
Stats 201B (W14) Regression Analysis: Model Building, Fitting, and Criticism

• Textbook: J. J. Faraway (2005). “Linear Models with R,” Chapman & Hall.

Chapter 1. Introduction

Before you start

• Look before you leap!

• Understand the physical problem and objective

• Put the problem into stat. terms

• Understand how the data were collected.

– experimental data

– observational data (survey data)

– nonresponses/ missing values?

– how are the data coded (for qualitative variables)?

– possible errors?

Initial data analysis

• numerical summaries (mean, sd, min, max, cor, etc.)

• graphical summaries (boxplots, histograms, scatter plots, etc.)

• look for outliers, data-entry errors, skewed or unusual distribu-

tions

• cleaning and preparing data for analysis is an important part in

practice

Example data(pima)
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• Any missing or unusual observations?

• What does 0 represent for each variable?

• missing values are coded in various ways in practice!

Regression Analysis models the relationship between

• response y (output or dependent variable)

• and predictors x1, . . . , xk (input, independent or explanatory

variables)

Types of regressions

• simple regression: k = 1

• multiple regression: k > 1

• response y is often continuous

• predictors can be continuous or discrete (categorical)

• ANOVA (analysis of variance): all predictors are qualitative

• ANCOVA (analysis of covariance): a mix of continuous and dis-

crete predictors

• When response y is discrete, logistic regression or Poisson

regression could be used.

• multivariate multiple regression: multiple responses y1, . . . , ym

Objectives of regression analysis

• prediction of future observations

• assessment of effects of, or relationship betweens x’s and y
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• description of data structure

History

• Gauss developed least squares methods in early 1800.

• Galton coined the term ”regression to mediocrity” in 1825 when

he studied the heights of sons and fathers as

y − ȳ
SDy

= r
x− x̄
SDx

where r is the correlation between x and y.

• phenomenon (regression effect): sons of tall fathers tend to

be tall but not as tall as their fathers while sons of short fathers

tend to be short but not as short as their fathers.

Example data(stat500)
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Chapter 2. Linear Model/Estimation

1. Linear Model

Consider a general model

Y = f (x1, . . . , xk) + ε

where f () is an unknown function and ε is random error. This model

is too general and not useful at all. A more practical approach is to

restrict f () to some parametrical form, say f is a linear function of

the predictors as follows.

Linear Model:

y = β0 + β1x1 + . . . + βkxk + ε,

where y is the response (dependent variable), xi are predictors (co-

variates, independent variables), βi are unknown regression coef-

ficients, and ε is a random error. Assume that E(ε) = 0 and

var(ε) = σ2.

Remarks:

1. In a linear model, the parameters βi enter linearly, the predictors

do not have to be linear.

y = β0 + β1x1 + β2 log(x2) + β3x1x2 + ε

is a linear model.

y = β0 + β1x
β2
1 + ε

is not a linear model.

2. linear models seem restrictive, but are actually very flexible, be-

cause predictors can be transformed and combined in many ways.
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3. Truly nonlinear models are rarely absolutely necessary (unless

supported by theory).

For data with n observations (yi, xi1, . . . , xik), the model is:

yi = β0 + β1xi1 + . . . + βkxik + εi, i = 1, . . . , n.

• Assume that εi are independent with mean 0 and common vari-

ance σ2.

In matrix form, the model is

y = Xβ + ε, E(ε) = 0, cov(ε) = σ2I

where

y =

 y1
...

yn

 , X =

 1 x11 . . . x1k
... ... ... ...

1 xn1 . . . xnk

 , β =


β0

β1
...

βk

 , ε =

 ε1
...

εn


• X , an n × p matrix, is called the model matrix, where p =

k + 1 here.

• β is a vector of unknown regression coefficients.

• ε is a vector of random errors.

2. Estimation

The least squares estimate of β minimizes

L =

n∑
i=1

ε2
i = εT ε = (y −Xβ)T (y −Xβ)

5



Let
∂L

∂β
= −2XT (y −Xβ) = 0

The normal equations are

XTXβ = XTy

The least squares estimate (LSE) is

β̂ = (XTX)
−1
XTy,

The predicted or fitted values are

ŷ = Xβ̂ = X(XTX)
−1
XTy = Hy,

where H = X(XTX)
−1
XT is the hat matrix.

• The hat matrix plays an important role in residual analysis.

• Property: H is idempotent, i.e., H2 = H .

The residuals are

ε̂ = y −Xβ̂ = y −Hy = (I −H)y

The residual sum of squares (RSS) is

RSS = ε̂T ε̂ = yT (I −H)(I −H)y = yT (I −H)y

An unbiased estimate of σ2 is

σ̂2 =
RSS

n− p
= MSE,

where n− p is the degrees of freedom of the model.

The least squares estimate has a nice geometrical interpreta-

tion (Fig. 2.1).
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Properties of the least squares estimate β̂

1. LSE β̂ is an unbiased estimator of β, i.e., E(β̂) = β.

2. The covariance depends on σ and the model matrix, cov(β̂) =

σ2(XTX)
−1

.

3. LSE β̂ is max. likelihood estimator (MLE) if ε has a normal

distribution.

4. Gauss-Markov Theorem: If the model is correct andE(ε) =

0 and cov(ε) = σ2I , then β̂ is the best linear unbiased estimator

(BLUE).

Examples of calculating β̂

1. mean only model: yi = µ + εi

X = 1n, β = µ,

β̂ = (XTX)
−1
XTy = (1T1)−11Ty =

1

n
1Ty = ȳ

2. simple linear regression (one predictor): yi = β0 + β1xi + εi

y = Xβ + ε means

 y1
...

yn

 =

 1 x1
... ...

1 xn

( β0

β1

)
+

 ε1
...

εn


A simpler approach:

yi = β0 + β1x̄ + β1(xi − x̄) + εi = β′0 + β1(xi − x̄) + εi

Then

X =

 1 x1 − x̄
... ...

1 xn − x̄

 , XTX =

(
n 0

0
∑

(xi − x̄)2

)
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(
β̂′0
β̂1

)
= (XTX)−1XTy

=

( 1
n 0

0 1∑
(xi−x̄)2

)(
1 · · · 1

x1 − x̄ · · · xn − x̄

) y1
...

yn


β̂′0 =

1

n

∑
yi = ȳ, β̂1 =

∑
(xi − x̄)yi∑
(xi − x̄)2

, β̂0 = ȳ − β̂1x̄

Remarks:

• In general, it is quite complicated to compute the inverse of

XTX .

• However, the computation is easy if XTX is diagonal, which

happens for designed experiments.

• WhenXTX is diagonal, estimates of β̂1, . . . , β̂p are uncorrelated.

(why?)

3. Goodness of fit

The coefficient of multiple determination

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

= 1−
∑

(ŷi − yi)2∑
(yi − ȳ)2

= 1− RSS

TotalSS

is a measure of goodness of fit.

• It tells the percentage of variation in y explained by the regres-

sion model.

• 0 ≤ R2 ≤ 1.

• Large R2 (close to 1) indicates a good fit.
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• A largeR2 does NOT necessarily imply that the regression model

is a good one.

• Caution: If the model does not include the intercept, R2 defined

here is not meaningful.

Example data(gala)

4. Identifiability

LSE normal equations:

XTXβ̂ = XTy

where X is an n× p matrix, XTX is a p× p matrix.

• If XTX is singular (rank(XTX) < p), the inverse does not

exist and β̂ is unidentifiable.

• It happens when some columns of X are linearly dependent.

• Common in experimental design, e.g., 2-sample comparison ex-

periment or one-way layout.

yij = µ + αi + εij, i = 1, 2; j = 1, . . . ,m

• Caution: R fits the largest identifiable model automatically.

• In practice, be careful about near un-identifiability (near collinear-

ity).

Example data(gala)
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Gauss-Markov Theorem: LSE β̂ is BLUE.

Proof. Let A = (XTX)−1XT . Then AX = (XTX)−1XTX = I ,

AAT = (XTX)−1XTX(XTX)−1 = (XTX)−1.

LSE β̂ = Ay is a linear combination of the random response vector

y.

Let β̂∗ = By be any other linear transformation of y, where B is

a p× n matrix of fixed coefficients. Denote D = B − A. Then

E(β̂∗) = E(By) = BE(y) = BXβ = (D + A)Xβ = DXβ + β.

So β̂∗ is unbiased iff DX = 0.

V (β̂∗) = V (By) = BV (y)BT = B(σ2I)BT = σ2BBT

= σ2(A + D)(A + D)T = σ2(AAT + DDT )

Note ADT = (XTX)−1XTDT = 0 and DTA = 0 since DT = 0 for

any unbiased estimator. So

V (β̂∗) = σ2((XTX)−1 + DDT )

V (β̂∗) = V (β̂) + σ2DDT ≥ V (β̂)

because DDT ≥ 0 is semi-positive definite (i.e., for any vector a,

aTDDTa = ãT ã =
∑
ã2
i ≥ 0).

Gauss-Markov Theorem implies that for any linear combination

of β, say aTβ, LSE aT β̂ is BLUE.

V (aT β̂) = aTV (β̂)a = σ2aT (XTX)−1a

V (aT β̂∗) = aTV (β̂∗)a = aTV (β̂)a+σ2aTDDTa ≥ σ2aT (XTX)−1a.
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Chapter 3. Linear Model/Inference

y = Xβ + ε, E(ε) = 0, cov(ε) = σ2I

For statistical inference, it is further assumed that the errors follow

a normal distribution, i.e., ε ∼ N(0, σ2I).

3.1 Hypothesis Tests

to compare two nested linear models,

• Null H0: smaller model ω, dim(ω) = q

• Alternative H1: larger model Ω, dim(Ω) = p

Basic idea:

• Geometric representation (Fig. 3.1)

• reject H0 if RSSω −RSSΩ is large.

• or reject H0 if the ratio (RSSω −RSSΩ)/RSSΩ is large.

The F test statistic

F =
(RSSω −RSSΩ)/(dfω − dfΩ)

RSSΩ/dfΩ
=

(RSSω −RSSΩ)/(p− q)
RSSΩ/(n− p)
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• This is indeed the maximum likelihood ratio test statistic.

• When ε ∼ N(0, σ2I), the F statistic has an F distribution with

df p− q and n− p, i.e., F ∼ Fp−q,n−p, under the null model ω.

• Reject H0 at level α if F > Fα,p−q,n−p. (upper αth percentile,

F
(α)
p−q,n−p )

• P-value = P (Fp−q,n−p > F ).

• works when ω is a subset or subspace of Ω.

3.2 Testing Examples

a. Test of all the predictors. Are any of the predictors useful?

Model: y = Xβ + ε or y = β0 + β1x1 + . . . + βkxk + ε

H0 : β1 = . . . = βk = 0

H1 : βj 6= 0 for at least one j ≥ 1

Here p = k + 1, q = 1, ω is y = β0 + ε and β̂0 = ȳ under ω. So

RSSω = (y − ȳ)T (y − ȳ) =
∑

(yi − ȳ)2 = SST (or TSS)

RSSΩ = (y −Xβ̂)T (y −Xβ̂) = SSE (or RSS)

ANOVA table for testing all predictors

Source DF SS MS F

Regression p− 1 SSreg MSreg =
SSreg
p−1 F =

MSreg
MSE

Error (or residual) n− p SSE MSE = SSE
n−p

Total n− 1 SST
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P-value = P (Fp−1,n−p > F )

Remarks

• A failure of reject the null is not the end of the analysis!

• “Fail to reject” the null is not the same as “accept” the null.

• Rejecting the null does not imply the alternative model is the

best model.

Example data(savings)

b. Testing just one predictor. Can one particular predictor be

dropped?

Model: y = β0 + β1x1 + . . . + βkxk + ε

H0 : βj = 0, H1 : βj 6= 0

Here p = k + 1, q = p − 1 = k and ω has one parameter less than

Ω. So RSSω is obtained by fitting a regression without predictor xj.

The F test statistic is

F =
(RSSω −RSSΩ)/(p− q)

RSSΩ/(n− p)
=

(RSSω −RSSΩ)

RSSΩ/(n− p)

∼ F1,n−p under H0

Alternatively, use a t-test

t =
β̂j

se(β̂j)
=

β̂j

σ̂
√

(XTX)−1
jj

∼ tn−p under H0

• Reject H0 at level α if |t| > tα/2,n−p

• P-value = P (|tn−p| ≥ |t|).

