1 GENE EXPRESSION ANALYSIS

Our data are represented by the matrix: $X = (X_{ij})_{nxm}$ where:

- Rows \rightarrow represent different genes (n)
- Columns \rightarrow represent different samples (m)
- X_{ij} \rightarrow expression level of gene i in sample j

The following is a representation of data seen in gene expression analysis:

<table>
<thead>
<tr>
<th>Condition 1</th>
<th>Condition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1, 1, 2, 1 \cdots m_1, 1$</td>
<td>$1, 1, 2, 1 \cdots m_2, 1$</td>
</tr>
<tr>
<td>$1, 2, 2, 2 \cdots m_1, 2$</td>
<td>$1, 2, 2, 2 \cdots m_2, 2$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$1, n, 2, n \cdots m_1, n$</td>
<td>$1, n, 2, n \cdots m_2, n$</td>
</tr>
</tbody>
</table>

The conditions are compared to find differentially expressed genes

Hypothesis - test for every gene. Say we fixed gene 1, and its expression levels are:
- X_1, \cdots, X_{m_1} $\sim N(\mu_1, \sigma^2)$ where μ is the population mean
- Y_1, \cdots, Y_{m_2} $\sim N(\mu_2, \sigma^2)$

Null Hypothesis - H_0: $\mu_1 = \mu_2$

If we reject H_0, gene 1 is called differentially expressed (DE)

If we accept H_0, gene 1 is **not** DE

Simple Solution - t test

Assumption: $X_1, \cdots, X_{m_1} \sim N(\mu_1, \sigma^2)$
- $Y_1, \cdots, Y_{m_2} \sim N(\mu_2, \sigma^2)$

We assume a normal Gaussian distribution (however, this can be relaxed when m_1 and m_2 are large, by Central Limit Theorem)

The main assumption is that the **variance** (σ^2) is the same

Sample Mean: $\bar{X} = \frac{1}{m_1} \sum_{i=1}^{m_1} x_i$ \quad $\bar{Y} = \frac{1}{m_2} \sum_{i=1}^{m_2} y_i$

Sample Variance: $S_x^2 = \frac{1}{m_1 - 1} \sum_{i=1}^{m_1} (x_i - \bar{x})^2$ \quad $S_y^2 = \frac{1}{m_2 - 1} \sum_{i=1}^{m_2} (y_i - \bar{x})^2$

The denominator (i.e. $m_1 - 1$) indicates that the sample variance is **unbiased**
Pooled Sample Variance: \(S_p^2 = \frac{(m_1-1)S_x^2 + (m_2-1)S_y^2}{m_1 + m_2 - 2} \)

t Statistic: \(T = \frac{\bar{x} - \bar{y}}{S_p \sqrt{\frac{1}{m_1} + \frac{1}{m_2}}} \)

Under \(H_0 : T \sim t_{m_1 + m_2 - 2} \)

2 QUESTION

Assuming the two means are the same, are the variances different?

\[X_1, \ldots, X_{m_1} \sim N(\mu, \sigma_1^2) \quad Y_1, \ldots, Y_{m_2} \sim N(\mu, \sigma_2^2) \]

\(H_0 : \sigma_1^2 = \sigma_2^2 \)

F-statistic: \(F = \frac{S_x^2}{S_y^2} \)

Under the Normal assumption and \(H_0 \):

\(F \sim F_{m_1 - 1, m_2 - 1} \)

Small sample problem: often \(m_1 = m_2 = 3 \)

In t-test: only 6 data points to calculate \(S_p^2 \), which is to estimate \(\sigma^2 \)

- This is unstable
- So the t statistic will be unstable

Use Bayesian to help stabilize the estimate

3 NUISANCE PARAMETER

\(X_1, \ldots, X_m \sim N(\mu, \sigma^2) \)

\(\mu \) - parameter of interest, it is unknown

\(\sigma^2 \) - nuissance parameter, unknown but we don’t care about it

\[L(\mu, \sigma^2|X_1, \ldots, X_n) = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{\sum(x_i - \mu)^2}{2\sigma^2}} \]

Frequentist: to find \(\mu^* \) to maximize \(L(\mu, \sigma^2|X_1, \ldots, X_n) \) consider \(\sigma^2 \) as fixed

