38, 236–246.
- Zhou, Y. D., and Xu, H. (2015). Space-filling properties of good lattice point sets. *Biometrika*, 102, 959–966.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで