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Linear models where the response is a function and the predictors are vectors are useful in analyzing data
from designed experiments and other situations with functional observations. Residual analysis and diag-
nostics are considered for such models. Studentized residuals are defined, and their properties are studied.
Chi-squared quantile–quantile plots are proposed to check the assumption of Gaussian error process and
outliers. Jackknife residuals and an associated test are proposed to detect outliers. Cook’s distance is de-
fined to detect influential cases. The methodology is illustrated by an example from a robust design study.
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1. INTRODUCTION

Functional data analysis becomes increasingly popular as
modern technology allows relatively easy access to data col-
lected continuously over a period of time. Because only a finite
number of observations are recorded, traditional multivariate
analysis or longitudinal data analysis strategies may be applied.
However, it is often more natural and convenient to think of,
model, and analyze the observed functional data as single ele-
ments, rather than merely a sequence of individual (repeated)
observations, as pointed out by Ramsay and Dalzell (1991).
Ramsay and Silverman (2002, 2005) provided introductions to
various issues on functional data analysis and applications in
criminology, meteorology, medicine, and many other fields.

Linear models are useful in describing and predicting re-
sponses by a set of predictors. In a functional linear model, the
response, the predictors, or both could be functions. In this ar-
ticle we assume that Y(t) = Xβ(t) + ε(t), where the responses
are functions and the predictors are scalar vectors. Such lin-
ear models, including functional analysis of variance as a spe-
cial case, have been studied by many authors (see, e.g., Ramsay
and Silverman 2005; Faraway 1997; Fan and Lin 1998; Eubank
2000; Shen and Faraway 2004). Ramsay and Silverman (2005)
laid out some general ideas on estimation and provided prelim-
inary methods for inference. Faraway (1997) pointed out the
inappropriateness of traditional multivariate test statistics, pro-
posed a bootstrap-based testing method, and discussed residual
analysis for such models. Fan and Lin (1998) proposed adap-
tive transform-based tests for functional analysis of variance
models. Eubank (2000) considered tests for a constant mean
function using a cosine basis function approach. Shen and Far-
away (2004) recently proposed a functional F test for compar-
ing nested functional linear models. We point out that much
data from designed experiments fit well with such functional
linear models; for example, Nair, Taam, and Ye (2002) used
functional linear models to analyze some data from robust de-
sign studies.

Outliers and influential cases are frequently found not only
in observational studies, but also in designed experiments. In-
cluding them in the analysis often leads to misleading conclu-
sions. However, diagnostics have been largely ignored for func-
tional linear models in the literature, most possibly due to lack

of proper tools. Because no formal procedures are available,
the current practice in functional regression analysis is to skip
diagnostics completely or to detect outliers visually; for exam-
ple, Faraway (1997) and Shen and Faraway (2004) removed an
obvious outlier from their data. The purpose of this article is to
formally define diagnostic statistics for functional linear regres-
sion models with fixed covariates and provide simple computa-
tional methods making it possible to automate the diagnostic
checking procedure.

In Section 2 we briefly review functional linear models and
a functional F test proposed by Shen and Faraway (2004). In
Section 3 we define studentized residuals for residual analy-
sis and propose chi-squared quantile–quantile (Q–Q) plots to
check the assumption of Gaussian error process and outliers.
We then define jackknife residuals and develop a formal test to
detect outliers. We also define Cook’s distance to detect influen-
tial cases. Formulas for easy computation of jackknife residuals
and Cook’s distance are given. We illustrate the methodology
with an example from a robust design study in Section 4. We
give concluding remarks in Section 5.

2. FUNCTIONAL LINEAR MODELS

Suppose that we have functional response data yi(t), i =
1, . . . ,n, t ∈ [a,b]. We are interested in building a regression
model for relating this response to a vector of predictors, xi =
(xi1, . . . , xip)

T . The model takes the familiar form

yi(t) = xT
i β(t) + εi(t), (1)

where β(t) = (β1(t), . . . ,βp(t))T are unknown parameter func-
tions and εi(t) is a Gaussian stochastic process with mean 0 and
covariance function γ (s, t). We assume that εi(·) and εj(·) are
independent for i "= j.

The unknown functions β(t) can be estimated by minimiz-
ing

∑n
i=1 ‖yi − xT

i β‖2, where ‖f ‖ = (
∫

f (t)2 dt)1/2 is the L2
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norm of function f = f (t). This minimization leads to the
least squares estimates β̂(t) = (XTX)−1XTY(t), where X =
(x1, . . . ,xn)

T is the usual n × p model matrix, whereas Y(t) =
(y1(t), . . . , yn(t))T is a vector of responses. The predicted (or fit-
ted) responses are ŷi(t) = xT

i β̂(t), and the residuals are ε̂i(t) =
yi(t)− ŷi(t). The residual sum of squares is rss = ∑n

i=1 ‖ε̂i‖2 =∑n
i=1

∫
ε̂i(t)2 dt.

An important inference problem is to compare two nested
linear models, ω and %, where ω has q parameter functions,
% has p parameter functions, and ω results from a linear re-
striction on the parameter functions of %. A naive approach
is to examine the pointwise t statistics on each time point for
testing β(t). This entails a serious problem with multiple com-
parison; if Bonferroni corrections were applied to the signifi-
cance level, then power would be significantly compromised,
because the responses are often highly correlated within each
unit. Faraway (1997) and Ramsey and Silverman (2005) pro-
posed bootstrap-based and permutation-based tests, which re-
quire intensive computation. As pointed out by Faraway (1997),
traditional multivariate test statistics are inappropriate because
of the influence of unimportant variation directions.

To overcome these issues, Shen and Faraway (2004) pro-
posed a functional F test. Define

F = (rssω − rss%)/(p − q)

rss%/(n − p)
, (2)

where rssω and rss% are residual sum of squares under mod-
els ω and %. When the null model is true, this functional F
statistic is distributed like a ratio of two linear combinations
of infinite independent chi-squared random variables, that is,
[(p − q)−1 ∑∞

k=1 λkχ
2
k (p − q)]/[(n − p)−1 ∑∞

k=1 λkχ
2
k (n − p)],

where λ1 ≥ λ2 ≥ · · · ≥ 0 are eigenvalues of the covariance
function γ (s, t), χ2

k (a) is a chi-squared random variable with a
degrees of freedom, and all of the chi-squared random variables
are independent of one another. The exact distribution is too
complicated for practical use. Shen and Faraway (2004) sug-
gested using the approximation of Satterthwaite (1941, 1946)
and showed that it can be effectively approximated by an ordi-
nary F distribution with degrees of freedom df 1 = λ(p − q) and
df 2 = λ(n − p), where

λ =
( ∞∑

k=1

λk

)2/ ∞∑

k=1

λ2
k (3)

was called the degrees-of-freedom adjustment factor by Shen
and Faraway (2004).

Model selection is an important issue in regression analysis.
Stepwise model selection requires an easy way to calibrate the
p value of a predictor in the full model, that is, to test βj(t) ≡ 0.
This can be done by fitting a reduced model without the jth
covariate and using the functional F test statistic

Fj = rssj − rss
rss/(n − p)

,

where rssj is the residual sum of squares under βj(t) ≡ 0. Shen
and Faraway (2004) showed that fitting the reduced model is
indeed unnecessary, because Fj can be derived from quantities
obtained directly from fitting of the full model, that is,