\(\hat{\mu}_{MLE} = f(\hat{\sigma}_{MLE}) \)

Bayesian: prior of \(\sigma^2 \), e.g. inverse-chi-square \(\rightarrow \) conjugate of \(N(\mu, \sigma^2) \) to maximize:

\[\int_{\sigma^2} L(\mu, \sigma^2|X_1, \ldots, X_n) \cdot p(\mu) \cdot p(\sigma^2) d\sigma^2 \]

\(\propto \int_{\sigma^2} p(\mu, \sigma^2|X_1, \ldots, X_n) d\sigma^2 = p(\mu|X_1, \ldots, X_n) \) to find \(\hat{\mu}_{Bayesian} \)

4 GENE EXPRESSION ANALYSIS CONTINUED

Gene expression data matrix: \(X = (X_{ij})_{m \times (n_1 + n_2)} \)

- \(m \) genes
- \(n_1 \) samples in condition 1
- \(n_2 \) samples in condition 2
Looking at i-th gene:

When n_1 and n_2 are very small, the pooled sample variance is:

$$S_p^2 = \frac{(n_1-1)S_{x1}^2 + (n_2-1)S_{x2}^2}{n_1 + n_2 - 2},$$

where

$$S_x^2 = \frac{n_1}{n_1-1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2, \quad S_y^2 = \frac{n_2}{n_2-1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$$

$$\bar{X}_j = \frac{1}{n_1} \sum_{i=1}^{n_1} X_{ij}, \quad \bar{Y}_j = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_{ij}$$

S_p^2 is an unstable estimate of σ^2.

To stabilize the estimate of σ^2, we can borrow information from the prior of σ^2.

For convenience, we use the conjugate prior inverse-chi-square distribution.

Fact: $\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim X^2_{n_1 + n_2 - 2}$

Likelihood: $d \triangleq n_1 + n_2 - 2$

$$L(\sigma^2|S_p^2) = p\left(\frac{dS_p^2}{\sigma^2}\right) \propto \left(\frac{dS_p^2}{\sigma^2}\right)^{\frac{d}{2} - 1} e^{-\frac{dS_p^2}{2\sigma^2}} \Rightarrow p(S_p^2|\sigma^2) \propto (\sigma^2)^{-\frac{d}{2} - 1} e^{-\frac{dS_p^2}{2\sigma^2}}$$

$$p(\sigma^2) \propto (\sigma^2)^{-\frac{d}{2} - 1} e^{-\frac{dS_p^2}{2\sigma^2}}$$

\Rightarrow Posterior $p(\sigma^2|S_p^2) \propto p(S_p^2|\sigma^2) \cdot p(\sigma^2)$

$\propto (\sigma^2)^{-\frac{d}{2} - 1} \cdot e^{-\frac{d}{2} S_p^2 \frac{1}{2\sigma^2}}$

\Rightarrow A common approach:

$$\hat{\sigma}^2 = E[\sigma^2|S_p^2] = \frac{v\sigma_0^2 + dS_p^2}{v + d - 2}$$

If we set $v >> d$, then:

$$\hat{\sigma}^2 \approx \frac{v\sigma_0^2 + dS_p^2}{v + d - 2} = \left(\frac{v}{v + d}\right)\sigma_0^2 + \left(\frac{d}{v + d}\right)S_p^2$$

We can fix $v = v^*$ and find s_0^2 by maximizing the joint density of S_p^2 given v^* and s_0^2.

$$p(S_p^2|v^*, s_0^2) = \int p(S_p^2|\sigma^2|v^*, s_0^2) d\sigma^2 = \int p(S_p^2|\sigma^2) \cdot p(\sigma^2|v^*, s_0^2) d\sigma^2$$

Then find s_0^2 as:

$$s_0^2 = \arg \max_{s_0^2} p(S_p^2|v = v^*, s_0^2)$$

Lastly, plug in v^* and $(s_0^2)^*$ into

$$\hat{\sigma}^2 = \left(\frac{v^*}{v^* + d}\right)(s_0^2)^* + \left(\frac{d}{v^* + d}\right)S_p^2$$

\rightarrow t-test