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A quasi F -test for functional linear
models with functional covariates and its
application to longitudinal data

Hongquan Xu,*" Qing Shen,” Xiaowei Yang®! and
Steven Shoptaw®

Functional linear models are useful in analyzing data from designed experiments and observational studies with
functional responses, as well as longitudinal data with a large number of repeated measures on each subject.
We propose a quasi F'-test for functional linear models with functional covariates and outcomes. We develop a
numerical procedure and an efficient approximation for computing p-values, and present a simple way to test
individual predictors. For illustration, we apply the proposed procedure to a longitudinal depression data set
with repeatedly measured methamphetamine use as a predictor. We conduct a simulation study to assess the size
and the power of the test. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

In biomedical research with longitudinal designs, subjects are repeatedly measured for a set of charac-
teristics so that time-varying relationships between the responses and explanatory variables of interest
are modeled [1-3]. In certain fields of study, such as substance abuse, environmental, and public health
research, repeated measures are sometimes collected at rapid frequencies over long periods of time. For
example, in a 12-week smoking cessation clinical trial, the investigators collected up to 36 breath sam-
ples on each smoker and analyzed them for testing the effectiveness of two behavioral therapies [4]. In a
16-week depression and methamphetamine abuse study, the investigators collected up to 16 depression
evaluations and 48 urine samples on each subject to compare outcomes from four treatment conditions
[5]. In such studies, the investigators included frequent repeated measures to describe the process of out-
comes to experimental treatments in real time, which can be particularly vital to the study of treatments
for chronic diseases with high rates of relapse.

Linear models are frequently used for interpreting or predicting responses by a set of covariates or
predictors. Many authors have studied the form of functional linear models: Y(¢) = XB(¢) +€(¢), where
the responses are functions and the covariates are scalar vectors (see, for example, [6—13]). Ramsay and
Silverman [6] laid out some general ideas on estimation and provided preliminary methods for inference.
Faraway [7] pointed out the inappropriateness of traditional multivariate test statistics and proposed a
bootstrap-based testing method. Fan and Lin [8] proposed adaptive transform-based tests for functional
analysis of variance models. Shen and Faraway [9] proposed a functional F'-test for comparing nested
functional linear models, and Shen and Xu [10] considered diagnostics for such models. Yang et al. [11]

- _______________________________________________________________________________________________|

“Department of Statistics, University of California, Los Angeles, CA 90095, USA

b Edmunds.com Inc., 1620 26th St, Suite 400 South, Santa Monica, CA 90404, USA

“Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, CA
95616, USA

dBayessoft, Inc., 2221 Caravaggio Drive, Davis, CA 95618, USA

¢Department of Family Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA

*Correspondence to: Hongquan Xu, Department of Statistics, University of California, Los Angeles, CA 90095, USA.

E-mail: hqxu@stat.ucla.edu

- _______________________________________________________________________________________________|
Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2842-2853



Statistics

and Yang and Nie [12] used such models to analyze a longitudinal data set from a clinical trial. Zhang
and Chen [13] proposed an L,-norm-based test statistic and studied its asymptotic properties.

In many real-life research settings, however, both responses and predictors can be functions. Thus,
the problem of model fitting and making statistical inference for functional linear models Y(¢) =
X(t)B(t) + €(t) becomes increasingly interesting. Brumback and Rice [14] and Hoover ef al. [15] used
such models for longitudinal data and assumed that the functional coefficients B(¢) are smooth. Such
models, referred to as concurrent or pointwise models by Ramsay and Silverman [6], belong to the class
of varying coefficient models [16]. Wu and Yu [17] and Fan and Zhang [18] reviewed various methods
involving smoothing techniques for estimation and inference with varying coefficient models.

We take a simple and direct approach for estimation and inference for functional linear models, where
both the response and the covariates are functions or values sampled from continuous spaces of the
functions. Following prior examples [6, 7, 9], we estimate the parameters by pointwise least squares.
In practice, when we collect data at fixed time points, our pointwise least squares estimator is a non-
smoothed and unbiased estimator of B(¢). If desirable, one can use local kernel regression or other
smoothing techniques to get a smoothed and hopefully more efficient estimator of B(¢). However, one
must be aware of the problem of oversmoothing. Faraway [7] gave a good discussion on this issue.

