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1 Subexons and contradicting bins

1.1 Definition of subexons

Exons are not the minimal splicing units. In some types of alternative splicing, such as
alternative 5’ ends and alternative 3’ ends, splicing can occur inside an exon. Also, there
can be differences between the exon boundaries from annotations and those from de novo
assembles. Hence to capture slight differences among isoform structures, we split exons into
subexons, the minimal splicing units. Subexons are defined as non-overlapping transcribed
regions between adjacent splicing sites. Every exon in the input annotation or de novo
assembly can be fully recovered by a set of subexons. For illustration of subexons, please
see Figure 1 extracted from the SLIDE paper[1].

1.2 Contradicting bins

We define bins as two-dimensional vectors that describe the exon indices of the starting
and ending positions of mapped reads (single-ended reads or paired-end reads decomposed
into two ends). For example, Bin (4, 4) contains reads whose starting and ending positions
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Figure 1: Definition of the subexon

are both in Subexon 4. For reads that cannot originate from the same transcript, their
corresponding bins are mutually exclusive. We call them contradicting bins. For example,
Bins (4, 4) and (3, 5) are contradicting bins, because Bin (4, 4) indicates the existence of
Subexon 4 but Bin (3, 5) indicates the skipping of Subexon 4.

1.3 Decomposing isoforms candidates containing contradicting bins

After non-negative matrix factorization (NMF) is completed, a basis matrix W would
be obtained, and each column of W represents an isoform candidate (See the main text).
However, isoform candidates may contain contradicting bins, and such candidates cannot be
true isoforms. To resolve this issue without losing possibly true isoforms, we decompose an
isoform candidate with two contradicting bins into two isoform candidates, each containing
one of the two bins. We use Figure 1 as an example. Suppose an isoform candidate
contains contradicting Bins (4, 4) and (3, 5), which indicate contradicting status of Subexon
4. Suppose all the other bins are non-contradicting and indicate the existence of Subexons
1, 2, 3, 5, 6, and 7. Then we decompose the isoform candidate into two candidates: 1111111
and 1110111, where the former contains all subexons and supports Bin (4, 4) while the
latter excludes Subexon 4 and supports Bin (3, 5). This procedure is to reduce our chance
of missing true isoforms.

2 K-means and gap statistic

2.1 Motivation

With objective function min
W≥0,H≥0

||V −WH||F and additional orthogonality constraint on

H, i.e., HTH = I, NMF can be regarded as one type of K-means clustering on the bins
(rows of V ) with non-negativity constraint. The reason is that the purpose of NMF is to
cluster bins into bin groups, which are sub-structures of isoforms and can form into multiple
isoforms including the true ones. This motivated us to use the gap statistic, a method for
choosing the number of cluster K in K-means clustering, to select the rank of NMF. Gap
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statistic was proposed by Tibshirani et al. [2] and has since been a widely used metric
for choosing K in K-means clustering because of its good performance in estimating the
number of well separated clusters.

2.2 K-means clustering

Suppose there are n p-dimensional data points, X1, X2, . . . , Xn ∈ Rp and the goal is to
cluster them into K clusters C1, . . . , CK . Given K, K-means clustering would assign the
n data points to K clusters, i.e., find the cluster memberships C1, . . . , CK by minimizing
the following objective function

arg min
C1,...,Ck

K∑
r=1

∑
i∈Cr

||Xi − µr||, (1)

where µr is the mean of cluster Cr, which is a subset of the n data points. Formula (1) is
equivalent to

arg min
C1,...,Ck

K∑
r=1

1

2nr

∑
i,j∈Cr

dij (2)

nr is the number of points in cluster Cr and dij is the distance between Xi and Xj , i.e.
||Xi−Xj ||. There are many choices for the distance metric, such as the Euclidean distance.

The objective funciton WK =
∑K

r=1
1

2nr

∑
i,j∈Cr

dij is the within-cluster variance, which is
a basic statistic for determining K.

