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1 Markov Chain Monte Carlo (MCMC)

1. Monto Carlo Simulator
Goal: evaluate E[f(X)] for X ∼ P (target distribution) sample x1, . . . , xn as i.i.d. from P and calculate
1
n

∑n
i=1 f(xi)

(a) vanilla MC

(b) rejection sampling

(c) importance sampling

2. MCMC VS MC
Construct a i.i.d. markov chain x1, . . . , xn. Estimate θ as θ̂ = 1

n−k
∑n
i=k+1 f(xi), the chunk that is

thrown away is called the burn-in period

3. Background: First-order Markov Chain

(a) x1, x2, . . . , xn, xn+1, . . .

(b) First order
P (xn+1|x1, . . . , xn) = P (xn+1|xn)

(c) Invariant distribution
Π is the probability. π is the density
Π(dy) =

∫
T (x, dy)π(x) dx

T (x, dy) is called transition probability
e.g. in the discrete case, Π = π, xi ∈ {1, 2},
π(xn+1 = 2) =

∑2
i=1 P (xn+1 = 2|xn = i) · π(xn = i) =

∑2
i=1 T (i, 2) · π(xn = i)

(d) Transition probability
T (x, dy) = P (xn+1 ∈ dy|xn = x)

(e) Markov chain converges to invariant distribution
Transition probability of different orders: For starting value x, we have
p(1)(x,A) = T (x,A)
p(2)(x,A) =

∫
p(1)(x, dy)T (y,A)

p(3)(x,A) =
∫
p(2)(x, dy)T (y,A)

...
p(n)(x,A) =

∫
p(n−1)(x, dy)T (y,A) ≈ Π(A)

(f) Markov Chain theory is mainly concerned about: for a given T (x, dy), what is Π?

(g) MCMC goes backwards: given a marginal distribution (target distribution) Π, can we create a
Markov chain with some T (x, dy) that Π is the invariant distribution?

(h) “reversibility” criterion
π(x) · t(x, y) = π(y) · t(y, x), where t(x, y) = d

dyT (x, dy)

⇒
∫
T (x,A)π(x) dx =

∫∫
A
t(x, y)dyπ(x)dx

=
∫
A

∫
t(x, y)π(x) dx dy

=
∫
A

∫
t(y, x)π(y) dx dy

=
∫
A

(∫
t(y, x) dx

)
π(y) dy =

∫
A
π(y)dy = π(A)
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4. Setup of MCMC

(a) Π is known

(b) how to construct T (x, dy)?
Suppose we take any conditional probability q(x, y), e.g. q(x, y)=f(y|x)=φ(y − x) and we have
π(x) · q(x, y) > π(y) · q(y, x)
we “fudge” q(x, y) by multiplying a “fudge” factor, α(x, y) ≤ 1 such that
π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)
(LHS) (RHS)

Theorem α(x, y) = min[π(y)·q(y,x)π(x)·q(x,y) , 1]

Proof. When π(x)q(x, y) < π(y)q(y, x)

⇒ α(x, y) = 1, α(y, 1) = π(x)·q(x,y)
π(y)·q(y,x)

so LHS=π(x)q(x, y); RHS=π(x)q(x, y)
When π(x)q(x, y) > π(y)q(y, x), can prove LHS=RHS in a similar way

2 The Metropolis-Hasting algorithm (MH)

Given an (arbitrary) starting value X1, generate X2 as follows.

• Sample Y from the conditional density q(x1) and U ∼ Unif(0, 1), Y ⊥ U .

• If U ≤ α(X1, Y ), accept the candidate Y and set X2 = Y

• Else reject the candidate Y and set X2 = X1

3 The Gibbs Sampler

1. We want to samples x = (x(1), · · · , x(m)) ∼ P , the joint distribution is complicated

2. sample each x(i) conditional on others, that is, in iteration (n+ 1),

x
(1)
n+1 ∼ P (x(1)|x(2)n , x

(3)
n , · · · , x(m)

n )

x
(2)
n+1 ∼ P (x(2)|x(1)n+1, x

(2)
n , · · · )

...
x
(m)
n+1 ∼ P (x(2)|x(1)n+1, · · · , x

(m−1)
n+1 )

3. Gibbs sampler is useful because conditional distributions are often much simpler

4. Relationship to Metropolis-Hasting
Gibbs sampler is in fact an MH algorithm with the conditional distribution:

q((x
(i)
n , x(−i)), (x

(i)
n+1, x

(−i))) = P (x
(i)
n+1|x(−i)) The “fudge” factor (acceptance probability):

α((x
(i)
n , x(−i)), (x

(i)
n+1, x

(−i)))

=
π
(
x
(i)
n+1,x

(−i)
)
·p(x(i)

n |x
(−i))

π
(
x
(i)
n ,x(−i)

)
·p
(
x
(i)
n+1|x(−i)

)
=

p(x(−i))·p
(
x
(i)
n+1|x

(−i)
)
·p(x(i)

n |x
(−i))

p(x(−i))·p
(
x
(i)
n+1|x(−i)

)
·p
(
x
(i)
n |x(−i)

)
= 1
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4 Critique

Draw from the points discussed in class. Write the critques in about a paragraph for each paper.

5 Possible Extensions

6 Conclusions
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