Fj = ‖β̂j‖2

(rss/(n − p))(XT X)−1
jj

=
∫

β̂2
j (t)dt

(rss/(n − p))(XT X)−1
jj

, (4)

where (XTX)−1
jj is the jth diagonal element of (XTX)−1, β̂j(t)

is the estimate of βj(t), and rss is the residual sum of squares
under the full model. The null distribution of the functional F
statistic Fj can be approximated by an ordinary F distribution
with degrees of freedom df 1 = λ and df 2 = λ(n − p), where λ

is the degrees-of-freedom adjustment factor defined in (3).
In practice, we do not observe yi(t) for all t, but only yi(tij). It

is desirable to collect data at fixed time points t1, . . . , tm for easy
interpretation and estimation. This occurs in many designed ex-
periments or studies. It is possible that the tij are different for
different i. In such a case, smoothing techniques can be used
to get fixed time points (see Faraway 1997). Here we simply
assume that the responses are observed on evenly spaced fixed
time points, t1, . . . , tm. Then (1) becomes

yi(tj) = xT
i β(tj) + ε(tj) for i = 1, . . . ,n, j = 1, . . . ,m,

and we can do pointwise estimation and regression. We re-
place the integration with summation and compute ‖ε̂i‖2 =∑m

k=1 ε̂i(tk)2/m and ‖β̂j‖2 = ∑m
k=1 β̂j(tk)2/m. We can estimate

the covariance function γ (s, t) by the empirical covariance
matrix #̂ = (

∑n
i=1 ε̂i(tj)ε̂i(tk)/(n − p))m×m and estimate the

degrees-of-freedom adjustment factor by

λ̂ = trace(#̂)2/ trace(#̂
2
). (5)

Large degrees of freedom (say n − p ≥ 30) are desired for a
good estimation of λ.

3. DIAGNOSTICS

Diagnostics are as important for functional regression as for
scalar regression. We use residuals to check various assump-
tions and to identify potential outliers and influential cases.

A straightforward approach is to perform pointwise diagnos-
tics. Pointwise residual plots and normal Q–Q plots are use-
ful for detecting certain violations of assumptions and outliers.
However, this approach ignores the fact that the residuals are
correlated over time t. In the spirit of the functional F test,
we develop diagnostic procedures for functional regression that
view each curve as a point in a functional space.

3.1 Studentized Residuals

Let H = X(XTX)−1XT be the hat matrix. The leverage hii
for the ith case is the ith diagonal element of H. For fixed t,
the standard results in scalar regression show that var(ε̂i(t)) =
(1 − hii)γ (t, t); therefore,

E(‖ε̂i‖2) = E
∫

ε̂i(t)2 dt =
∫

E(ε̂i(t)2)dt

= (1 − hii)

∫
γ (t, t)dt = (1 − hii)(

2,

where (2 =
∫

γ (t, t)dt is the total variance of the error process.
Because

∑n
i=1(1 − hii) = n − p, (̂2 = rss/(n − p) is an unbi-

ased estimate of (2. Thus we formally define (internally) L2
studentized residuals as

Si = ‖ε̂i‖√
1 − hii(̂

=

√∫
ε̂2

i (t)dt
√

1 − hii
√

rss/(n − p)
. (6)
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The L2 studentized residuals can be used in a similar way
as in scalar regression. For example, we can make a residuals
versus fitted plot by plotting Si against ‖ŷi‖. Such a plot can
be used to check the assumption of equal total variance and to
detect potential outliers. As in scalar regression, if the residuals
follow the same error process, then Si and ‖ŷi‖ are uncorrelated;
thus, we expect to see no relationship between Si and ‖ŷi‖.

To check the assumption of Gaussian process, we study the
distribution of the residuals. We have the following important
result, which can be proved similarly as theorem 1 of Shen and
Faraway (2004).

Theorem 1. If the error process is Gaussian, then ‖ε̂i‖2 is
distributed like a linear combination of infinite independent chi-
squared random variables with 1 degree of freedom, that is,

‖ε̂i‖2 ∼ (1 − hii)

∞∑

k=1

λkχ
2
k (1),

where λk are eigenvalues of the covariance function γ (s, t) and
all of the chi-squared random variables are independent of one
another.