2.3 Gap statistic

Gap statistic is defined as Gapn(k) = E∗k [log(Wk)]−log(Wk). The first term is the expected
Wk under a reference distribution with no clusters, and the second term is the observed
Wk. The idea is to choose the number of clusters as the value of k that leads to the largest
Gapn(k). To estimate E∗k [log(Wk)], the simplest reference distribution is the uniform dis-
tribution in all the p dimensions over the range of the observed data. The gap statistic
algorithm is sketched as follows.

1. Vary the number of clusters k = 1, . . . , T , and cluster the data X1, . . . , Xn by K-
means clustering into k clusters, resulting in Wk, k = 1, . . . , T , where T is the upper
bound on k.

2. Generate B reference data sets from the specified reference distribution (e.g. uniform
distribution). Then we cluster each data set into k clusters, resulting in W ∗kb, k =
1, . . . , T ; b = 1, . . . , B.

3. Let w̄ = 1
B

∑B
b=1 log(W ∗kb), sdk =

√
1
B

∑B
b=1(log(W ∗kb)− w̄)2, sk = sdk

√
1 + 1

B .
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4. Estimate the gap statistic as Ĝapn(k) = w̄ − log(Wk), for k = 1, . . . , T .

5. Choose the number of clusters as K̂ = smallest k s.t. ˆGapn(k) ≥ ˆGapn(k+ 1)− sk+1.

2.4 Application of gap statistic to NMF rank determination

NMF is a way of K-means clustering that clusters the bins with similar expression levels
into the bin groups, i.e., splicing structures that can be reconstructed into isoforms. In
most cases, the number of bin groups is close to the number of isoforms. For exmple,
assume there is a 5-subexon gene with 3 isoform, 11111, 11011 and 11101. The relative
abundance of the three isoforms are 50%, 35% and 15% respectively. Then the subexons
have relative expression levels as 100%, 100%, 65%, 85% and 100% sequentially. Therefore,
Subexons 1, 2 and 5 will be clustered into one bin group, while Subexon 3 and Subexon
4 will each be clustered as one bin group respectively. In this example, both the number
of isoforms and the number of bin groups are 3. For genes with more complicated splicing
structures, the number of bin groups may be more than the number of isoforms. In such
cases, our estimated number of bin groups, K̂ from gap statistic, could be larger than the
number of true isoforms. However, from our simulation results, we observed that NMFP
is not sensitive to the NMF rank choice and performs reasonably well as long as the rank
is no less than the number of annotated isoforms. (See the section Low sensitivity of
NMFP to ranks in the main text.) Combined with the fact that gap statistic tends to
be conservative [2], the NMF rank should be better chosen as larger than K̂, the number
of clusters chosen by the gap statistic on V . In our results, we chose the NMF rank as
K̂ + 1.

3 More results

3.1 Low sensitivity of NMFP to ranks (More results)

Continued from the main text, here we attach two more simulation examples to illustrate
that NMFP is not sensitive to the choice of NMF rank. In Figure 2(a), Gene FBgn0259821
has three annotated isoforms (Ensemble BDGP6 of release 80) with 13 subexons. NMFP is
able to capture all the annotated isoforms (recall rate = 1) regardless of the rank choices.
The precision rate of NMFP is 1 when the rank equals 2. Although it decreases when the
rank increases to 3 because higher ranks would lead to more isoform candidates, it becomes
relatively stable after rank equals 4. In Figure 2(b), Gene FBgn0037215 has 5 annotated
isoforms with 12 subexons. NMFP has stable performance across all the rank choices.
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Figure 2: The performance of NMFP in terms of the change of ranks The orange
line represents recall curve, the red line F score curve and the blue line represents precision
curve.

3.2 Detailed information of genes on chromosome chr19 of Mus muscu-
lus

In the section Simulation results in Mus musculus in the main text, we did another
simulation to demonstrate the performance of NMFP on mouse transcriptome. Apart from
what has been already stated in the main text, some supplementary detail (Table 1) is
provided here about the genes we selected to work on from chromosome chr19 of Mus
musculus (reference genome mm10 and annotation GRCm38 of release 81).