Remarks
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• Fact: F = t2 when testing one predictor only.

• The result (of testing βj = 0) depends on other predictors xi in

the model. (Why?)

Example data(savings)

c. Testing a pair of predictors.

Suppose both xi and xj have p-values > 0.05. Can we eliminate

both from the model?

d. Testing a subspace. For model:

y = β0 + β1x1 + β2x2 + . . . + βkxk + ε

Can we combine two variables (x1 + x2) to simplify the model as

y = β0 + β12(x1 + x2) + β3x3 + . . . + βkxk + ε

The null hypothesis is a linear subspace of the original model.

What is the null hypothesis here?

Example data(savings)

3.3 Permutation Tests

• The F or t test assumes the errors are normally distributed.

• A permutation test does not require the normality assumption.

• Procedure:
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– consider all n! permutations of the response variable

– compute the F statistic for each permutation

– compute proportion of F statistics exceed the observed F

statistic for the original response

• The proportion is estimated by the p-value calculated in the

usual way (assuming normal errors).

• When n is large, do a random sample of the n! permutations.

• To test one predictor (xi): permute that predictor (xi) rather

than the response y.

Example data(savings)

3.4 Confidence Intervals (CIs) for β

The 100(1-α)% CI for βj is

β̂j ± tα/2,n−p · se(β̂j) = β̂j ± tα/2,n−pσ̂
√

(XTX)−1
jj

• The 100(1− α)% CI for βj does not contain 0 if and only if the

t test rejects H0 : βj = 0 (vs H1 : βj 6= 0) at level α.

The 100(1-α)% confidence region for β is

(β̂ − β)T (XTX)(β̂ − β) ≤ pσ̂2Fα,p,n−p

• The confidence region is ellipsoidally shaped.

• The 100(1 − α)% confidence region for β does not contain the

origin if and only if the F test rejects H0 : β = 0 at level α.

• CIs and confidence region may give conflict conclusions. Why?
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• The conclusion from confidence region is preferred to individual

CIs.

Example data(savings)

• Distinguish the correlation between predictors, cor(xi, xj), and

correlation between estimators, cor(β̂i, β̂j)

3.5 CIs for Predictions

For a new set of predictors x0, the predicted response is ŷ0 = xT0 β̂.

var(ŷ0) = var(xT0 β̂) = xT0 cov(β̂)x0 = σ2xT0 (XTX)−1x0

• The 100(1-α)% CI on the mean response is

ŷ0 ± tα/2,n−pσ̂
√
xT0 (XTX)−1x0

• The 100(1-α)% prediction interval for a future observa-

tion is

ŷ0 ± tα/2,n−pσ̂
√

1 + xT0 (XTX)−1x0

• The prediction intervals become wider as x0 moves away from

the data center.

• Caution on extrapolation (when the new x0 is outside the range

of the original data)

Example data(gala)

3.6 Designed Experiments

In a designed experiment, we have some control overX and can make

it orthogonal or near orthogonal. Two important design features:
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• orthogonality

• randomization

which allows us to make stronger conclusions from the analysis.

Suppose X = (X1X2) such that XT
1 X2 = 0 and β =

(
β1

β2

)
.

y = Xβ + ε = X1β1 + X2β2 + ε

XTX =

(
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

)
=

(
XT

1 X1 0

0 XT
2 X2

)
β̂ = (XTX)−1XTy =

(
XT

1 X1 0

0 XT
2 X2

)−1(
XT

1 y

XT
2 y

)
β̂1 = (XT

1 X1)−1XT
1 y, β̂2 = (XT

2 X2)−1XT
2 y

• Estimate of β1 does not depend on whether X2 is in the model

or not.

• Does the significance of β1 depend on whether X2 is in the model

or not? Why?

• Randomization provides protection against the influence of un-

known lurking variables

Example data(odor) vs data(savings)

3.7 Observational Data

• Interpreting models built on observational data is problematic.

ŷ = β̂0 + β̂1x1 + β̂2x2

• What does β̂1 mean?
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• “A unit change in x1 will produce a change of β̂1 in the re-

sponse”?

• “β̂1 is the effect of x1 when all the other specified predictors are

held constant”?

• prediction is more stable than parameter estimation.

Example data(savings)

3.8 Practical Difficulties

y = Xβ + ε

We have gone over the linear model theory of estimation and infer-

ence. What are the difficulties?

Albert Einstein: “So far as theories of mathematics are about

reality; they are not certain; so far as they are certain, they are not

about reality.”

• Nonrandom samples

• Choice and range of predictors

• Model misspecification. George Box:

“All models are wrong but some are useful.”

• Publication and experimenter bias

• Practical and statistical significance
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Chapter 4. Linear Model/Diagnostics

Y = Xβ + ε, ε ∼ N(0, σ2I)

Regression Diagnostics: Use residuals to check assumptions

• Errors: independent, equal variance, normally distributed?

• Model structure: E(y) = Xβ?

• Unusual observations: outliers, influential cases?

4.1 Checking Error Assumptions

Residuals. ε̂ = y − ŷ = (I −H)y,

cov(ŷ, ε̂) = cov(Hy, (I−H)y) = Hcov(y)(I−H)T = σ2H(I−H) = 0

• ŷ and ε̂ are uncorrelated if errors are independent.

cov(ε̂) = cov((I−H)y) = (I−H)cov(y)(I−H)T = σ2(I−H)

• ε̂i may be correlated even if εi are independent.

• ε̂i may not have equal variance even if εi do.

• but we still use residuals as the impact is usually small.

Residual plots

• residuals vs. fitted: plot ε̂i (or ri defined in section 4.2) vs. ŷi

• residuals vs. predictors: plot ε̂i (or ri) vs. xij for each j

• check model structure, constant variance, nonlinearity, outliers

(see Fig. 4.1)
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Example data(savings)

How to deal with nonconstant variance?

• Use weighted least squares (Section 6.1) if we know the form of

nonconstant variance.