In this paper, we focus on the inference of (), which is known to be a challenging problem. Tra-
ditional multivariate test statistics cannot be used when covariates are functions. A naive approach is to
examine the pointwise ¢ or F-statistics on each time point for testing B(¢). This carries a serious prob-
lem with multiple comparisons, and if we apply Bonferroni corrections to the significance level, power
would be significantly compromised because responses are often highly correlated within each subject.
We propose a quasi F -statistic for testing nested models, which is an extension of the so-called functional
F-statistic of Shen and Faraway [9] for functional response with scalar covariates. The quasi F -statistic
takes the same form as the ordinary scalar F-statistic: QF = %, where rss, and rssq
are the residual sums of squares under nested models w and €2 with g and p covariates (p > g), respec-
tively. We use the term ‘quasi’ to emphasize the fact that the numerator and denominator of the quasi
F -statistic are not independent when the covariates change with time, whereas they are independent in
the scalar or functional F-statistic.

The exact distribution of the quasi F (QF) statistic is rather complicated and does not seem to have a
simple close form. One possible approach is to use the bootstrap method [7]. Assuming that the errors
are from a Gaussian stochastic process, we can generate many samples and use those simulated samples
to approximate the distribution of the QF statistic. This approach is general but requires intensive com-
putation. Here, we propose a numerical procedure to compute the null distribution exactly. We further
propose a x? approximation method for computing p-values. The approximation requires much less
computation than both the bootstrap method and the numerical procedure. The simulation studies we
conducted show that the approximation is fast and accurate for practical use.

A linear model often includes many covariates, and it is desirable to test the significance of individ-
ual covariates. One advantage of the quasi F-test is that we can compute directly the QF statistic for
any single covariate from the full model. Indeed, the QF statistic is a weighted average of the point-
wise F-statistics, and the weights are proportional to the pointwise estimated variances. This provides a
convenient way to conduct variable or model selection in practice.

In Section 2, we present the underlying distribution theory for the quasi F-statistic and provide
a practical procedure for conducting the quasi F-test. Not surprisingly, when covariates do not vary
with time, the quasi F'-test is identical to the functional F-test that Shen and Faraway [9] proposed. In
Section 3, we apply the proposed quasi F-test to a clinical trial [S] with functional responses and func-
tional covariates. In Section 4, we conduct simulations to study the size and the power of the quasi
F-test and compare it with a linear mixed effects model approach. Finally, Section 5 provides concluding
remarks.

2. A quasi F -test for functional linear models

Given a functional response y; (¢) and a vector of predictors X; () = (x;1(¢), ..., Xip )T fori=1,...n,
the functional regression model takes the familiar form

yi() =x:(0)TB() + & (1), (1)
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where B(¢) = (B1(?),....Bp (1)) are unknown coefficient functions and €; (¢) is a Gaussian stochas-
tic process with mean zero and covariance function y(s,?). Here, we assume ¢;(-) and €;(-) to be
independent fori # .

The pointwise least squares estimator of fB(¢) is ﬁ(t) = (X(OTX(@)) ' X(#)TY(1), where X(t) =
(x1(t),....%,(¢))T is the usual n x p design matrix and Y(t) = (y1(¢),....ya(t))T is a vector of
responses. The predicted responses are J; (f) = x; (£)7 B(r) with residuals & (f) = y;(¢) — $;(¢) and
residual sum of squares rss = >/, [ & (t)?dz.

In practice, we usually do not observe y; (¢) for all ¢ but only y;(#;;), where (#;1, ..., ;) is the sam-
pling by time grid for subject i. It is desirable to collect data at the same time grid, f1, . . ., t,,, for easy
interpretation and estimation and is common to many well-designed experiments or studies. It is fre-
quently the case that the time grid varies between subjects because of such factors as early termination
and loss to follow-up. In such instances, by assuming an ignorable missingness mechanism, we can use
smoothing technique to get fixed time points [6, 7]. Within the scope of this paper, we assume that the

responses are observed on evenly spaced, fixed time points 7y, ..., f;,. Then, the functional model in
Equation (1) becomes
yilt)) =xi(t;))T Bt;) +ei(ty), fori=1,....n;j =1,....m, (2

and we can do pointwise estimation and regression. The random errors are independent between subjects
but normally distributed within each subject with mean zero and covariance matrix X . We can replace
the integration with summation and compute rss = Y ;_, Z?:l € (t j)z_ For the rest of the paper, we
consider the multivariate formulation in Equation (2) rather than the usually unobservable functional
model (1).