3.3 Sensitivity of SLIDE and NMFP+SLIDE to the parameter λ (More
results)

Continued from the main text, here we include two more simulation results to show that
NMFP can help SLIDE achieve better isoform discovery accuracy at lower values of λ, the
regularization parameter used in the LASSO step in SLIDE. Hence, the choice of a proper
value for λ becomes an easier task for SLIDE+NMFP than for SLIDE. In Figure 3 (a),
Gene ENSMUSG00000025905 has 5 annotated isoforms with 12 subexons. The rank is set
as 4. NMFP+SLIDE has much higher F scores than SLIDE for λ < 0.04. In Figure 3
(b), Gene ENSMUSG00000025930 has 4 annotated isoforms with 8 subexons. The NMF
rank is set as 4. We also observe that NMFP+SLIDE has better performance than SLIDE
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especially when λ < 0.015. Since NMFP can largely reduce the isoform candidate pool for
SLIDE, it is recommended to use a small λ value for NMFP+SLIDE.

3.4 Real data case study (More results)

Continued from the main text, we use another two cases to show that NMFP has good per-
formance on real data. In Figure 4, RNA-seq reads for gene FBgn0019936 were generated
by the modENCODE consortium [3] from the heads of mated female D.melanogaste after 1
day of eclosion (SRA accession: SRR070434, SRR070435 andSRR100279; see the Supple-
mental Material “Updated Table S2.xlsx” in [4] for more detail). This gene has 1 annotated
isoform (shown in orange), which is well supported by the RNA-seq reads (shown in gray).
Cufflinks alone connected the latter three exons together with the introns in between into
one piece (shown in light blue). NMFP+Cufflinks accurately assembled the annotated
isoform and recovered another isoform (shown in dark blue), which reflects the low read
counts of the Exon 3. Similarly, NMFP+SLIDE at λ = 0.2 (“more”, shown in dark green)
and λ = 0.01 (“fewer”, shown in dark red) achieved better isoform discovery results than
their SLIDE counterparts (shown in light green and light red). In Figure 5, RNA-seq
reads for gene FBgn0038145 were also generated by the modENCODE corsortium from D.
melanogaster L3 stage larvae and 12 hours post-molt (SRA accession: SRS004682; see the
Supplemental Material “Updated Table S2.xlsx” in [4] for more detail). FBgn0038145 has
a complicated splicing structure and 5 annotated isoforms (shown in orange). Cufflinks
alone assembled one transcript (shown in light blue) similar to the first annotated one
except that part of Exon 1 is missed. NMFP+Cufflinks identified 4 isoforms (shown in
dark blue) among which 2 are annotated. NMFP also improved the performance of SLIDE
at both λ = 0.2 (“more”, shown in light and dark green) and λ = 0.01 (“fewer”, shown
in light and dark red). One significant contribution of NMFP to Cufflinks and SLIDE is
capturing Exon 2, which is missed by Cufflinks and SLIDE alone because of its low read
coverage compared to the other exons.

Table 1: Summary of the genes used in the section “Simulation results in Mus
musculus” in the main text. The table lists the numbers of the genes that have 3-30
subexons and 2-17 annotated isoforms.

# of subexons n 3 ≤ n ≤ 6 7 ≤ n ≤ 10 11 ≤ n ≤ 14 15 ≤ n ≤ 18 19 ≤ n ≤ 22 n ≥ 23

155 185 163 134 89 126

# of isoforms q 2 ≤ q ≤ 3 4 ≤ q ≤ 5 6 ≤ q ≤ 7 8 ≤ q ≤ 9 10 ≤ q ≤ 11 q ≥ 12

382 206 133 81 22 28
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Figure 3: The performance of SLIDE with NMFP and SLIDE alone at various
λ values. The orange line represents the F scores of NMFP+SLIDE, while the blue line
represents the F scores of SLIDE alone.
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Figure 4: Real data results for Gene FBgn0019936
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