• Transform the response

How to choose a function h() so that var(h(y)) is constant?

h(y) = h(Ey) + (y − Ey)h′(Ey) + · · ·

var(h(y)) = h′(Ey)2var(y) + · · ·
Ignoring higher order terms, for var(h(y)) to be constant, make

h′(Ey) ∝ (var(y))−1/2

h(y) =

∫
(var(y))−1/2dy =

∫
1

sd(y)
dy

Two commonly used transformations:

• If var(y) = var(ε) ∝ (Ey)2, then h(y) = log(y)

• If var(y) = var(ε) ∝ (Ey), then h(y) =
√
y

Example data(gala)

Normality? Normal Q-Q plot:

• plot sorted ε̂i (or ri) against standard normal quantiles Φ−1( i
n+1)

for i = 1, . . . , n, where Φ is the cdf for N(0, 1).

• points shall close to a straight line if the model is correct and

errors are N(0, σ2I).

What to do when non-normality is found?
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• For short-tailed distribution, not a serious problem and can be

ignored.

• For skewed errors, try to transform the response.

• For long-tailed errors, need to do something ...

Correlated errors?

• For temporal or spatial data, errors are often correlated.

• graphical check:

– plot ε̂ against time (or run order)

– plot ε̂i against ε̂i−1

• Durbin-Watson test

DW =

∑n
i=2(ε̂i − ε̂i−1)2∑n

i=2 ε̂
2
i

Example data(airquality)

4.2 Finding unusual observations

Leverage: hi = hii, the ith diagonal element ofH = X(XTX)−1XT

cov(ε̂) = σ2(I −H) so var(ε̂i) = σ2(1− hii)

• A large leverage hii will make var(ε̂i) small.

• Points far from the center of the x space have large leverages.

•
∑

i hii = p.

• Rule of thumb: look more closely if hii > 2p/n.
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Standardized Residuals (or internally studentized residuals):

ri =
ε̂i

σ̂
√

1− hii
• ri has approximately variance 1 when the model is correct and

assumptions hold.

• ri may be preferred to ε̂i (e.g., in R)

Outliers? Which one is an outlier in Fig. 4.10, p. 66?

How to test whether case i is a potential outlier?

• Remove it from the data and recompute the estimates.

• Let β̂(i) and σ̂(i) be the estimate of β and σ without case i.

• The fitted value for case i is

ŷ(i) = xTi β̂(i)

• If yi − ŷ(i) is large, case i is an outlier.

var(yi − ŷ(i)) = var(yi) + var(ŷ(i)) = σ2 + σ2xTi (XT
(i)X(i))

−1xi

Studentized residuals (or jackknife residuals):

ti =
yi − ŷ(i)

σ̂(i)

√
1 + xTi (XT

(i)X(i))−1xi

• ti ∼ tn−p−1 if case i is not an outlier. Why?

• σ̂2
(i) is an unbiased estimator of σ2 and has df=n− p− 1.

• ti is a function of ri (so no need to fit n regressions)

ti =
ε̂i

σ̂(i)

√
1− hii

= ri

√
n− p− 1

n− p− r2
i
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• declare case i as an outlier (with Bonferroni correction) if |ti| >
tα/(2n),n−p−1.

• may not work if there are two or more outliers next to each other.

• An outlier in one model may not be an outlier in another model.

What should be done about outliers? Read page 68.

Example data(savings) and data(star)

Influential Cases and Cook’s Distance

Let β̂(i) be the estimate of β without case i.

Let ŷ(i) = Xβ̂(i) be the fitted values without case i.

Cook’s distance is

Di =
(ŷ(i) − ŷ)T (ŷ(i) − ŷ)

p · σ̂2
=

(β̂(i) − β̂)T (XTX)(β̂(i) − β̂)

p · σ̂2

• Large Di implies case i is influential (the estimates and fitted

values will be quite different with or without case i).

Di =
r2
i

p

hii
1− hii

• A highly influential case must have a large leverage or a large

standardized residual.

• An influential case may, but not necessarily, be an outlier; see

Fig. 4.10, p. 66.

Example data(savings)
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4.3 Checking the model structure

• residual plots (ε̂ vs. ŷ and xi) may reveal problems of model

structure, but

• other predictors can impact the relationship between y and xi

Added variable plot (or partial regression plot) can help

isolate the effect of xi on y

• regress y on all x except xi, and get residuals δ̂.

• regress xi on all x except xi, and get residuals γ̂.

• plot δ̂ against γ̂.

• fit a regression line to the plot. The slope is β̂i.

Partial residual plot

y −
∑
j 6=i

xjβ̂j = ŷ + ε̂−
∑
j 6=i

xjβ̂j = ε̂ + xiβ̂i

• plot ε̂ + β̂ixi against xi.

• The slope of the fitted line is also β̂i.

• better for nonlinearity detection than added variable plot.

Example data(savings)
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Chapter 5. Problems with the Predictors

What will change if we scale the predictors or response?

• If xi −→ (xi + a)/b, then β̂i −→ bβ̂i

• If y −→ by, then β̂ −→ bβ̂ and σ̂ −→ bσ̂

• The t-tests, F-tests and R2 are unchanged.

• Scaling or standardizing the predictors and response makes com-

parisons simpler.

Example data(savings)

Collinearity

• If XTX is close to singular, we have collinearity (or multi-

collinearity).

• Collinearity causes serious problems with the estimation of β

and interpretation.

Ways to detect collinearity

• Examine correlation matrix.

• Regress xj on all other predictors, get R2
j . A large R2

j (close to

one) indicates a problem.

• Examine the eigenvalues of XTX . Let λ1 ≥ . . . ≥ λp be the

eigenvalues.

• The condition number

κ =

√
λ1

λp

where κ ≥ 30 is considered large.
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Let

Sxjxj =
∑
i

(xij − x̄j)2

Then

var(β̂j) = σ2

(
1

1−R2
j

)
1

Sxjxj

• var(β̂j) will be large if Sxjxj is small.

• var(β̂j) will be large if R2
j is close to 1.

• var(β̂j) will be minimized if R2
j = 0.

• variance inflation factor: vif = 1
1−R2

j

• design strategy:

– spread X to make Sxjxj large.

– make predictors orthogonal to make R2
j = 0.

• one cure of collinearity is amputation, i.e., drop some (redun-

dant) predictors.

