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SUMMARY

Longitudinal data sets from certain fields of biomedical research often consist of several variables repeatedly
measured on each subject yielding a large number of observations. This characteristic complicates the
use of traditional longitudinal modelling strategies, which were primarily developed for studies with a
relatively small number of repeated measures per subject. An innovative way to model such ‘wide’ data is
to apply functional regression analysis, an emerging statistical approach in which observations of the same
subject are viewed as a sample from a functional space. Shen and Faraway introduced an F test for linear
models with functional responses. This paper illustrates how to apply this F test and functional regression
analysis to the setting of longitudinal data. A smoking cessation study for methadone-maintained tobacco
smokers is analysed for demonstration. In estimating the treatment effects, the functional regression
analysis provides meaningful clinical interpretations, and the functional F test provides consistent results
supported by a mixed-effects linear regression model. A simulation study is also conducted under the
condition of the smoking data to investigate the statistical power for the F test, Wilks’ likelihood ratio
test, and the linear mixed-effects model using AIC. Copyright � 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In biomedical research with longitudinal studies, subjects are repeatedly measured for a set of
characteristics so that time-varying relationships between the responses and explanatory variables
of interest can be modelled, e.g. growth trajectory and disease progression [1]. In certain fields
of study, such as substance abuse, environmental, and public health research, repeated measures
are sometimes collected at high frequencies over long periods of time. For example, in a 12-
week smoking cessation study, carbon monoxide levels were collected three times weekly on each
methadone-maintained tobacco smoker [2]. To analyse such longitudinal data with large-scale time
grids, it may be unsatisfactory to apply traditional longitudinal modelling strategies (e.g. mixed-
effects models, marginal models, and transition models) [3], which are mainly developed for data
with a relatively small number of repeated measures per subject [4]. More advanced models such
as nonlinear mixed effects models with smoothing schemes (e.g. kernel or spline methods) can
be used [5], but the computation cost is considerable and the clinical interpretation is vague.
Other multivariate-observation approaches, such as hierarchical models, latent variable models,
and structure equation models, sometimes involve many parameters with unverifiable assumptions
[6–8]. As of yet, there are not many alternatives that successfully address the unique problems
presented by data collected in longitudinal studies with high dimensionality. This paper evaluates
a recently developed method of functional data analysis for this purpose.

In the emerging statistical research field, functional data analysis refers to a collection of strate-
gies for analysing functional data sets, such as curves, images, or shapes [9]. To a study observing
seated automobile drivers’ body motion patterns [10, 11], and to a study of urinary metabolites and
a progesterone data set [12], several strategies of functional regression analysis have been applied.

Until very recently, functional data analysis and longitudinal data analysis have been viewed
as distinct enterprises [13]. In the 2004 emerging issues of Statistica Sinica [4], it is seen that
endeavour has been made to reconciling the two lines of methodology. For longitudinal data with
dense time grids, one could conceive within-subject repeated measures as discrete samples from
a functional curve over the studied time interval. A curve for each subject’s response can be
obtained via various smoothing techniques in connecting the discrete data points [14] and these
individual subject response curves can be tested using functional data analysis. The approach
to using functional data analysis provides an alternative with innovative insights to the practice
of longitudinal data analysis. Unlike the long-form of representing longitudinal data in some
computer procedures (e.g. PROC Mixed in SAS), where within-subject repeated measures are
concatenated into one long vector, functional regression analysis does not change the original
rectangular form of the data structure, which looks more natural to data analysts. With time-
dependent coefficients, functional regression analysis captures the time-varying exposure–response
relationship, thus providing a simpler data structure with intuitive interpretations. A time series
plot of the estimated coefficient function vividly reveals how the effect of a predictor can change
along the time axis. Most importantly, functional regression analysis could draw more robust
conclusions as it has features similar to nonparametric methods, requiring fewer assumptions on
the intra-subject error correlation and mean structures for the studied population [11, 15].

2. FUNCTIONAL LINEAR REGRESSION MODELS

A longitudinal study, usually collects continuous repeated measures, {yi (ti j ); i = 1, . . . , n,
j = 1, . . . ,m}, on a time grid, {t1, . . . , tm}, that is either exactly or approximately the same for
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all n subjects. One may restrict that the same number of repeated measures be collected on each
subject. Ideally, these repeated measures can be viewed as discrete samples from a continuous
response curve, yi (t). In this setting, a functional linear regression model has the form of

yi (t) = xTi !(t) + "i (t)

where xi = (xi1, . . . , xip)T is a vector of fixed covariates or predictor variables, !(t) = (!1(t), . . . ,
!p(t))

T is a vector of coefficient functions, and "i (t) is an error function of Gaussian process with
mean zero and unknown covariance function r(s, t) = cov("i (s), "i (t)). Since !(t) is a function of
time, this model is sometimes referred as varying-coefficient regression model [16]. In more general
settings, xi may be also time-varying, although we only deal with the case of time-independent
covariates in this paper. It is also assumed that "i (t) and "k(t) are independent of each other when
i "= k (i.e., observations on different subjects are independent of each other).

The coefficient function !(t) can be estimated by the least squares method, which leads to

!̂(t) = (XTX)−1XTY (t)

where X = (x1, . . . , xn)T is the model matrix and Y (t) = (y1(t), . . . , yn(t))T is the vector of
response functions. The predicted (or fitted) responses are ŷi (t) = xTi !̂(t) and the residuals are
"̂i (t) = yi (t) − ŷi (t). The residual sum of squares is rss= ∑n

i=1
∫
(yi (t) − ŷi (t))2 dt .

In reality, only a finite number of measures (i.e. yi (ti j )’s) exist for the i th response curve
(i.e. yi (t)). To apply functional regression analysis to discrete observational data, Shen and Faraway
[11] recommended analysing the un-smoothed raw data directly over a common grid of time for
different subjects. For a data set with unbalanced design, one may reconstruct the response curve
from the observed data points to get estimates of yi (t) over a common grid {t j ; j = 1, . . . ,m}
via proper smoothing techniques, e.g. model-based cross-validation methods [14], kernel-based or
spline-based nonparametric regression methods [17], and robust methods such as LOWESS [18].
The choice of different smoothing techniques usually has little impact on the analysis if there are
plentiful underlying response curves (i.e. yi (t)’s) with fairly smooth functional forms [11].

2.1. A functional F test for hypothesis testing and model selection

An important inference problem is to compare two nested linear models, # and !, where
dim(#) = q , dim(!) = p, and model # results from a linear restriction on the parameters of
model !. There are relatively few satisfactory solutions available in the statistical literature to this
situation. A naive approach is to examine the point-wise F statistics on each time point for testing
!(t). This method carries a serious problem with multiple-comparison and if Bonferroni correction
were applied to the significance level, power would be significantly compromised considering that
repeated measures are often strongly correlated. Ramsay and Silverman [9] and Faraway [10]
proposed permutation- and bootstrap-based tests, which require intensive computation. As pointed
out by Faraway [10], traditional multivariate test statistics such as Wilks’ lambda likelihood ratio
[19] are inappropriate due to the influence of unimportant variation directions.

To overcome these issues, Shen and Faraway [11] proposed a functional F test. Define

F = (rss# − rss!)/(p − q)

rss!/(n − p)

where rss# and rss! are residual sum of squares under models # and !, respectively. The null dis-
tribution of this statistic is ((n− p)/(p−q))

∑∞
k=1 rk$

2
(p−q)/

∑∞
k=1 rk$

2
(n−p), where r1!r2! · · ·!0
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are eigenvalues of the covariance function r(s, t) and all the $2 random variables are independent
of each other. This null distribution can be effectively approximated by an ordinary F distribution
with degrees of freedom df1 = %(p − q) and df2 = %(n − p), where % =

(∑∞
k=1 rk

)2
/
∑∞

k=1 r
2
k is

the degrees-of-freedom-adjustment-factor.
In practice, when repeated measures are observed on an evenly spaced time grid {t1, . . . , tm},

we should replace the integration with summation, compute rss= ∑n
i=1

∑m
k=1 (yi (tk)− ŷi (tk))2/m

and estimate the degrees-of-freedom-adjustment-factor by trace(E)2/trace(E2), where E = "̂
!
is

the empirical covariance matrix computed from the alternative model.
It is important to note that the functional F test works well even when the grid size m is

larger than the sample size n, while most multivariate test statistics [20, 21] would fail. Other
important work addressing the functional testing problem was provided by Fan and Lin [22],
Eubank [23], and Abramovich et al. [24], but they only considered ANOVA-type models and their
test statistics were formed by orthogonal (Fourier or Wavelets) expansion coefficients of response
curves. Eubank [23] proved that among different ways of combining the coefficients into a test
statistic, the L2 norm, a simple sum of the squared coefficients, is asymptotically equivalent to the
uniformly most powerful test when the grid size m goes to infinity. This result provides important
evidence that the functional F-test statistic, which uses L2 norm of the residual curves, is not only
computationally cheaper but also more powerful than other methods.

Model selection is an important issue in regression analysis. Stepwise model selection requires
an easy way of calibrating the p-value of a predictor in the full model, i.e. to test the null hypothesis
‘H0 j : ! j (t) = 0 for j = 1, . . . , p’ against the full model hypothesis ‘H1 : Y (t) = X!(t)+ "(t)’. To
test these hypotheses, one can fit each null model H0 j separately for j = 1, . . . , p, and then use func-
tional F statistics Fj = (rss0 j−rss1)/(rss1/(n− p)) to make a decision on accepting or rejecting the
null model. As shown by Shen and Faraway [11], it is indeed unnecessary to fit all the p null models,
because Fj can be derived from quantities obtained directly from the fitting of the full model H1, i.e.

Fj =
(n − p)

∫
!̂
2
j (t) dt

(XTX)−1
j j rss1

where (XTX)−1
j j denotes the j th diagonal element of (XTX)−1, !̂ j (t) is the estimate of ! j (t), and

rss1 is the residual sum of squares under the full model H1. In practice, the operation of integration
is replaced by that of summation. The null distribution of the functional F statistic Fj can be
approximated by an ordinary F distribution with degrees of freedom df1 = % and df2 = %(n − p),
where % is the degrees-of-freedom-adjustment-factor.

2.2. Diagnostic check

It is important to identify outliers and highly influential curves (subjects) since including them
in the analysis may give misleading results. As in the context of traditional linear regression for
scalar responses, we define jackknife residuals and Cook’s distances for functional regression. Let
H = X (XTX)−1XT be the hat matrix and define leverage hii as the diagonal entry of H . Define
studentized residual as

Si =

√∫
"̂2i (t) dt√

(1 − hii )rss/(n − p)
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and jackknife residual as

Ji =

√∫
"̂2(i)(t) dt

√
[1 + xTi (XT

(i)X(i))−1xi ][rss(i)/(n − p − 1)]

where X(i) is the X matrix with the i th row deleted, "̂2(i)(t) is the i th residual from the model
without the i th curve, and rss(i) is the residual sum of squares from the model without the i th
curve. Define Cook’s distance as

Di =
∫
(!̂(i)(t) − !̂(t))T(XTX)(!̂(i)(t) − !̂(t)) dt

rss
· n − p

p

where !̂(i)(t) is the estimate of !(t) computed without the i th curve.
Shen and Xu [25] showed that jackknife residuals and Cook’s distances can be computed directly

from the studentized residuals and leverages as follows:

Ji = Si

√
n − p − 1

n − p − S2i
and Di =

S2i
p

· hii
1 − hii

These formulas provide efficient computations by avoiding fitting n regression models with each
curve deleted. Shen and Xu [25] also showed that J 2i has a functional F distribution, which can be
approximated by an ordinary F distribution with degrees of freedom df1 = % and df2 = %(n− p−1)
if the i th curve is not an outlier. Thus, we can use the jackknife residual and F test to formally
detect outliers.