This result indicates that ‖ε̂i‖2/(1 − hii) are identically dis-
tributed. Using the Satterthwaite approximation, ‖ε̂i‖2/(1−hii)

are approximately distributed as cχ2(λ), where c is a constant
and λ is the adjustment factor defined in (3). Therefore, to check
whether the errors are Gaussian, we estimate λ by (5) and make
a chi-squared Q–Q plot by plotting S2

i against quantiles of a chi-
squared distribution with λ̂ degrees of freedom. If the model
is correct and the Gaussian assumption holds, then the points
should be close to a straight line.

3.2 Outliers and Jackknife Residuals

As in the context of scalar regression, we define jackknife
residuals for functional regression to detect outliers. Suppose
that the ith case is a suspected outlier. We delete the ith case
from the data and use the remaining n − 1 cases to fit the linear
model. Let β̂(i)(t) be the estimate of β(t) and let rss(i) be the
residual sum of squares, computed without the ith case. Let X(i)
and Y(i)(t) be the X matrix and the Y(t) vector with the ith row
deleted. Then β̂(i)(t) = (XT

(i)X(i))
−1XT

(i)Y(i)(t). For the deleted

case, compute the fitted curve ỹi(t) = xT
i β̂(i)(t). Because the ith

case is not used in estimation, yi(t) and ỹi(t) are independent
for fixed t. The variance of yi(t) − ỹi(t) is

var(yi(t) − ỹi(t)) = γ (t, t) + γ (t, t)xT
i
(
XT

(i)X(i)
)−1xi.

If the ith case is not an outlier, then E(yi(t) − ỹi(t)) ≡ 0. Then

E‖yi − ỹi‖2 = E
∫

(yi(t) − ỹi(t))2 dt

=
∫

E(yi(t) − ỹi(t))2 dt

=
(
1 + xT

i
(
XT

(i)X(i)
)−1xi

)∫
γ (t, t)dt.

We estimate (2 =
∫

γ (t, t)dt by (̂2
(i) = rss(i)/(n−p−1). Thus

we define L2 jackknife (or externally studentized) residuals as

Ji = ‖yi − ỹi‖√
1 + xT

i (XT
(i)X(i))−1xi(̂(i)

=

√∫
(yi(t) − ỹi(t))2 dt

√
1 + xT

i (XT
(i)X(i))−1xi

√
rss(i)/(n − p − 1)

. (7)

To derive the distribution of Ji, we take an alternative ap-
proach and consider the so-called mean shift outlier model.
Suppose that the ith case is a candidate for an outlier. Assume
that the model for all other cases is

yj(t) = xT
j β(t) + εj(t), j "= i,

but that for case i, the model is

yi(t) = xT
i β(t) + δ(t) + εi(t).

Then testing whether the ith case is an outlier is equivalent to
testing δ(t) ≡ 0. We can create a new predictor variable, say u,
with ui = 1 and uj = 0 for j "= i. By (4), the functional F test for
δ(t) ≡ 0 is

Fi = ‖δ̂‖2

(n − p − 1)−1 ˜rss(X̃T X̃)−1
ii

, (8)

where δ̂(t) is the estimate of δ(t), ˜rss is the residual sum of
squares, and X̃ is the model matrix under the mean shift outlier
model. It follows from scalar regression that δ̂(t) = yi(t)− ỹi(t),
˜rss = rss(i), and (X̃T X̃)−1

ii = (1 − hii)
−1 (see, e.g., Sen and Sri-

vastava 1990, pp. 174–175). It is known in scalar regression
(see Weisberg 1985, p. 293) that

1 + xT
i
(
XT

(i)X(i)
)−1xi = (1 − hii)

−1. (9)

Comparing (7) and (8) yields Fi = J2
i . When δ(t) ≡ 0, the sta-

tistic Fi, defined in (8), has a functional F distribution according
to Shen and Faraway (2004). The next theorem summarizes the
results.