Example data(seatpos)
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Chapter 6. Problems with the Errors

Y = Xβ + ε, ε ∼ N(0, σ2I)

• Assume errors are independent, equal variance, normally dis-

tributed

• What to do if errors are not?

6.1 Generalized Least Squares

If we know the error variance structure, say,

var(ε) = σ2Σ = σ2SST ,

where Σ = SST is the Choleski decomposition and S is a triangular

matrix.

Y = Xβ + ε

S−1Y = S−1Xβ + S−1ε

Consider the transformed variables and model,

Y ′ = S−1Y,X ′ = S−1X, ε′ = S−1ε

Y ′ = X ′β + ε′

var(ε′) = var(S−1ε) = S−1var(ε)S−T = S−1σ2SSTS−T = σ2I

So the Generalized LS (GLS) is an ordinary LS (OLS) for the trans-

formed model,

β̂ = (X ′
T
X ′)−1X ′

T
Y ′ = (XTΣ−1X)−1XTΣ−1Y

var(β̂) = σ2(X ′
T
X ′)−1 = σ2(XTΣ−1X)−1

RSS = (Y ′ −X ′β̂)T (Y ′ −X ′β̂) = (Y −Xβ̂)TΣ−1(Y −Xβ̂)

Diagnostics should be applied to the residuals ε̂′ = S−1ε̂.
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• Main problem in practice: Σ is unknown

• need to estimate Σ from data, not easy

• need to guess the form of Σ in many cases

• Two popular correlation structures:

– completely symmetrical (CS): Σij = ρ for i 6= j

– autoregressive AR(1) : Σij = ρ|i−j|

εi+1 = ρεi + δi

Example data(longley)

6.2 Weighted Least Squares

WLS is a special case of GLS,

• errors are uncorrelated but have unequal variances

Σ = diag(1/w1, . . . , 1/wn)

• so S = diag(
√

1/w1, . . . ,
√

1/wn) and

• regress
√
wiyi on

√
wixi ( and

√
wi1)

• E.g., if var(εi) ∝ xi suggest wi = 1/xi.

• E.g., if yi is the average of ni observations, var(εi) = σ2/ni
suggest wi = ni.

• use
√
wiε̂i for diagnostics

Example data(fps)
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6.3 Testing for Lack of Fit

• If the model is correct, σ̂2 is an unbiased estimator of σ2.

• but we do not know σ2 and

• σ̂2 depends on the model.

• If we have replicates in the data, we can have an estimate of

σ2 that does not depend on any model.

Let yij be the ith observation in the group of replicates j.

• “pure error” estimate of σ2 is SSpe/dfpe, where

SSpe =
∑
j

∑
i

(yij − ȳj)2

dfpe =
∑
j

(#replicates− 1) = n−#groups

• this is indeed the σ̂2 from the one-way ANOVA model with group

as a factor.

yij = µ + τj + εij

• Caution: whether the replicates are genuine?

• Caution: avoid overfitting with complex model.

Example data(corrosion)
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6.4 Robust Regression

• LSE is clearly the best when the errors are normal, but

• other methods are preferred for long-tailed error distributions.

M-Estimation chooses β to minimize

n∑
i=1

ρ(yi − xTi β)

• ρ(x) = x2 is just least squares (LS)

• ρ(x) = |x| is called least absolute deviation (LAD) regression or

L1 regression

• Huber’s method is a compromise between LS and LAD

ρ(x) =

{
x2/2 if |x| ≤ c

c x− c2/2 otherwise

where c should be a robust estimate of σ, e.g., a value propor-

tional to the median of ε̂.

Robust regression is similar to WLS with weight function w(u) =

ρ′(u)/u; see page 99.

• LS: w(u) is constant

• LAD: w(u) = 1/|u|

• Huber:

w(u) =

{
1 if |u| ≤ c

c/|u| otherwise

• weights wi = w(ui) depend on the residuals ui = yi−
∑p

j=1 xijβ̂j
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• so use an iteratively reweighted least squares (IRWLS) approach

to fit.

v̂ar(β̂) = σ̂2(XTWX)−1

where W = diag(w1, . . . , wn).

Example data(gala)

Least Trimmed Squares (LTS) minimizes

q∑
i=1

ε̂2
(1)

where q is some number less than n and

• ε̂(1) ≤ . . . ≤ ε̂(n) are ordered residuals.

• LTS is a resistant regression method and can tolerate a large

number of outliers.

• default choice of q in ltsreg is bn/2c+ b(p+ 1)/2c where bxc
is the largest integer ≤ x.

Bootstrap is a general method to obtain standard errors or confi-

dence intervals

• Generate ε∗ by sampling with replacement from ε̂1, . . . , ε̂n

• Form y∗ = Xβ̂ + ε∗

• Compute β̂∗ from (X, y∗)

Read summary on page 105-106.

Example data(gala) and data(star)
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Chapter 7 Transformation

7.1 Transforming the Response

Box-Cox Method For y > 0, consider y −→ gλ(y)

gλ(y) =

{
yλ−1
λ λ 6= 0

log y λ = 0

• choose λ to maximize the log-likelihood

L(λ) = −n
2

log(RSSλ/n) + (λ− 1)
∑

log yi

• A 100(1− α)% CI for λ is

λ : L(λ) > L(λ̂)− 1

2
χ2

1
(1−α)

• Box-Cox method gets upset by outliers

• If maxi yi/mini yi is small, the Box-Cox method will not have

much real effect.

• choose a convenient λ for easy of interpretation

• remember to transform back to the original scale. For example,

log(y) = β0 + β1x + ε

y = exp(β0 + β1x) exp(ε)

the errors enter multiplicatively not additively as they usu-

ally do.

Example data(savings)
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7.2 Transforming the Predictors

• replace x with more than one term, say f (x) + g(x) + · · ·

• add cross-product terms, say xixj, etc.

• fit different models in different regions, e.g., subset regression

Broken Stick Regression is continuous but non-smooth

y = β0 + β1Bl(x) + β2Br(x) + ε

where Bl(x) and Br(x) are two hockey-stick functions:

Bl(x) =

{
c− x if x < c

0 otherwise
Br(x) =

{
x− c if x > c

0 otherwise

Polynomials are flexible and smooth

y = β0 + β1x + . . . + βdx
d + ε

• Two ways to choose d: sequentially add or delete terms

• Do no eliminate lower order terms from the model

• Orthogonal polynomials are useful

y = β0 + β1φ1(x) + . . . + βdφd(x) + ε

where φi(x) is a polynomials of order i, and orthogonal, i.e.,∑
x φi(x)φj(x) = 0 for i 6= j.