3. APPLICATION TO A SMOKING CESSATION CLINICAL TRIAL

3.1. Background of the study, data exploration, and preliminary analysis

A 12-week clinical trial was performed to evaluate relapse prevention (RP) and contingency
management (CM) as smoking cessation therapies for methadone-maintained tobacco smokers
[2]. A total of 174 subjects were randomly assigned to one of four treatment conditions (Control;
RP-only; CM-only; RP+CM). All subjects received nicotine replacement therapy in addition to
their assignment to behavioural therapies: RP and/or CM. The repeated measures of most interest
in this study were breath samples collected three times per week (i.e. m = 36), which were analysed
for carbon monoxide levels (parts per million) to indicate recent tobacco smoking abstinence. The
observed carbon monoxide levels in log-scale and their mean profiles for each group are depicted
in Figure 1. The plots are sometimes called spaghetti plots where the light shaded background
trajectories depicts the connected carbon monoxide levels for each subject. It is seen that the
mean levels remain fairly stable across time for each group, while large variances are notable
between subjects. This suggests that subject-related random effects are necessary to describe
the heterogeneity among the smokers. Participants’ age (Age), baseline carbon monoxide levels
(BaseCO), and numbers of nicotine patches (Patches) were recorded as other predictors along with
treatment conditions.
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Figure 1. Mean levels of the carbon monoxide across the treatment groups. For each plot, the y-axis
indicates log(1+y) transform of the original level of carbon monoxide (p.p.m.), the x-axis indicates
number of clinic visit for study participants (1, . . . , 36). Both individual profiles and the mean profile are
plotted for each of the four treatment conditions: Control, RP-only, CM-only, and RP+CM (RP, relapse

prevention; CM, contingency management).

For significance testing, an insufficient approach was first applied to compare the carbon mon-
oxide levels across treatment conditions on any given time point using the naive point-wise
method. As depicted by Figure 2, at eight points significantly different carbon monoxide levels
were indicated by the point-wise ANOVAwith p-values smaller than 0.001. Because of the problem
of multiple comparison [26], a significance level of 0.001 was used instead of the usual level of
0.05. Although this method provides some useful insights for exploratory purposes, it is relatively
limited in making inferences on the overall treatment efficacy, because there is no simple way
of combining these multiple p-values. Moreover, the point-wise ANOVA ignored the patterns
showing that the average carbon monoxide levels were almost consistently lower for the treatment
conditions involving CM.
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Figure 2. The average and standard deviation (SD) curves for the log-scaled carbon monoxide levels. On
this plot, the four mean curves of the log-scaled carbon monoxide levels and the corresponding point-wise
standard errors are drawn for each of the four treatment conditions: Control, RP-only, CM-only, and
RP+CM (RP, relapse prevention; CM, contingency management). Vertical bars indicate the estimated
standard errors of average carbon monoxide levels. The stars (‘*’) over the x-axis mark the time points
(i.e. visit numbers) where the carbon monoxide levels are significantly different indicated by a point-wise
ANOVA (p-value<0.001). y-axis indicates values of carbon monoxide levels after log(1+y) transform.

x-axis represents number of clinic visit for study participants (1, . . . , 36).

In the original data, about 20% of the carbon monoxide levels were missing due to either
occasional omission or premature withdrawal. To solve this problem, the method of multiple
imputation [27] was applied. After the logarithmic transformation, repeated carbon monoxide lev-
els for each participant could be viewed as multivariate normally distributed (i.e. yi ∼N(&,")).
Specifying a normal prior distribution for the mean vector (i.e. &|"∼N(&0, '

−1")) and an inverted
Wishart distribution for the covariance matrix (i.e. " ∼W−1(r, #)), we conducted multiple
imputation using an R package named norm which implemented the iterative algorithm called
data augmentation [28]. This algorithm consists of two steps per iteration. In the imputation step,
for each person, we drew imputations of missing values conditionally on the observed values using
a conditional normal distribution with parameters drawn in the previous iteration. In the proposing
step, new parameters (&,") were proposed, given the complete data with current imputed values.
Since no prior information was available, Jeffery’s invariance principal was used to derive the
non-informative form for the normal-inverse-Wishart prior distribution, i.e. p(&, ") ∝ |"|−(m+0.5).
The EM algorithm, a sub-function of the norm package, was first run to obtain the maximum
likelihood estimates (i.e. &̂, "̂) as the starting point to initiate the data augmentation procedure.
Various diagnostic tools suggested that the procedure converged within 200 iterations. Continuing
the procedure with 2000 additional iterates, one set of imputed missing values was recorded after
each 500 iterates, yielding totally four complete data sets.
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3.2. Functional regression analysis