Theorem 2. If the ith case is not an outlier, then J2
i is distrib-

uted like a ratio of two linear combinations of infinite indepen-
dent chi-squared random variables, that is,

J2
i ∼

∑∞
k=1 λkχ

2
k (1)

(n − p − 1)−1
∑∞

k=1 λkχ
2
k (n − p − 1)

,

where the λk’s are eigenvalues of the covariance function γ (s, t)
and all of chi-squared random variables are independent of one
another.

In practice, we use the Satterthwaite approximation and ap-
proximate this functional F distribution by an ordinary F distri-
bution with degrees of freedom df 1 = λ and df 2 = λ(n−p−1),
where λ is the adjustment factor defined in (3). We can estimate
λ by (5) and preform an F test to formally detect outliers. Be-
cause the test is usually done after looking at the results and
is applied for all cases, an adjustment of the significance level,
such as the Bonferroni method, should be applied.

Furthermore, to avoid fitting the regression model with a case
deleted for n times, as in scalar regression, jackknife residuals
can be computed directly from studentized residuals and lever-
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ages as

Ji = Si

√
n − p − 1

n − p − S2
i
. (10)

The proof is given in the Appendix.

3.3 Influential Cases and Cook’s Distance

Cook’s distance is useful for identifying influential cases in
scalar regression. Here we extend the definition to functional
regression.

To determine whether the ith case is influential, we can mea-
sure the influence by comparing β̂(t) to β̂(i)(t), the estimates of
β(t) with and without the ith case. Formally, define L2 Cook’s
distance as

Di =
∫
(β̂(i)(t) − β̂(t))T(XTX)(β̂(i)(t) − β̂(t))dt

p · rss/(n − p)
. (11)

Alternatively, if we define Ŷ(t) = Xβ̂(t) and Ŷ(i)(t) = Xβ̂(i)(t),
then (11) can be rewritten as

Di =
∫
(Ŷ(i)(t) − Ŷ(t))T(Ŷ(i)(t) − Ŷ(t))dt

p · rss/(n − p)
, (12)

which measures the distance between Ŷ(t) and Ŷ(i)(t), the fitted
responses with and without the ith case. Cases for which Di are
large have substantial influence on β̂(t) and on fitted responses,
and the deletion of them may result in important changes in
conclusions. As in scalar regression, it can be shown (see the
App.) that Cook’s distance can be computed directly from the
studentized residual and leverage as

Di = 1
p

hii

1 − hii
S2

i . (13)

This formula will save us much computational time because
there is no need to fit n models, each with a case deleted. By
(13), a highly influential case must have a large leverage or a
large studentized residual. An influential case may be (but may
not necessarily be) an outlier.

4. AN EXAMPLE

4.1 A Robust Design Experiment

For illustration, we use one of the experiments reported by
Nair et al. (2002). An engineering team conducted a robust pa-
rameter design experiment to study the effects of seven process
assembly parameters (factors A–G) on the audible noise levels
of alternators. The experiment used a 27−2

IV design with defining
relation I = CEFG = ABCDF = ABDEG. For each experimen-
tal combination, 43 measurements of sound pressure levels (re-
sponses) were recorded at rotating speeds ranging from 1,000
to 2,500 rpm, where the rotating speed was a signal factor. Fig-
ure 1 shows the 32 observed (and fitted) response curves. The
original data include four additional replications collected at the
high levels of all factors, which we do not use here. (For a fur-
ther description of the data, see Nair et al. 2002.)

For ease of illustration, we first fit a main-effects model;
indeed, none of the two-factor interactions is significant. The
low and high levels are coded as −1 and +1. Table 1 gives

the F statistics and p values. The residual sum of squares is
273.09, and the estimated adjustment factor is 4.81. Note that
λ̂(n − p) = (4.81)(32 − 8) = 115.44. The p value of effect A
is computed as the upper tail probability of 3.27 under an or-
dinary F distribution with degrees of freedom 4.81 and 115.44.
Other p values are obtained similarly. The p values show that D
and G are very significant and C and A are significant at the 1%
margin.