• Response surface models for more than one predictors

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε
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Example data(savings)

Regression Splines are smooth and have local influence property

y = β0 + β1φ1(x) + . . . + βdφd(x) + ε

where φi(x) are B-spline basis functions on the interval [a, b]

• requires knotpoints t1, . . . , tk

• A basis function is continuous and smooth (derivative φ′i(x) is

continuous).

• A cubic B-spline basis function is nonzero on an interval defined

by four successive knots and zero elsewhere.

• A cubic B-spline basis function is a cubic polynomial for each

subinterval between successive knots.

• A basis function integrates to one over its support.

• The broken stick regression is an example of linear splines.

Example simulated data

y = sin3(2πx3) + ε, ε ∼ N(0, (0.1)2)

Remarks

• many possible ways to transform the predictors

• many different models with various complexity

• Complex models may be good for prediction but difficult to in-

terpret

• For small data sets or where the noise level is high, standard

regression is most effective.
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Chapter 8 Variable Selection

Intended to select the “best” subset of predictors. Why?

• To explain the data in the simplest way. “The simplest is best”.

• To reduce the noise or variation of the estimation.

• To avoid collinearity

How to choose subset?

• Backward elimination: Start with all predictors, get rid of

the least significant one, repeat until some criterion is reached

(i.e., all predictors are significant at a chosen level)

• Forward selection: Start with no predictor, add the most

significant predictor, repeat until some criterion is reached (i.e.,

all predictors are not significant at a chosen level)

• Stepwise selection: combination of backward and forward

selection.

• Criterion-based procedures: search over various models

(e.g., all subset regressions) and choose a model based on a cri-

terion (e.g., AIC, BIC, Adjusted R2, Cp, etc.)

Akaike Information Criterion (AIC)

AIC = −2 max log-likelihood + 2p

For regression, −2 max log-likelihood = n log(RSS/n) + constant.

Bayes Information Criterion (BIC)

BIC = −2 max log-likelihood + p log n
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Adjusted R2

R2
a = 1− RSS/(n− p)

TSS/(n− 1)
= 1−

(
n− 1

n− p

)
(1−R2) = 1− σ̂2

model

σ̂2
null

Mallow’s Cp

Cp =
RSSp
σ̂2

+ 2p− n

• RSSp is the RSS from the model with p predictors

• σ̂2 is from the model with all predictors

• for the model with all predictors, σ̂2 = RSSp/(n − p) so Cp =

(n− p) + 2p− n = p

• If a model fits poorly, then RSSp will be large and Cp > p.

• choose models with small p and Cp around or less than p

Example data(state)

Chapter 9 Shrinkage Methods

9.1 Principal Component Regression

9.2 Partial Least Squares

9.3 Ridge Regression β̂ = (XTX + λI)−1XTy

Chapter 10 Statistical Strategy and Model Uncertainty

Diagnostics, Transformation, Variable selection, Diagnostics, ...

Chapter 11 A Complete Example

Chapter 12 Missing Data: Imputation
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Chapter 13 Analysis of Covariance

• deal with a mixture of quantitative (numeric) and qualitative

(categorical) predictors

• use dummy variables or contrast coding for qualitative

predictors

• for a factor of k groups (or levels), define k dummy variables,

d1, . . . , dk

dj =

{
1 if a case belongs to group j

0 otherwise

• Note: d1 + · · · + dk = 1

• so only need k − 1 dummy variables

• or use any k − 1 linear combinations of the k dummy variables

• The default choice in R is the treatment coding, which use

the last k−1 dummy variables, so the first group is the reference

(or base) group.

• The choice of coding does not affect the R2, σ̂2 and overall F -

statistic.

• but it does affect the β̂.

• The interpretation of the estimation depends on the coding.

• interaction between a categorical and numeric variable is often

of interest.
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Example data(sexab)

y = ptsd (Post-traumatic stress disorder on standard scale)

x = cpa (Childhood physical abuse on standard scale)

d = csa (Childhood sexual abuse - abused or not abused)

d = csa =

{
1 Abused

0 NotAbused

Consider 3 possible models

model 1 : y = β0 + β1x + ε

model 2 : y = β0 + β1x + β2d + ε

model 3 : y = β0 + β1x + β2d + β3x · d + ε

• model 1: a single regression line (csa has no effect on ptsd)

• model 2: two parallel regression lines with same slope

(the effect of csa does not depend on cpa)

• model 3: two separate regression lines

(the effect of csa depends on cpa)
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Stats 201B (W13) Regression Analysis: Model Building, Fitting, and Criticism

• Textbook: J. J. Faraway (2006). “Extending the Linear Model with R,” Chapman & Hall.

Chapter 2 Binomial Data

Linear model:

Yi = β0 + β1xi1 + . . . + βkxik + εi,

where the error εi are independent and follow N(0, σ2), so

• the Yi are independent and follow N(µi, σ
2) where

µi = E(Yi) = β0 + β1xi1 + . . . + βkxik

2.2 Binomial Regression Model

Consider data

(yi, ni − yi, xi1, . . . , xik), for i = 1, . . . , n

where

• yi and ni − yi are the number of “successes” and “failures”,

respectively, out of ni independent trials

• so the response has a binomial distribution, Yi ∼ B(ni, pi)

P (Yi = yi) =

(
ni
yi

)
pyii (1− pi)ni−yi

E(Yi) = nipi, var(Yi) = nipi(1− pi)

• assume that the Yi are independent

• xi1, . . . , xik are covariates
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• model the relationship between the pi and predictors xi1, . . . , xik
as

ηi = g(pi) = β0 + β1xi1 + . . . + βkxik

• η = g(p) is called the link function

• since 0 ≤ pi ≤ 1, it is not appropriate to let ηi = pi

• link function g is monotone and satisfies 0 ≤ p = g−1(η) ≤ 1

Common choices of link functions η = g(p)

• Logit: η = log(p/(1− p)) (logistic regression)

• Probit: η = Φ−1(p) where Φ(x) is the cdf of N(0, 1)