For each of the above imputed data sets, a functional regression model, including all the interesting
predictors, was fitted using the method of least squares estimation,

y(t) = !0(t) + CM · !1(t) + RP · !2(t) + CM ∗RP · !3(t)

+BaseCO · !4(t) + Age · !5(t) + Patches · !6(t) + "(t)

where CM= 1 (or 0) indicates whether a subject received CM (or not), RP= 1 (or 0) indicates
whether a subject received RP (or not), and CM ∗RP is an interaction term. In this coding scheme,
the control group was coded as ‘CM= 0 and RP= 0’, and the RP+CM groups was coded by
‘CM= 1 and RP= 1’. Since there was little difference between the four imputed data sets, the
estimated coefficient functions were plotted in Figure 3 for the first imputed data set. Note that
these functions are point-wise estimations and not smoothed. For the purpose of interpretation, one
may consider smoothing the estimates. However, our purpose is mainly on model selection and
the functional F test does not involve smoothing; therefore, we present the unsmoothed point-wise
estimates. The fitted coefficient functions of RP and Age are close to the zero function, indicating
that the treatment effect of the RP and the age effect are negligible. Further, the interaction term
CM ∗RP is not significant, indicating that CM does not interact with RP. Regression coefficient
functions for CM and Patches are negative-valued throughout, suggesting favourable effects of
CM and nicotine patch replacement. By contrast, the positive-valued coefficient function of the
baseline carbon monoxide level implied that the higher the baseline carbon monoxide level, the
more difficult to achieve tobacco abstinence.

The functional F-test statistics and their p-values of each predictor in this model are listed in
Table I. For all four complete data sets, only the terms, CM, BaseCO, and Patches look significant
using significance level ( = 0.05. After removing insignificant terms (RP, CM ∗RP, and Age),
the reduced model was fitted to the imputed data sets. The functional F-test statistics and their
p-values for the remaining terms are listed in Table II. As expected, all predictors were significant
at ( = 0.01 level this time. Since all the four data sets consistently supported the same results, we
accept this three-predictor functional regression model as the final model to make inferences:

y(t)= !0(t) + CM · !1(t) + BaseCO · !2(t) + Patches · !3(t) + "(t)

where the subscript indicating subjects is again suppressed. The fitting of this model indicated that,
after adjusting out the effects of baseline levels (BaseCO) and number of nicotine patches applied
(Patches), CM turned out to be significantly effective in helping this specific group of smokers
achieve tobacco abstinence during treatment.

To check diagnostics for the above-selected model, jackknife residuals and Cook’s distances
for all the imputed data sets were computed. The charts of these statistics from the first imputed
data set are shown in Figure 4. The jackknife residuals for the participants numbered 92 and 93
are bigger than the critical value (with Bonferoni adjustment) of the functional F distribution
at significance level of ( = 0.05. Therefore, these two smokers may be declared as outliers. The
record associated with the subject numbered 92 is also a highly influential point according to the
Cook’s distance. Checking the original records, both points with unusually high values for most of
the observations were noted. After excluding these two ‘outliers’, we re-analysed the data using
the above models and found consistent results.
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Figure 3. Estimated regression coefficient functions in functional regression analysis for the first imputed
data set. The top panel shows the regression coefficient functions corresponding to effects of CM treatment,
RP treatment and their interaction (CM ∗RP); the bottom panel depicts the regression coefficient functions
corresponding to baseline carbon monoxide level (BaseCO), smoker’ age (Age), and number of nicotine
patches a smoker has received during the study (Patches). y-axis indicates values of regression coefficients

and x-axis indicates number of clinic visit for each smoker (1, . . . , 36).

Table I. Observed functional F test statistics (and p-values) for each covariate.

Data set Intercept CM RP CM ∗RP BaseCO Age Patches

Impute 1 98.9(*) 5.98(*) 0.89(0.45) 1.11(0.34) 24.8(*) 1.25(0.29) 24.9(*)
Impute 2 98.0(*) 4.89(*) 0.78(0.51) 1.17(0.32) 24.2(*) 1.83(0.14) 21.6(*)
Impute 3 104.5(*) 5.99(*) 0.71(0.54) 1.07(0.36) 26.1(*) 1.18(0.32) 30.9(*)
Impute 4 96.2(*) 5.01(*) 0.91(0.43) 1.29(0.28) 25.7(*) 1.05(0.37) 24.8(*)

∗ p-values are smaller than 0.01.
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Table II. Functional F-test statistics for each covariate in the final
functional regression model.