We then simplify the main-effects model by dropping in-
significant terms. Table 2 gives the F statistics and p values
for a reduced model with main effects A, C, D, and G. As
expected, all effects are now significant at the 1% level. The
residual sum of squares is 308.01, and the estimated adjustment
factor is 5.14. The p values in Table 2 are computed using this
new adjustment factor.

We compare the reduced model with the main-effects model
by performing a functional F test as follows. The F statistic
in (2) is 1.02, with df 1 = (4.81)(8 − 5) = 14.43 and df 2 =
(4.81)(32 − 8) = 115.44, yielding a p value of .44. Thus we
accept the reduced model with four main effects and proceed to
diagnostics.

Figure 2 shows the diagnostic plots for the reduced model.
Both the residuals versus fitted plot and chi-squared Q–Q plot
suggest a potential outlier. The jackknife residuals plot and
Cook’s distance plot confirm that case 16 has the largest jack-
knife residual and Cook’s distance. The formal F test with Bon-
feroni adjustment declares that case 16 is an outlier at the 5%
level. The jackknife residual for case 16 is just above the crit-
ical value (the horizontal line on the jackknife plot) at the 5%
level. Note the big gap between the observed and fitted response
curves for case 16 in Figure 1.

We repeat the foregoing analysis without case 16 and still
conclude that A, C, D, and G are significant. Table 3 gives the
F statistics and p values. The residual sum of squares is 265.95,
and the estimated adjustment factor is 6.06. Note that G is still
most significant, but C is more significant than D, and A be-
comes less significant (p value increases from .0076 to .0256).
This time, the diagnostic plots do not show apparent patterns
calling for attention.

4.2 Simulation Study of Size and Power

Shen and Faraway (2004) used simulation to study the size
and power of the functional F test in comparison with the mul-
tivariate likelihood ratio and B-spline–based tests under similar
conditions to their ergonomics data. Their simulation suggests
that the functional F test has a fairly accurate size and could
be quite powerful for some types of covariance structures. Note
that our data are much rougher than their ergonomics data. It is
of interest to investigate how the F test and diagnostics perform
for our data.

We simulated response curves as the weighted average of the
predicted curves from the reduced model and the main-effects
model plus Gaussian errors with mean 0 and covariance #̂, the
empirical covariance matrix from the reduced model without
case 16. The weight ran from 0 (corresponding to the reduced
model) to 1 (corresponding to the main-effects model) in incre-
ments of .1. Note that traditional multivariate tests cannot be ap-
plied here, because there are 43 dimensions and only 32 cases.
For comparison, we also applied B-spline–based tests, with the
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Figure 1. Observed ( —-) and Fitted ( - - -) Response Curves.

likelihood ratio test applied on the B-spline expansion coeffi-
cients. Figure 3 shows the powers (i.e., probabilities of rejecting
the reduced model) of the F test and likelihood ratio tests with
five and eight B-spline basis functions at significance level .05
over 10,000 repetitions. The F test was comparable to the like-
lihood ratio test with five B-spline basis functions; the F test
had slightly lower power when the weight was <.6 and higher
power when the weight was >.6. The likelihood ratio test with
8 B-spline basis functions was the most powerful among the

three tests. We actually computed all likelihood ratio tests with
4–10 B-spline basis functions; of these, the test with 8 B-spline
basis functions was the most powerful.

The size of the F test (i.e., the power at weight = 0) was
.041, below the prespecified significance level of .05, indicat-
ing that the F test was conservative here. The reason for this
was that the degrees-of-freedom adjustment factor was under-
estimated in the simulation due to a relatively small sample
size. The estimated adjustment factor had an average of 4.90
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(a) (b)

(c) (d)

Figure 2. Diagnostic Plots for the Reduced Model: (a) Residuals versus Fitted; (b) Chi-Squared Q–Q Plot; (c) Jackknife Residuals Plots;
(d) Cook’s Distance Plot.