• Complementary log-log: η = log(− log(1− p))

Inverse of link functions p = g−1(η)

• Inverse of Logit: p = exp(η)
1+exp(η)

• Inverse of Probit: p = Φ(η) = P (Z ≤ η) where Z ∼ N(0, 1)

• Inverse of Complementary log-log: p = 1− exp(− exp(η))

Max Likelihood Estimator (MLE) β̂ max the log-likelihood

l(β) =

n∑
i=1

[
yi log(pi) + (ni − yi) log(1− pi) + log

(
ni
yi

)]
For the logit link function, this is equivalent to

l(β) =

n∑
i=1

[
yiηi − ni log(1 + exp(ηi)) + log

(
ni
yi

)]
Example data(orings)
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2.3 Inference

To compare two models ω and Ω with s and l parameters, s < l, the

likelihood ratio test (LRT) statistic is

∆ = 2 log
L(Ω)

L(ω)
= 2 logL(Ω)− 2 logL(ω)

• is approximately χ2 distributed with df = l−s under the smaller

model, if the ni are relatively large.

• For a χ2 r.v. with df = d,

E(χ2
d) = d, var(χ2

d) = 2d

When the larger model is saturated, p̂i = yi/ni, and the LRT

statistic becomes

D = 2

n∑
i=1

[
yi log

yi
ŷi

+ (ni − yi) log
ni − yi
ni − ŷi

]
where ŷi are the fitted values from the smaller model.

• The D is called deviance and measures how good the smaller

model fits (compared to the saturated model).

• The deviance is a measure of goodness of fit.

• The devianceD is approximately χ2 distributed with df = n−s,
if the ni are relatively large (and the model is correct).

• For a good approximation, it is often requested that ni ≥ 5.

• Residual deviance in R is the deviance for the current model.

• Null deviance is the deviance for a model with intercept only.

• approximate CI for βi is: β̂i ± zα/2se(β̂i) or use confint()

Example data(orings)
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2.5 Interpreting Odds

• Odds are used to represent chance in bets.

• Let p be the probability of success and o be the odds,
p

1− p
= o p =

o

1 + o

• A 3-1 on bet has o = 3 and p = 3/4.

• A 3-1 on bet would pay only $1 for every $3 bet.

For logistic regression,

log(odds) = log

(
p

1− p

)
= β0 + β1x1 + . . . + βkxk

• βi has a simple interpretation in terms of log-odds

• a unit increases in x1 with all other predictors held fixed increases

the log-odds of success by β1 (or increases the odds of success by

a factor of exp(β1)).

Example data(babyfood)

2.7 Choice of Link Function

• when p is moderate (not close to 0 or 1), the link functions are

similar.

• Larger differences are apparent in the tails; see R plots.

• but for very small p, one needs a very large amount of data to

obtain just a few successes

Example data(bliss)
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2.10 Prediction and Effective Doses

• To predict the outcome for given covariates, say x0,

η̂ = xT0 β̂

v̂ar(η̂) = xT0 ˆcov(β̂)x0 = xT0 (XTWX)−1x0

where ˆcov(β̂) = (XTWX)−1 can be extracted using the cov.unscaled

component of the model summary.

• To get an answer in probability, transform back using p = g−1(η)

Effective Doses: to determine the x value for a given p

• For a simple logistic model

logit(p) = log

(
p

1− p

)
= β0 + β1x

the effective dose xp for prob. of success p is

xp =
logit(p)− β0

β1

• ED50 stands for effective dose for which there will be a 50%

chance of success; ED50 = −β0/β1.

• To determine the standard error, use the delta method

var(h(θ̂)) ≈ h′(θ̂)Tvar(θ̂)h′(θ̂)

θ =

(
β0

β1

)
, h(θ) =

logit(p)− β0

β1
, h′(θ) =

(
−1/β1

β0/β
2
1

)
Example data(bliss)
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Chapter 3.1 Poisson Regression

If Y has a Poisson distribution with mean µ > 0,

P (Y = y) =
µy

y!
e−µ, y = 0, 1, 2, . . .

• E(Y ) = var(Y ) = µ

• Poisson distributions arise naturally when we count the number

of (independent) events in a given time period.

• Binomial B(n, p) has a fixed total number of counts, which is n

• If n is large and p is small, Poisson(µ) is a good approximation

of B(n, p) with µ = np.

Poisson regression model (with link function η = log(µ))

ηi = log(µi) = xTi β

The log-likelihood is

l(β) =

n∑
i=1

(yi log(µi)−µi−log(yi!)) =

n∑
i=1

(yix
T
i β−exp(xTi β)−log(yi!))

Differentiating wrt βj gives the MLE β̂ as the solution to
n∑
i=1

(yi − exp(xTi β̂))xij = 0 for any j

which can be written as

XTy = XT µ̂, µ̂ = exp(Xβ̂)

Deviance (also known as the G-statistic)

D = 2

n∑
i=1

(yi log(yi/µ̂i)− (yi − µ̂i))

Example data(gala)
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Overdispersion

• Poisson (or Binomial) distributions have only one parameter µ

(or p) so it is not very flexible for empirical fitting purposes.

• Overdispersion or underdispersion can occur in Poisson (or Bi-

nomial) models; see text for possible reasons.

• When overdispersion happens, the standard errors of the esti-

mates are inflated.

• One approach is to introduce a dispersion parameter φ,

which can be estimated as

φ̂ =
X2

n− p

where X2 is the Pearson’s X2 statistic for goodness of fit.

X2 =

n∑
i=1

(yi − µ̂i)2

µ̂i

• For overdispersion: φ > 1; for underdispersion: φ < 1.

• When overdispersion is considered, an F -test rather than a χ2

test should be used.

Example data(gala)
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Chapter 6 Generalized Linear Models

6.1 GLM Definition

The distribution of response Y is from the exponential family:

f (y|θ, φ) = exp

[
yθ − b(θ)

a(φ)
+ c(y, φ)

]
• θ is called the canonical parameter and represents the loca-

tion

• φ is called the dispersion parameter and represents the scale.