Data set Intercept CM BaseCO Patches

Impute 1 254.6 14.71 25.1 27.3
Impute 2 239.3 13.75 24.7 24.0
Impute 3 272.0 15.35 26.6 33.4
Impute 4 250.7 14.04 26.3 26.8

All p-values are smaller than 0.01.

Figure 4. Diagnostics for the first imputed data set. The left panel draws jackknife residuals
and the right panel depicts Cook’s distances calculated from the functional regression model
including three predictors: CM, Baseco, and Patches. In both plots, the x-axis corresponds to
the labels of the 174 participants in the study. The y-axis corresponds to either the values of
jackknife residuals or Cook’s distances. The horizontal line on the jackknife residuals plot shows
the critical value (with Bonferoni adjustment) of the functional F distribution at significance level
of ( = 0.05. Two subjects (numbered 92 and 93) have jackknife residuals noticeable high and

one subject (numbered 92) associates with the highest Cook’s distance.

3.3. A random-intercept model

We also analysed the four complete data sets after imputation by a linear mixed effects model
with random intercept to model heterogeneities across subjects:

yi j = !0 + CM · !1 + RP · !2 + CM ∗RP · !3 + BaseCOi · !4 + Agei · !5

+ Patchesi · !6 + ui + "i j
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where yi j stands for the j th carbon monoxide level of the i th smoker, CM, RP, RP ∗CM, BaseCO,
Age, and Patches are fixed effects that are common for all observations on the same subject,
ui ∼N(0, )2u) is the random intercept effect explaining the heterogeneity across subjects, and
"i j ’s are identically independently distributed normal random errors. Consistent conclusions were
observed by fitting this linear mixed effects model: CM (p-value<0.01) is significant while
RP and CM ∗RP are not. Additionally, Age (p-value= 0.43) is not significant while BaseCO
(p-value<0.01) and Patches (p-value<0.01) are significant.

3.4. Summary

As seen in this example, the scalar linear mixed effects model and the functional regression model
differ in at least two ways. First, in the mixed effects model the fixed effects (i.e. !) are time
independent, while in the functional regression model the effects (i.e. !(t)) are functions over time.
Second, the random-intercept model implicitly assumes a compound symmetry error correlation
structure within each smoker, while the functional regression model does not assume any specific
forms on the intra-subject correlation structure. The time series plots of the estimated coefficient
functions in Figure 3 for the functional regression model provide richer information with intuitive
clinical interpretation than the point estimates of parameters in the mixed effects model. For
example, there appears to be a slightly increasing negative effect of Patches over time. Although
functional regression analysis and scalar linear mixed effects models supported no strong overall
age effect, a negative influence of age on carbon monoxide levels (higher ages associate with lower
carbon monoxide levels) was noticed starting from the eighth week. It appeared that older smokers
stayed longer in the study, and the longer they stayed, the more likelihood they were to achieve
smoking abstinence as measured using carbon monoxide levels. By applying both longitudinal
and functional data analysis to the same set of data, the overall time-averaged treatment efficacy
and the dynamic time-changing effects of treatment can be jointly targeted so that we may obtain
multi-facet enhanced understanding of the studied phenomena.

4. SIMULATION STUDY

To further evaluate the performance of the functional F test, simulation studies were conducted
under similar conditions to the smoking cessation data. Response carbon monoxide levels were
simulated as the weighted average of predicted levels from the full functional regression model (!,
i.e., the one with six predictors) and from the reduced model (#, i.e., the one with three predictors)
plus random errors from two covariance structures: compound symmetric (CS) and autoregressive
type 1 (AR(1)) [1]. For the CS covariance structure, the correlation coefficient between yi j and
yik is the same (i.e., * for j "= k), whereas for the AR(1) case, the correlation strength depends
on the distance between the two observations (i.e., *| j−k|). For both covariance structures, the
residual variance was set as Var(yi j ) = )2 = 0.3, a value similar to the empirical variance seen in
the original data. The weights are varied between 0 (corresponding to the reduced model) and 1
(corresponding to the full model) with an increment of 0.1. For each weight, 1000 sets of data
were generated.