Table 1. F Statistics and p Values for the Main Effects Model

A B C D E F G

F value 3.27 1.15 3.61 5.46 .91 1.01 7.81
p value .0093 .3388 .0051 .0002 .4762 .4117 0

Table 2. F Statistics and p Values for the Reduced Model

A C D G

F value 3.26 3.60 5.45 7.79
p value .0076 .0040 .0001 0

Table 3. F Statistics and p Values for the Reduced
Model Without Case 16

A C D G

F value 2.47 5.29 4.29 10.48
p value .0256 .0001 .0005 0

and standard deviation of .59, whereas the true adjustment fac-
tor used in simulation was 6.06. This was not bad, considering
that only 32 − 8 = 24 degrees of freedom were available to es-
timate a 43 × 43 covariance matrix. Because we knew the true
eigenvalues, we also applied the F test using the true adjustment
factor 6.06. With this modification, the F test had a size of .053
and almost the same power as the likelihood ratio test with eight
B-spline basis functions.

We conducted another simulation to investigate the perfor-
mance of diagnostic procedures. For case 16, we simulated
the response curve as the weighted average of the observed
curve and the predicted curve from the reduced model (with-
out case 16), whereas for all other cases, response curves were
simply the predicted curves from the reduced model (without
case 16), with added Gaussian errors from the empirical covari-
ance matrix as before. Then we computed jackknife residuals
and applied the F test to see whether case 16 was identified as an
outlier at significance level .05 over 10,000 simulated datasets.
The power curve was similar to that of the F test in Figure 3,
consistent with the theory developed in Section 3. The simu-
lated size was .041, and the power at weight = 1 was .949. As
in the previous simulation, the size was underestimated because
the adjustment factor was underestimated (average, 5.01; stan-
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Figure 3. Simulated Power Curves of the F Test ( —–) and Two
B-Spline–Based Tests, One With Five B-Spline Basis Functions ( - - - -)
and One With Eight B-Spline Basis Functions ( · · · · · ·).

dard deviation, .71). An F test using the true adjustment factor
had a size of .051 and a power of .962 when weight = 1.

4.3 Discussion

Faraway (1997) suggested three types of plots for residual
analysis. The first type is plots of the estimated eigenfunctions

and their associated eigenvalues. These plots show the nature of
the unexplained variation in the model and are potentially use-
ful for understanding the error process. Figure 4 shows the first
eight estimated eigenfunctions and their associated eigenvalues
from the reduced model without case 16. The eight eigenfunc-
tions explain 90% of the variation of the residual functions. The
plots indicate that the error process is rather complicated. De-
termining the dimension of the error process would be difficult.
The functional F test does not suffer from this difficulty, which
is an advantage over tests based on basis expansion coefficients.

The second type of plot is normal Q–Q plots of the estimated
scores of each residual curve. These plots are useful for detect-
ing outliers and for assessing the assumption of Gaussian error
process. Typically, we need to examine only a few of these plots
associated with the leading eigenvalues. These plots should be
examined if the chi-squared Q–Q plot indicates any problems.

The third type is plot of residuals versus fitted for each time
point tj. As in scalar regression, these plots are useful for check-
ing model assumptions and outliers. But it is sometimes diffi-
cult to detect outliers when the patterns are not consistent across
all time points. For our example, there are 43 plots to be exam-
ined, and many (but not all) plots show that case 16 is a poten-
tial outlier. Our diagnostic plots clearly show that case 16 is a
potential outlier.

5. CONCLUDING REMARKS

Treating each response curve as a point in an L2 functional
space, we have studied residual analysis and diagnostics for

Figure 4. Estimated Eigenfunctions From the Reduced Model Without Case 16. Estimates of the first eight eigenfunctions with the associated
eigenvalues marked on the plot.