An important inference problem is to test whether we can simplify a linear model. Given the model
2 in Equation (2) with p covariates, we want to test whether a smaller model w with g covariates is
sufficient. Model w typically consists of a subset of predictors in €2, but it can be a linear subspace of
2 in general. Model €2 is often referred to as the full model, and w is the null or reduced model. In the
spirit of Shen and Faraway [9], we define a quasi F-statistic,

_ (rsso —rssa)/(p—q)

oF rssq/(n—p)

: 3)

where rss,, and rssq are residual sums of squares under models w and €2, respectively. Under the null
model w, both rssq and rss, — rssq are quadratic forms in normal random variables; therefore, they
are distributed like linear combinations of independent y? random variables.

When the covariates do not vary with ¢ (i.e., X; (f) = x; are fixed), rssq and rss, —rssq are independent
of each other. Using the Satterthwaite [19] approximation, Shen and Faraway [9] approximated the QF
distribution by an ordinary scalar F-distribution with degrees of freedom (DOF) df; = A(p — ¢) and
dfs = A(n — p), where A = trace(X)?/ trace(X?) is called the degrees-of-freedom-adjustment-factor.

When the covariates vary with ¢, rssq and rss, — rssq are no longer independent, and we cannot
approximate the QF distribution by an ordinary scalar F-distribution. Nevertheless, we can compute the
null distribution numerically by using some well-established results on quadratic forms. Specifically, for
an observed QF value fy > 0, we can compute the p-value as

P(QF = fo)=P (rssw > ro) = P(rsse, —rorssq = 0), @)
Q

rss

where ro = 1 + fo(p —¢q)/(n — p) is the observed value of ratio rss,/rssq. In the last expression,
rsse, — rorssg is a quadratic form in normal random variables and is distributed like a linear combination
of independent y? random variables, 21;:1 Ajx5(1), where all x3(1)’s are x* random variables with
1 DOF and are independent of each other and A1, ..., A; are nonzero eigenvalues of an (nm) x (nm)
matrix A, which is a function of ro, covariance matrix X and design matrices X(¢;); see Theorem 2
in the following text for precise definition. Given Aq,..., Ak, efficient algorithms are available in the
literature to compute the probability exactly [20, 21].

One disadvantage to this approach is that obtaining the eigenvalues of an (nm) X (nm) matrix is
computationally expensive because nm is often very large for functional data. A practical approach is
to use some approximation. It is well studied in the literature that a linear combination of independent
x? random variables can be efficiently approximated by a single y? random variable. The widely used
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Satterthwaite method approximates Z];ZI Aj X?(l) with a y?(d) by matching the first two moments,
where d is the DOF. However, the approximation is poor because we have both positive and negative
A;’s. Here, we adopt the Pearson three-moment approximation [20, 22]. Specifically, we approximate

Zl;zl Aj )(? (1) with a y?(d) + b by matching the first three moments. According to [20],

3 2

C C3 C
dz_iv =, bzcl__za
Cc3 Co C3

where ¢; = Z];-:l A; for i = 1,2, 3. For accuracy, the approximate DOF, d, are not necessarily an
integer. This is not a problem in practice and most software (including R) can handle fractional DOF.
Then, we can approximate the probability in Equation (4) as

207 > :
P(rssy —rorssq =0)~ P(ay*(d)+b=0)= igzgji ; Zg% L{Z z 8’ 5)
where g9 = —b/a = c»(c3 — c1¢3)/c3. The approximation avoids the time-consuming eigenvalue
decomposition explicitly because ¢; = trace(A’). Imhof [20] compared the approximation with exact
numerical computation via integration for several quadratic forms and concluded that the approximation
is sufficient for certain practical purposes. Zhang [23] provided a theoretical justification by establish-
ing an upper bound on the approximation error. Our computation and simulation further supported this
conclusion, and therefore we recommend the use of approximation in practice for calculating p-values.

The distribution of the QF statistic in Equation (3) depends on the eigenvalues of matrix A, which is
a function of the covariance matrix X that is often unknown to the data analyst. This does not raise a
problem because we can estimate it by the empirical covariance matrix

2:[ : Zéi(r,,-)éi(zk)} (©)

n=ri3

under the full model 2, where j,k =1, ..., m. Large DOF, say n— p = 30, are desirable for an accurate
estimation.

The proposed QF statistic is scale free in the sense that we get the same sampling distribution if we
replace X with ¢ X for any constant ¢ > 0. In particular, we get the same result if the coefficient 1 /(n—p)
in Equation (6) is replaced with any constant. This is an important and desirable property because we
need to estimate X from data in practice.