Shen and Faraway [11] compared functional F test with multivariate likelihood ratio test (Wilks’
lambda) and the B-spline multivariate test. Here we investigated the performance of functional F
test in comparison with linear mixed-effects models and Wilks’ lambda test within the Fourier
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Figure 5. Statistical power of the F-test, Wilks’ lambda with Fourier transform, and mixed-effects
model with AIC. The four plots present the statistical power curves of the three methods for two
covariance structures (CS and AR(1)) with two correlation levels (* = 0.5 and 0.8). On each plot,
the x-axis indicates the weights (0–1 with increment of 0.1) used for simulating 1000 data sets at
each weight and the y-axis corresponds to the power, i.e. the probability of correctly rejecting the
null model (i.e. the reduced model), for each method on the 1000 data sets. F , F test; LME, linear

mixed-effects model; FT-Wilks, Wilks’ lambda test after Fourier transform.

frequency domain. Linear mixed-effects models were estimated by maximum likelihood estima-
tion and compared by AIC. The analysis with Fourier transformation is of interest here because
it is a useful approach for multivariate data analysis with many appealing features [22]. The fast
Fourier transformation (FFT) for discrete data [29] was first applied to each simulated data set,
and then the first five Fourier coefficients corresponding to the low frequencies were kept to fit
a multivariate regression model. These five coefficients capture around 97% of the ‘energy’ (i.e.∑n

i=1‖yi‖2 =∑n
i=1

∑m
j=1y

2
i j ) defined in the original time space. In addition to dimension reduc-

tion, the temporal correlations among repeated measures were also reduced by the orthogonalization
of the Fourier transformation.

The plots in Figure 5 show the powers of the three methods for the two covariance structures
with correlation set at * = 0.8 and 0.5. When weight is 0, the reduced model is the true model and
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the power is the size of the test. The simulated sizes are well around the specified significance level
0.05 for all three tests, indicating the functional F test, as well as other two tests, has an accurate
size. For the CS covariance structure, it is seen that the Fourier Wilks’ lambda test is the most
powerful, while the mixed-effects model with AIC is the least. As * elevates up, the powers of the
functional F test and the mixed-effects model with AIC degrade, whereas the power of Fourier
Wilks’ test is strengthened. For the AR(1) case, the power of functional F test is higher than
those of the other two methods when weights are larger than 0.3. It is also observed that the linear
mixed-effects model and Fourier Wilks’ lambda test are comparable to each other with similar
patterns in terms of power. It is of our special interest to notice that the functional regression
model with F test has overall significantly higher power than the linear mixed-effects model for
these simulated smoking data.

Our simulation partially confirms the finding reported by Shen and Faraway [11], that is, the
covariance structure of the error process is influential to the power of the tests. When * = 0.5, the
ordered eigenvalues for the CS and AR(1) structures are (5.55, 0.15, 0.15, 0.15, . . .) and (0.888,
0.856, 0.806, 0.745, . . .), respectively. It is clear that the decreasing rate of the eigenvalues is slower
for the AR(1) structure, thus making the F test more powerful because the degrees-of-freedom-
adjustment-factor is determined not by the actual size of the eigenvalues but their decreasing rate.

We observed that the functional F test is very efficient in computation. For the 1000 simulated
data sets with AR(1) structure and * = 0.5, it took 13 h to fit and compare functional regression
models with F test, whereas it took 225 h, about 17 times longer, to fit and compare linear
mixed-effects models. The simulation was done on a 1GHz CPU Mac Xserve.