Examples of exponential family

• Normal or Gaussian:

f (y|θ, φ) =
1√
2πσ

exp

[
−(y − µ)2

2σ2

]
= exp

[
yµ− µ2/2

σ2
− 1

2

(
y2

σ2
+ log(2πσ2)

)]
so we can write θ = µ, φ = σ2,

a(φ) = φ, b(θ) = θ2/2, c(y, φ) = −(y2/φ + log(2πφ))/2

• Poisson:

f (y|θ, φ) =
µy

y!
e−µ = exp[y log(µ)− µ− log(y!)]

so we can write θ = log(µ), φ ≡ 1,

a(φ) = 1, b(θ) = exp(θ), c(y, φ) = − log(y!)
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• Binomial B(m, p):

f (y|θ, φ) =

(
m

y

)
py(1− p)m−y

= exp

[
y log(p) + (m− y) log(1− p) + log

(
m

y

)]
= exp

[
y log

p

1− p
+ m log(1− p) + log

(
m

y

)]
so we can write θ = log p

1−p, φ ≡ 1, a(φ) = 1,

b(θ) = −m log(1− p) = m log(1 + eθ)), c(y, φ) = log

(
m

y

)
mean and variance of exponential family distributions

E(Y ) = µ = b′(θ), var(Y ) = b′′(θ)a(φ)

• mean is a function of θ only;

• variance is a product of functions of the location and the scale.

• V (µ) = b′′(θ) is called the variance function and describes

how the variance relates to the mean.

• For Gaussian case, b′′(θ) = 1 and so the variance is independent

of the mean.

Linear predictor

η = β0 + β1x1 + . . . + βkxk = xTβ

Link function

η = g(µ)

• g links mean response, µ = E(Y ), to covariates through η
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• g should be monotone, continuous and differentiable

• canonical link function satisfies

η = g(µ) = θ −→ g(b′(θ)) = θ

Family Canonical Link Variance function b′′(θ)

Normal η = µ 1

Poisson η = log µ µ

Binomial η = log p
1−p mp(1− p)

• If a canonical link is used, XTY is sufficient for β.

6.2 Fitting a GLM

One-step Taylor expansion

g(y) ≈ g(µ) + (y − µ)g′(µ) ≡ z

so

var(z) = (g′(µ))2var(y) = (g′(µ))2V (µ)a(φ)

The following IRWLS procedure is used to fit a GLM:

1. Set initial estimates µ̂0 and η̂0 = g(µ̂0).

2. Form the “adjusted dependent variable” z0 = η̂0+(y−µ̂0)g′(µ̂0).

3. Form the weights w0 = [(g′(µ̂0))2V (µ̂0)]−1.

4. Re-estimate β using WLS with response z0 and weights w0.

5. Update η̂1 = xT β̂ and µ̂1 = g−1(η̂1).

6. Iterate steps 2–5 until convergence.
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Estimates of variance are obtained from:

v̂ar(β̂) = (XTWX)−1φ̂

Example data(bliss)

For a binomial response, consider p (rather than µ = mp),

η = g(p) = log
p

1− p
, g′(p) =

1

p(1− p)
, V (p) =

p(1− p)

m
,w = mp(1−p)

6.3 Hypothesis Tests

• For a saturated (or full) model µ̂ = y.

• Likelihood ratio test (LRT) statistic for comparing the current

model with a saturated model is

2(l(y, φ|y)− l(µ̂, φ|y))

• when a(φ) = φ/wi, this simplifies to

D(y, µ̂)/φ =
∑
i

2wi(yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i))/φ

where θ̃ and θ̂ are the estimates under the full and current model,

respectively.

• D(y, µ̂) is called the deviance.

• D(y, µ̂)/φ is called the scaled deviance.

GLM Deviance D(y, µ̂)

Normal
∑

i(yi − µ̂i)2

Poisson 2
∑

i(yi log(yi/µ̂i)− (yi − µ̂i))
Binomial 2

∑
i

[
yi log yi

µ̂i
+ (ni − yi) log ni−yi

ni−µ̂i

]
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• An alternative to deviance is Pearson’s X2 statistic:

X2 =
∑
i

(yi − µ̂i)2

V (µ̂i)

where V (µ̂) = var(µ̂).

• The scaled deviance D(y, µ̂)/φ and Pearson’s X2 statistic are

asymptotically χ2 distributed.

• If we know φ, we can test the goodness of fit with a χ2 test.

• For nested models ω and Ω, Dω −DΩ is asymptotically χ2.

• If we know φ, use χ2 test.

• If we don’t know φ, use an F -statistic (which is approximately

F distributed)
(Dω −DΩ)/(dfω − dfΩ)

φ̂

where φ̂ = X2/(n− p) is a good estimate of the dispersion.

• For the Gaussian model, φ̂ = RSSΩ/dfΩ, the F test is exact.

Example data(bliss)
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6.4 GLM Diagnostics

Residuals

• The response residual ε̂ = y− µ̂, which do not have constant

variance.

• Pearson residual

rP =
y − µ̂√
V (µ̂)

where V (µ) ≡ b′′(θ). Note
∑
r2
P = X2.

• Let deviance D =
∑
di =

∑
r2
D. The deviance residual is

rD = sign(y − µ̂)
√
di

• The working residual is a by-product of the IRWLS fitting

procedure.

Leverage and influence:

• The hat matrix is

H = W 1/2X(XTWX)−1XTW 1/2

where W = diag(w) and w are the weights used in fitting.

Standardized residuals :

rSD =
rD√

φ̂(1− hii)
Cook’s distance is

Di =
(β̂(i) − β̂)T (XTWX)(β̂(i) − β̂)

p · φ̂
Example data(bliss)
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Model diagnostics

• Constant variance is not assumed, so be careful on the choice of

residual plots.

• The response residuals do not have constant variance.

• The deviance residuals are expected to have constant variance.

• Plot the deviance residuals against the fitted linear predictor η̂.

• however, residual plots are not helpful in some cases; see p.127

for reasons.

• Normality is not assumed except for the Gaussian.

• Use half-normal plot to check unusual points (such as outliers

or influential cases)

Difficulty: How to judge the curvilinear relationship between

the response and the predictors?

• Use the linearized response

z = η + (y − µ)g′(µ)

• plot z versus linear predictor η̂ to check link function η = g(µ)

• partial residual plot: z − η + β̂jxj versus xj

Example data(gala)
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