The following theorem shows the relationship between the QF statistic and the pointwise F -statistics.

Theorem 1
The QF statistic in Equation (3) equals to

_ X Figj
rssq/(n—p)

where F; and 6? are pointwise F-statistic and the estimated variance at time point ;.

It can be shown (see the proof of Theorem 1 given in the Appendix) that Z'}’zl 612. =rssq/(n— p).
Therefore, the QF statistic is simply a weighted average of the pointwise F -statistics, and the weights
are proportional to the pointwise estimated variances.

When fitting linear models, it is often interesting to know which covariates are important to be
included. To test whether a particular covariate is significant, we can fit a model without that covari-
ate and perform a quasi F-test. It can be very tedious to repeat this procedure for every predictor.
Fortunately, Theorem 1 shows that we can compute directly the QF statistics from the full model.
Specifically, to test whether the /th covariate is significant, (i.e., whether B;(r) = 0), we can obtain
Fi67 = ,élz(tj)/(X(tj)TX(tj))l_ll directly from the full model, where (X(1;)7X(7;));;' is the /th
diagonal element of (X(¢ j)TX(t ;) ~Yforl = 1,..., p. This provides a convenient way for variable
selection.

The rest of this section provides technical details of the underlying theory and computation issues.
Readers who are interested in applications can go to the next section directly.

Let E = (€;(¢;)) be the n x m matrix of measurement errors. Denote the rows of E as €7 ... €l
By the assumption, we have €;. ~ N(0, X) and cov(e;.,€;.) = 0 fori # j. Denote the columns of E as
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€4,...,€y, and let vec(E) be the nm x 1 vector that consists of all elements of E stacked by column.
Then, cov(vec(E)) = X @I, = (0i;1,), which is the Kronecker product of X and the n x n identity
matrix I,.

Let H(¢;) = X(tj)(X(tj)TX(tj))_lX(tj)T be the n x n hat matrix. Following the scalar univariate
linear model theory [24-26], €.;, = (I—H(z;))e ., are the residual vectors and I-H(z,) are idempotent.
Then,

m m
rss = Z {g = Z (I—H(t;))e, = vec(E)'M vec(E),
j=1 =1

where M = diag(I — H(#1),...,I — H(#,)) is an (nm) x (nm) block diagonal matrix. It is clear now
that rss is a quadratic form in normal random variables.

For the given nested linear models w and €2, we denote the corresponding M matrices as M, and Mg.
Then, under model w, rss, — ro rssq = vec(E)T (M, — ro Mgq)vec(E). Applying Theorem 2.1 of [27],
we have the following result.

Theorem 2
Under the null model w, 755, —7¢ rssq is distributed like a linear combination of independent y? random
variables, that is,

k
TS§Sy —ToTSSQ ~ Z )&j)(?(l),
j=1

where each y? random variable has 1 DOF and is distributed independently of each other and A1, ..., A
are all real nonzero eigenvalues of A = (X @ I,) My — 1o Mg).

The matrix A in Theorem 2 is not symmetric. Nevertheless, all the eigenvalues of A are real because
Y @1, is positive semidefinite and M, — ro Mg is symmetric.

Now, we describe a procedure for computing p-values for the quasi F-test.

(1) Perform pointwise least squares estimation for both models @ and 2.

(2) Compute the QF statistic as in Equation (3); denote it as fo and let ro =1+ fo(p —q)/(n — p).
(3) Estimate X by 3 in Equatlon (6) under the full model 2.

(4) Generate matrix A = (Z RI,) M, — r()MQ)

(5) Compute ¢; = trace(A), ¢, = trace(A2), c; = trace(A3), d = c3/c3, a = c3/ca, and
go = c2(c2 — cic3)/c2. Or alternatively, find the eigenvalues of A and denote the nonzero
eigenvalues as Ay, ..., Ag.

(6) Compute p = P(x? (d) = qo) fora > 0 or p = P()( (d) < qo) for a < 0. Or alternatively, use
Davis’s algorithm [21] to evaluate p* P(Z 1A i 2(1) > 0) numerically.

We report p or p* as the p-value for the observed value fo. The main computational cost here is the
eigenvalue decomposition in step 5. Davis’s algorithm is quite efficient even for k as large as 1500. When
nm is not very large, say < 1000, we can compute the p* value using Davis’s algorithm. For larger nm,
we can use p to approximate p*. As our computation suggests, the three-moment y? approximation is
satisfactory for assessing significance; therefore, we recommend to use p as the p-value in practice.