We also used simulation to investigate the possible effect of smoothing on the performance
of the diagnostics introduced in Section 2.2. In the simulation, we multiplied the CS or AR(1)
covariance structure by some factor (e.g. 100, 10, 1, 0.1, 0.01) and counted the chance that a
specific curve (e.g. the first curve) was detected as an outlier by using jackknife residual and F
test when it is not. We found that the chance was around the specified significance level, regardless
the covariance structures and the multiplication factors used, indicating that smoothing has little
effect on detecting outliers and influential cases. This is consistent with theoretical results by
Shen and Xu [25], because jackknife residuals and Cook’s distances are functions of studentized
residuals that are scale free in the sense that they do not depend on the overall variance.

5. DISCUSSION

As a companion to the work of Shen and Faraway [11], this paper demonstrates the functional
regression analysis with an F test to analyse a longitudinal data with a fairly large number of
repeated observations measured per subject. The method, as a complement to mixed-effects mod-
els, helped us gain better understandings of the efficacy of the behavioural therapies in a smoking
cessation study. The simulation study indicates that the F test for the functional regression model
has acceptable statistical power when the first few eigenvalues are not predominantly larger than
the rest (e.g. as seen in a CS covariance matrix). By estimating the time-varying regression coef-
ficients and making overall significance test, the F test approach provides a medium to strengthen
the power of traditional functional data analysis, which was basically exploratory in nature, pri-
marily aiming to represent and display data to highlight interesting characteristics. In clinical trials
with repeated measure design, when causal inference is of most concern, the F method could be
applied.
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When applying functional regression analysis, the empirical covariance structures are targeted,
requiring no specific structures. This does not imply that its performance would be independent
of the actual correlation structure. In fact, our simulation study shows that the method is much
more powerful when the correlation structure is auto-regressive rather than CS. For the simulated
data under conditions of the smoking cessation data, it turns out that the F-test method is more
powerful than the linear mixed-effects model. When fitting a mixed-effects model, it is important
to correctly specify the intra-subject correlation and correlations among the random effects. An
extreme case would be comparing models with and without random effects, which may end up
with different estimates of the fixed parameters [30]. Missing values or unbalanced longitudinal
data can be handled naturally by applying smoothing techniques that do not require a common
fixed time-grid. Functional data analysis for sparse and unbalanced longitudinal data was specially
considered in Reference [31]. Additionally, functional regression coefficients provide both intuitive
and time-dependent estimators thereby yielding insights for studying time-varying relationships.

Similar ideas on the functional F test could be traced to Box [32], where the property of
the F-test statistic in the two-way ANOVA for correlated data was studied in detail. Other
ways of functional data analysis were provided by Fan and Lin [22], who used adaptive Ney-
man or thresholding tests on the Fourier or wavelet expansion coefficients of the estimated pa-
rameter function in order to compare groups of curves. As suggested by Eubank [23], these
transform-based methods are complicated and may not ultimately boost power. Since the functional
regression model, restricted to the finite time grid, becomes a standard multivariate problem, it is
natural to try multivariate-based tests. Shen and Faraway [11] carefully compared the performance
of the functional F test with a traditional multivariate likelihood ratio test and its variation, such as a
B-spline coefficient test, and found that the functional F test had at least the following advantages:
(i) it works when the grid size becomes large; (ii) it is stable and not easily influenced by unimportant
variation directions; (iii) it is fairly powerful; and (iv) it is computationally cheap. These reasons pro-
vide strong rationale for applying functional regression analysis with functional F test in practice.

There are several limitations with the current F-test method for functional regression analysis.
First, it does not handle functional or time-varying predictors, which restricts its application in many
practical settings when a battery of covariates are measured repeatedly along the outcome variable.
Second, the method models repeated measures that are assumed of Gaussian distribution. Although
the large sample theory ensures the use of functional regression analysis in wider applications, more
specific or generalized forms of functional F-test statistics need to be developed for other types of
longitudinal data, e.g. generalized functional linear models [33]. Another limitation comes from
missing data problems, which is a common problem also for standard longitudinal modelling in
practice. In the smoking cessation data, missing data were assumed ‘ignorable’ [27], so that multiple
imputations could be created using an MCMC algorithm. When assuming such a process, analyses
based only on observed data, while ignoring missing values, would provide unbiased estimates.
Unfortunately, this assumption of ignorability could not be verified in this smoking cessation study
without follow-up investigations [34]. It is urgent that functional regression analysis be developed
to analyse longitudinal data sets with informative missing values [4].
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