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Lecture 11
Lecturer: Jingyi Jessica Li Scribe: Kai Fu

Markov Chain Monte Carlo (MCMC)

1. Monto Carlo Simulator
Goal: evaluate E[f(X)] for X ~ P (target distribution) sample z1,...,x, asi.i.d. from P and calculate
% Z?:1 f (371)
(a) vanilla MC
(b) rejection sampling
(¢) importance sampling
2. MCMC VS MC

Construct a ii.d. markov chain zy,...,z,. Estimate § as 6 = 1 > i1 f(xi), the chunk that is
thrown away is called the burn-in period

3. Background: First-order Markov Chain

(a) L1, T2y Tn; Tn4l,---
(b) First order
P(zpi1lzr, . xn) = P(@pi|zn)

(¢) Invariant distribution
IT is the probability. 7 is the density
O(dy) = [T(x,dy)r(z)dz
T(x,dy) is called transition probability
e.g. in the discrete case, Il = 7, z; € {1, 2},
m(anr = 2) = 30y Ponpr = 20en = i) - 7(2n = i) = X0, T(0,2) - 7(2n = i)
(d) Transition probability
T(xz,dy) = P(zp41 € dy|z, = 7)
(e) Markov chain converges to invariant distribution
Transition probability of different orders: For starting value x, we have
pM (2, A) = T(z, A)
p(2) (l‘, A) = fp(l) (l‘, dy)T(y7 A)
P (a, A) = [p® (z,dy)T(y, A)

pM (@, A) = [p" D (2, dy)T(y, A) =~ T1(A)
(f) Markov Chain theory is mainly concerned about: for a given T'(z, dy), what is II?
(g) MCMC goes backwards: given a marginal distribution (target distribution) II, can we create a
Markov chain with some 7'(z,dy) that II is the invariant distribution?
(h) “reversibility” criterion
m(x) - t(x,y) = 7(y) - t(y,x), where t(x,y) = d%T(az, dy)
= [T(z,A)n(x)dx = ffA t(z,y)dyn(z)dz
= [, [tz y)7(x) dxdy
= [ [ty @) (y) do dy
= Ja ([ tly,2) dz) m(y) dy = [, w(y)dy = 7(A)



4. Setup of MCMC

(a) I is known

(b) how to construct T'(z, dy)?
Suppose we take any conditional probability ¢(x,y), e.g. q(z,y)=f(y|z)=¢(y — ) and we have
m(x) - q(z,y) > 7(y) - q(y, )
we “fudge” q(z,y) by multiplying a “fudge” factor, a(z,y) < 1 such that
m(x)q(z,y)(z,y) = 7(y)a(y, v)aly, z)
(LHS) (RHS)

m(y)-q(y,x) 1]

m(x)-q(z,y)’

Proof. When (z)q(z,y) < 7(y)q(y, z)
_ _ m(z)-q(z,y)

= Oé((E,y) - 17 a(yv 1) - ﬂ-(y).q(yvz)

so LHS=mn(z)q(x,y); RHS=7(z)q(x,y)

When m(x)q(z,y) > 7(y)q(y, x), can prove LHS=RHS in a similar way

Theorem «(z,y) = min|

2 The Metropolis-Hasting algorithm (MH)

Given an (arbitrary) starting value X, generate X as follows.
e Sample Y from the conditional density ¢(x1) and U ~ Unif(0,1), Y L U.
e If U < a(X;,Y), accept the candidate Y and set Xy =Y

e Else reject the candidate Y and set Xy = X3

3 The Gibbs Sampler

1. We want to samples z = (x(l), e ,x(m)) ~ P, the joint distribution is complicated

2. sample each 2" conditional on others, that is, in iteration (n+1),

mfj) ~ P(x(1)|x (2) xslg), .- ,x%m))
sy~ Pa®all)y, 2l )

: m 1 m—1
$£L+)1 ~ P(fc(z)mélp'“ "rgz+1 ))

3. Gibbs sampler is useful because conditional distributions are often much simpler

4. Relationship to Metropolis-Hasting
Gibbs sampler is in fact an MH algorithm with the conditional distribution:

a((@?, 20y, (2l (i) L)) = P(xfﬁ_ﬂx“”) The “fudge” factor (acceptance probability):

a((z), 20), (20, 29))
( i e 1)) 2 ]a(=9)
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4 Critique

Draw from the points discussed in class. Write the critques in about a paragraph for each paper.

5 Possible Extensions
6 Conclusions
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