We can use the procedure to report the significance of individual covariates in a model after some
minor modifications. We fit the model once and compute the QF statistics as in Theorem 1. We need
to estimate the covariance matrix and compute matrices ) QX 1I,, and Mg once. However, we need to
compute M, for each model that includes all but one covariates.

We need to modify the procedure properly to deal with missing values, which are common in longi-
tudinal data. In step 1, we perform least squares estimation only to the observed data at each time point,
which yields different DOF for different time points. Therefore, we replace n — p by the average DOF
for model €2 in step 2. Step 3 is the most crucial step for which we propose two methods for estimating
Y = (oyj). The first method uses subjects with complete residuals (i.e., missing values are handled by
complete case analysis). This may end up with discarding too many cases and result in an inaccurate
estimation. The second method estimates o;; using all available pairs of residuals in columns i and ;.
This has the advantage of using more observations in the estimation of the covariance but can result in
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a matrix, which may not be positive semidefinite. An alternative solution is to apply the method of mul-
tiple imputation with smoothing techniques to enforce complete data sets. In step 4, we simply delete
rows and columns in & I, that correspond to missing residuals.

When the covariates do not vary over time ¢, the computation is much easier. Note that in this case
the hat matrices H(z;) = H are the same, so M = I, Q(I — H). The properties of the Kronecker
product imply that (X QL,)M = (£ R L,)I, QI —H)) = X (I — H), and the eigenvalues of
¥ Q(I— H) are simply the products of eigenvalues of £ and I — H [26]. Note that I — H is idempotent,
and its eigenvalues are either 0 or 1. Consequently, the eigenvalues of £ )(I—H) are completely deter-
mined by the eigenvalues of ¥ and the rank of I — H. Then, rss, — rssq ~ Z;-":l Aj )(? (p—q)
and rssq ~ Y7y Ajx5(n — p), where A1 = ... = A, = 0 are the eigenvalues of X. Further-
more, they are independent because Mg (X ®I,)(M, — Mg) = X QI — Hg)(Hg — Hy) = 0,
where the last equation follows the scalar univariate linear model theory [26]. Therefore, the p-value is
P A2 (p— ) — (ro— 1) X7y A 22 (n — p) > 0). Alternatively, (£ @ L) (M, — roMg) =
T R(I—H,) —ro(I—Hg)). It is easy to show that the distinct eigenvalues of (I —H,) — ro(I— Hg)
are 1 —rg, 1 and 0, with multiplicity n — p, p — ¢, and ¢, respectively. This leads to the same formula
for the p-value. For computing the p-value, we need to find the eigenvalues of the m x m matrix 3 only,
which is an easy task. So, we can compute the p-value of the functional F'-test of Shen and Faraway [9]
efficiently if requested.

3. Application

We applied the proposed quasi F'-procedure to a randomized clinical trial [5], which is a 16-week study
conducted in outpatient treatment research clinics in the Hollywood and the West Hollywood areas of
Los Angeles from 1996 to 2001. All the participants were diagnosed as methamphetamine dependent,
were self-identified gay or bisexual men, and were seeking treatment for their dependence on metham-
phetamine. All the participants began with a 2-week baseline period, and 162 subjects completing the
baseline periods were randomly assigned to one of four treatment conditions: cognitive behavioral ther-
apy (CBT, N, = 40), gay-specific CBT (GCBT; N, = 40), contingency management (CM; N3 = 42),
and combined CBT and CM (CBT+ CM; N4 = 40). CBT was a standard intervention control condition,
and the CM procedures consisted of providing vouchers of increasing value for urine samples document-
ing continuous abstinence from methamphetamine use. During the 16-week study, methamphetamine
use was measured using thrice-weekly urine samples analyzed for drug metabolite. Self-reported depres-
sive symptoms were collected weekly using the Beck Depression Inventory (BDI). Mild depression was
indicated by scores of 10-19, moderate depression was indicated by scores of 19-29, and BDI totals
over 30 indicated severe depression. Initial BDI scores, self-report of recent methamphetamine use, and
HIV status were of the most interest and collected before randomization. Other demographical variables
were also collected at baseline, but they were less important to the investigators. There were substantial
missing observations during the trial because of the subjects’ missing clinical visits or nonresponse to
certain questions on the self-evaluation forms. The missingness became more severe as the study con-
tinued. Only 11% of the BDI scores were missing at week 1, but the number was doubled at week 2
and grew to 52% at week 15. Only 32 subjects (20%) had complete records on covariates and repeated
measures. In this paper, we assumed that missing values are ignorable in the sense that we can use the
observed values to obtain unbiased estimates.