TECHNOMETRICS, FEBRUARY 2007, VOL. 49, NO. 1



LINEAR MODELS WITH FUNCTIONAL RESPONSES 33

linear models where the response is a function and the pre-
dictors are vectors. Studentized residuals, jackknife residuals,
and Cook’s distance in the L2 sense are defined similar to their
counterparts in scalar regression. We have discussed their func-
tions in formally detecting outliers and highly influential cases
and presented easy computational methods. We gave an exam-
ple and simulation study to show the effectiveness of these sta-
tistics.

When deriving the distribution of our test statistics, we as-
sume that the errors are Gaussian processes. The difficulty of
checking multivariate normality is well known in multivariate
analysis. Like many other procedures, the chi-squared Q–Q plot
provides a necessary and useful check. It can capture nonnor-
mality and outliers in the L2 sense.

Although the distribution of a linear combination of chi-
squared can be computed by numerical integration (as in Imhof
1961) or by simulation, here we use the Satterthwaite approxi-
mation. Our various simulations, as well as those of Box (1954),
indicate that the Satterthwaite approximation is satisfactory for
our purposes. For example, the simulated sizes are near the
significance levels when the true adjustment factor is used.
Satterthwaite (1941, 1946) and Box (1954) suggested that the
Satterthwaite approximation is fairly good when both of the fol-
lowing conditions are met: (a) all coefficients of the chi-squared
random variables have the same sign and (b) all chi-squared
random variables have the same degrees of freedom. Note that
both of these conditions are always met here; therefore, we rec-
ommend using the Satterthwaite approximation in practice.
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APPENDIX: PROOFS

Proof of (10)

It is known in scalar regression (see Montgomery 2005,
p. 397) that

yi(t) − ỹi(t) = (1 − hii)
−1(yi(t) − ŷi(t))

= (1 − hii)
−1ε̂i(t). (A.1)

Combining (9) and (A.1) yields

J2
i = ‖ε̂i‖2

(1 − hii)(̂
2
(i)

. (A.2)

Let σ̂ (t)2 and σ̂(i)(t)2 be the estimates of variance at time t with
and without the ith case. In scalar regression (see Montgomery
2005, p. 398), it is known that

(n − p − 1)σ̂(i)(t)2 = (n − p)σ̂ (t)2 − (1 − hii)
−1ε̂i(t)2;

then

rss(i) = (n − p − 1)

∫
σ̂(i)(t)2 dt

= (n − p)

∫
σ̂ (t)2 dt − (1 − hii)

−1
∫

ε̂i(t)2 dt

= rss − (1 − hii)
−1‖ε̂i‖2, (A.3)

(̂2
(i) = rss(i)

n − p − 1

= (n − p)(̂2 − (1 − hii)
−1‖ε̂i‖2

n − p − 1

= (n − p − S2
i )(̂

2

n − p − 1
.

Finally, combining (A.2), (A.3), and (6) yields

J2
i = ‖ε̂i‖2

(1 − hii)(n − p − S2
i )(̂

2/(n − p − 1)
= (n − p − 1)S2

i

n − p − S2
i

.

Proof of (13)

Let σ̂ (t)2 be the estimate of variance at time t with all
cases. Let di(t) = p−1(Ŷ(i)(t) − Ŷ(t))T(Ŷ(i)(t) − Ŷ(t))σ̂ (t)−2

be the Cook’s distance at time t. The scalar version of (13)
indicates that di(t) = p−1hii(1 − hii)

−2ε̂i(t)2σ̂ (t)−2. Therefore,
(Ŷ(i)(t) − Ŷ(t))T(Ŷ(i)(t) − Ŷ(t)) = hii(1 − hii)

−2ε̂i(t)2. Then,
by (12) and (6),

Di = hii(1 − hii)
−2 ∫

ε̂i(t)2 dt
p · rss/(n − p)

= 1
p

hii

1 − hii
S2

i .
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