Figure 1 shows the average BDI scores by treatments at baseline (week 0) and during treatments
(weeks 1-16). It is suggestive that all treatments were associated with reduction of depression level in
the first 2 to 3 weeks, with treatments CM and CBT + CM appearing more effective than the other two.
The questions of interest for our analysis were the following: (i) whether there are any significant differ-
ences of depression improvement across treatment conditions as measured by BDI scores; (ii) whether
depression scores are associated with methamphetamine use; and (iii) whether depression scores depend
on HIV status.

We defined a variable, Drug, to represent whether a subject used methamphetamine during a week as
follows: Drug = 1 if at least one of the three urine tests were positive and Drug = 0 if none of the tests
were positive. Drug was missing if a subject missed all three urine tests in a week. Note that Drug is
a functional covariate, that is, time-varying covariate. The distribution of BDI scores looked positively
skewed, and we applied a square root transformation to make it approximately normal. For each subject,
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Figure 1. Average Beck Depression Inventory (BDI) scores by treatments at baseline (week 0) and during
treatment (weeks 1-16). CBT, cognitive behavioral therapy; GCBT, gay-specific cognitive behavioral therapy;
CM, contingency management.

we fitted the following initial (full) model, which includes all the variables of interest such as baseline
BDI scores, Drug, HIV status, and treatments:

Yi(t) = Po(t) + BaseScore; - p1(t) + Drugi(t) - B2(2) + HIV; - B3(1)
+ CBT; - Ba(t) + GCBT; - Bs(1) + CM; - Bo(1) + € (1), @)

where y;(¢) is the square root of BDI score at week ¢ on subjecti = 1,...,162 and BaseScore; is the
square root of BDI score at week 0. Drug; (¢) is 1 if the subject used methamphetamine during week ¢
and 0 otherwise. HIV; is 1 if the subject was HIV positive and 0 otherwise; CBT;, GCBT;, and CM;
are indicators of the treatment the subject received (treatment CBT + CM serves as a reference).

Figure 2 displays the pointwise estimates of the covariate coefficients 8;(¢)s and their correspond-
ing 95% CIs. Because of missing values in the response and drug use, these pointwise models have
different DOF, which vary from 65 (week 15) to 130 (week 1) and have an average of 91. We found
that BaseScore have the most significant impact on depression during the study: all the estimates of
B1(t)(t =1,...,16) are positive, and 13 of the 16 CIs exclude 0. The effect of BaseScore decreased
as the treatments progressed. For Drug, all the estimates are positive, and 6 of the CIs exclude 0. For
H 1V, none of the CIs exclude 0, although all estimates are positive. For CBT and GCBT, 4 and 2 Cls
exclude 0, respectively. For CM, no Cls exclude 0. The pointwise estimates and the CIs provide vivid
interpretations regarding how the effects changed with time; however, it is not clear whether covariates
have overall significance by summarizing over the 16 time points.

The theory and procedure in the previous section provide an efficient way of testing the significance of
covariates. We used the pairwise available residuals to estimate X. The results looked similar when we
used only the complete residuals, and we did not present these here. Table I shows the observed statistics
fo, associated y? approximation parameters (a, d, and ¢o) and their p-values using the approximation
and numerical integration. The approximation is satisfactory, and both p-values lead to the same con-
clusions. BaseScore and Drug are very significant predictors (p < .01) but HIV is not. Both CBT and
GCBT are significant predictors of y(¢) at the 10% level, that is, treatment effects of CBT and GCBT are
significantly different from that of the treatment of CBT 4+ CM. However, CM is not a significant pre-
dictor at the 10% level, implying that CM and CBT + CM are similarly effective in reducing depression
scores. These findings are consistent with Figure 1, which shows that treatments CBT and GCBT are
similarly effective but different from CBT + CM, which is similarly effective to CM. Note that the latter
two treatments provided financial incentives for being methamphetamine abstinent, whereas the former
two did not. It is of special interest to examine the effect of financial incentives used by the CM method
by comparing the first two treatments with the last two. For this purpose, we created a new variable,
Incentive, and considered the following model:

vi(t) = Bo(t) + BaseScore; - B1(t) + Drug;(t) - p2(t) + Incentive; - B3(t) + €;(t), 8)

where Incentive; = 1 if subject i was assigned treatment CM or CBT + CM and Incentive; = 0 other-
wise. Figure 3 shows the pointwise estimates and 95% Cls of the Incentive effect (i.e., B3(¢)). All the
estimates are negative, and 4 Cls exclude 0, implying that offering incentives reduced depression scores.
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Figure 2. Pointwise estimates and 95% confidence intervals in the initial model. CBT, cognitive behavioral
therapy; GCBT, gay-specific cognitive behavioral therapy; CM, contingency management.

Table I. Observed statistics and p-values for the initial model.
Term fo a d 90 p p*
(Intercept) 0.80 8.67 1.54 0.98 0.4896 0.5309
BaseScore 15.62 0.66 1077.31 1590.96 0.0000 0.0000
Drug 3.23 2.29 11.24 33.55 0.0005 0.0011
HIV 1.13 9.07 1.50 1.80 0.2914 0.2966
CBT 2.63 8.08 1.90 6.51 0.0350 0.0325
GCBT 2.13 8.83 1.66 4.58 0.0733 0.0677
CM 1.02 9.59 1.43 1.44 0.3421 0.3557

We obtain p = P(x2(d) = qo) via the x? approximation and compute p* = P(QF > fg) via Davis’s algorithm.
CBT, cognitive behavioral therapy; GCBT, gay-specific cognitive behavioral therapy; CM, contingency management.

Table II shows the observed statistics fp and associated p-values for the reduced model. BaseScore and
Drug effects are still very strong, and Incentive is a significant factor at 2% level. Thus, we concluded
that the incentives played a contributive role here in reducing depression scores even with the existence
of the Drug variable. This is consistent with other findings in the literature regarding CM; see [4] for
example.

We further compared the reduced model with the initial model. The QF value is fo = 0.91 with
p* =0.53 (associated a = 8.94, d = 4.65, go = 3.84, and p = 0.52). We accepted the reduced model
and performed pointwise diagnostics. The residuals verse fitted plots appeared to be acceptable, and the
normality assumptions were reasonable.
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Figure 3. Pointwise estimates and 95% confidence intervals of Incentive in the reduced model.

Table II. Observed statistics and p-values for the reduced model.
Term Jo a d q0 p p*
(Intercept) 222 8.54 1.76 5.14 0.0609 0.0560
BaseScore 15.19 1.01 444.86 779.30 0.0000 0.0000
Drug 3.51 2.26 12.65 38.98 0.0002 0.0005
Incentive 3.12 8.23 2.04 8.16 0.0177 0.0172

For comparison, we also analyzed the data by linear mixed effects (LME) models with random inter-
cept to model heterogeneity across subjects. As seen earlier in Figure 2, the effect of BaseScore decreased
linearly over time, whereas the effects of other variables could be assumed as constant. This was con-
firmed by an elaborate analysis with the consideration of possible interactions between all covariates and
time. For illustration, we considered the following LME model:

yij =u; +tj-p1+ BaseScore; - B> + BaseScore; - tj - B3
+ HIV; ~ﬂ4+Drugij -Bs+ CBT; -6 + GCBT; - B7 + CM; -ﬂg-i-eij,

where i = 1,..., 162 indicates subjects, 7; denotes the time in week for j =1,...,16, and u;’s are the
random effects explaining the heterogeneity across subjects. The parameters Ss are fixed effects and do
not depend on subjects. The random errors ¢;;’s are identically and independently distributed as normal.
It is assumed that u;’s are also normally distributed and independent of ¢;;. The LME model was com-
parable with the functional linear model (7) and led to consistent conclusions. Specifically, BaseScore
(p <0.0001), BaseScore -t (p < 0.0001), and Drug (p < .001) are very significant, HIV (p = .185)
is not, CBT (p = .0104) and GCBT (p = .046) are different from CBT + CM, and CM (p = .291) is
similar to CBT 4+ CM . To compare with the reduced functional linear model (8), we also fitted another
LME model

Yij =u; +1tj-p1+ BaseScore; - B> + BaseScore; -t; - B3
+ Drugij - Ba + Incentive; - Bs + €;;.

We again found that providing financial incentives for reducing methamphetamine use was very
contributive to the reduction of depression scores during the study period (p = .012).

4. Simulation studies of size and power

To evaluate the performance of the proposed quasi F-test, we conducted simulation studies under sim-
ilar design conditions to the aforementioned clinical trial. We focused on the power of detecting the
Incentive effect in the functional linear model (8), which was taken as the alternative model. The null
model did not include the /ncentive term. We simulated response BDI scores as the weighted average
of predicted values from the null and alternative models plus normal random errors. We used the origi-
nal covariates for each subject and kept the same missing structure, that is, the simulated response was
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missing whenever the original BDI score was missing. For the random errors, we used two covariance
structures: compound symmetric (CS) and autoregressive type 1 (AR(1)). For the CS covariance struc-
ture, the correlation coefficient between y;; and y;x was the same (i.e., p for j # k ), whereas for the
AR(1) case, the correlation strength depended on the distance between the two observations (i.e., p‘j —kl ).
We set the residual variance to be the average of pointwise variance estimates from model (8), which is
02 = 1.6. The weights varied between 0 (corresponding to the null model) and 1 (corresponding to the
alternative model) with an increment of 0.1. For each weight, we generated 1000 sets of data. For each
set of simulated data, we fitted both models and performed the proposed quasi F'-tests at the significance
level of 0.05. For comparison, we also fitted and tested the corresponding LME models.

Figure 4 shows the powers of the two methods for the two covariance structures with correlation set
at p = 0.5 and p = 0.8. When the weight is 0, the null model is the true model and the power is the size
of the test. The quasi F-test appears to have an actual size, and the simulated sizes range from 0.044
to 0.053. The size appears to be slightly inflated for the LME methods, ranging from 0.058 and 0.067.
When the weight is relatively small (e.g., < 0.5), the LME methods have slightly higher powers than
the QF method. Nevertheless, the proposed QF test has higher power than the LME method when the
weight is larger than 0.8 across all cases. Both methods have higher powers for the AR(1) structure than
the CS structure.

For the QF statistics, we computed both p-values with the y? approximation approach and the exact
numerical integration approach. The latter took 10 times longer than the former. The power curves were
nearly identical, which suggested that the approximation is accurate and satisfactory for practical use.

5. Concluding remarks

We proposed a quasi F-test for functional linear models with functional covariates. The quasi F -statistic
is a weighted average of the pointwise F-statistics, and the weights are proportional to the pointwise
estimated variances. Like in the scalar case, we can use the quasi F-test to assess the significance of indi-
vidual covariates in a linear model conveniently. We developed a numerical procedure and chi-squared
approximation for computing p-values. The approximation is efficient in terms of both computation and
accuracy; therefore, it is recommended for practical use.

We analyzed data collected from a depression and methamphetamine-dependence study, using both
the QF test for functional linear models with functional covariates and the standard linear mixed effects
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Figure 4. Simulated power curves of the proposed quasi F (QF) test and linear mixed effects (LME) method.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2842-2853




Statistics

modeling method for longitudinal data. We drew similar conclusions from both methods. We further
conducted simulation studies to evaluate the size and the power. The quasi F-test appears to have an
accurate size and have good statistical power comparable with the commonly used linear mixed effects
models.

An advantage of the quasi F-test is that it requires neither the specification of the within-subject
covariance structure nor the functional form of coefficients. In fact, as illustrated in the application, the
shape of the pointwise estimation of the coefficient functions often inspires about certain parametric form
of these coefficient functions. On the other hand, a limitation of the quasi F-test is that the observations
are needed to be taken at fixed regular time points. A sufficient number of observations are required for
each time point to ensure that the estimate of covariance matrix X is reliable. Another potential limi-
tation of the quasi F-test is its reliance on normality of the errors. It would be interesting to study the
sensitivity of the quasi F-test to the deviation from normality.

Appendix A

Proof of Theorem 1
Letrss,; and rssq;j be the residual sums of squares of the models @ and €2 at time point ¢, respectively.
From the scalar univariate linear model theory, we know F; = [(rssq; — rssq;j)/(p — q))/[rssq;j/(n—

p)] and 6? = rssqj/(n — p). Therefore, (rssqo; — rsse;)/(p —¢q) = Fjﬁjz.. It is evident that
rSSw = )11 I'SSwj and rssg = Y 1_, rssq;. So, (rsse —rsse)/(p—q) = X7, Fjéj2 and the
QF statistic in Equation (3) is QF = ZT:l Fj 612 /(rssq/(n — p)). This completes the proof. |
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