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Abstract
This paper proposes a 3D shape descriptor network, which is a deep convo-
lutional energy-based model, for modeling volumetric shape patterns. The
maximum likelihood training of the model follows an “analysis by synthesis”
scheme and can be interpreted as a mode seeking and mode shifting process.
The model can synthesize 3D shape patterns by sampling from the probability
distribution via MCMC such as Langevin dynamics. The model can be used
to train a 3D generator network via MCMC teaching. The conditional version
of the 3D shape descriptor net can be used for 3D object recovery and 3D
object super-resolution. Experiments demonstrate that the proposed model can
generate realistic 3D shape patterns and can be useful for 3D shape analysis.

3D shape descriptor network (3D DescriptorNet)
Probability density
The model is a 3D deep convolutional energy-based model defined on the 3D
data Y , which is in the form of exponential tilting of a reference distribution:

p(Y ; θ) =
1

Z(θ)
exp [f(Y ; θ)] p0(Y ), (1)

where p0(Y ) is the reference distribution such as Gaussian white noise p0(Y ) ∝
exp

(
−‖Y ‖2/2s2

)
, f(Y ; θ) is a bottom-up 3D volumetric ConvNet whose pa-

rameters are denoted by θ. Z(θ) =
∫

exp [f(Y ; θ)] p0(Y )dY is the normalizing
constant that is analytically intractable.
Analysis by synthesis
Suppose we observe 3D training examples {Yi, i = 1, ..., n} from an unknown
distribution. The maximum likelihood learning seeks to maximize the log-
likelihood function Lp(θ) = 1

n

∑n
i=1 log p(Yi; θ). The gradient of Lp(θ) is

L′
p(θ) =

1

n

n∑
i=1

∂

∂θ
f(Yi; θ)− Eθ

[
∂

∂θ
f(Y ; θ)

]
, (2)

where the expectation Eθ is analytically intractable and has to be approximated
by MCMC, e.g., Langevin dynamics, which iterates the following step:

Yτ+∆τ = Yτ −
∆τ

2

[
Yτ
s2
− ∂

∂Y
f(Yτ ; θ)

]
+
√

∆τετ , (3)

where τ indexes the time steps, ∆τ is the discretized step size, and ετ ∼ N(0, I)
is the Gaussian white noise. Suppose we draw ñ samples {Ỹi, i = 1, ..., ñ}
from p(Y ; θ) according to (3), L

′

p(θ) in (2) can be approximated by

L′
p(θ) ≈

1

n

n∑
i=1

∂

∂θ
f(Yi; θ)−

1

ñ

ñ∑
i=1

∂

∂θ
f(Ỹi; θ). (4)

Adversarial interpretation / Mode seeking and mode shifting

If we rewrite model (1) in the form of energy-based model p(Y ; θ) ∝
exp (−E(Y ; θ)), then the energy function E(Y ; θ) = ‖Y ‖2/(2s2) − f(Y ; θ).
We rewrite equation (4) in the form of

L′
p(θ) ≈

∂

∂θ

[
1

ñ

ñ∑
i=1

E(Ỹi; θ)−
1

n

n∑
i=1

E(Yi; θ)

]
︸ ︷︷ ︸

V ({Ỹi};θ)

. (5)

Adversarial interpretation:
The resulting algorithm approximately solves the minimax problem below

max
θ

min
{Ỹi}

V ({Ỹi}; θ) (6)

• The sampling step finds {Ỹi} to decrease V , since it searches for low
energy modes in the landscape defined by E(Y ; θ) via stochastic gradient
descent.
• The learning step finds θ to increase V , which can be interpreted as mode

shifting by shifting the low energy modes from the synthesized examples
{Ỹi} toward the observed examples {Yi}.

Mode seeking and mode shifting:

Red curve: true distribution; blue curve: learned distribution

Application 1: 3D object synthesis
Each row displays one experiment, where the first 3 3D objects are some
observed examples, columns 4, 5, 6, 7, 8, and 9 are 6 of the synthesized 3D
objects. The nearest neighbors retrieved from the training set are shown in
columns 10,11, 12, and 13 for the last four synthesized objects.

Application 2: 3D object recovery

We can perform recovery on occluded data by sampling from p(YM |YM̃ , θ),
which is learned from fully observed training pairs {(Y iM , Y iM̃ ), i = 1, ..., n}.
The sampling is accomplished by Langevin dynamics, which is the same as the
one that samples from p(Y ; θ), except that we fix the unmasked part YM̃ and
only update the masked part YM through the Langevin dynamics.

Application 3: 3D object super-resolution
We can perform super-resolution (4×) on a low resolution (e.g., 16× 16× 16)
3D objects by sampling from p(Yhigh|Ylow, θ), which is learned from fully
observed training pairs {(Y ihigh, Y ilow), i = 1, ..., n}.

In each iteration, we first up-scale Ylow
by expanding each voxel into a d×d×d
block (where d is the scaling ratio) of
constant intensity to obtain an up-scaled
version Y

′

high of Ylow and then run
Langevin dynamics staring from Y

′

high.

Application 4: 3D object classification

We first train a single model on all cat-
egories of the training set of Model-
Net10 dataset in an unsupervised man-
ner. Then we use the model as a feature
extractor. We train a multinomial lo-
gistic regression classifier from labeled
data based on the extracted feature vec-
tors for classification.

Method Accuracy

Geometry Image 88.4%
PANORAMA-NN 91.1%
ECC 90.0%
3D ShapeNets 83.5%
DeepPano 85.5%
SPH 79.8%
VConv-DAE 80.5%
3D-GAN 91.0%
3D DescriptorNet (ours) 92.4%

Conclusion
(1) We propose the 3D DescriptorNet for volumetric objects.
(2) We propose the conditional 3D DescriptorNet for 3D object recovery and
3D object super resolution.
(3) The model can be used to train a 3D generator via cooperative training.
(4) The model is useful for semi-supervised learning in 3D classification.

Application 5: Teaching 3D generator net

The 3D generator model Y = g(Z;α) + ε, where Z ∼ N(0, Id) can be trained
simultaneously with the 3D DescriptorNet in a cooperative training scheme:

• Input: training data {Yi, i = 1, ..., n}, and number of learning steps T .
• Output: model parameters θ and α, and synthetic data {Ŷi, Ỹi, i =

1, ..., ñ}

1. Let t← 0, initialize θ and α.

2. Repeat

3. Initializing mode seeking: For i = 1, ..., ñ, generate Zi ∼ N(0, Id), and
generate Ŷi = g(Zi;α

(t)) + εi.

4. Mode seeking: For i = 1, ..., ñ, starting from Ŷi, run l steps of Langevin
dynamics to obtain Ỹi, each step following equation (3).

5. Mode shifting: Update θ(t+1) = θ(t) + γtL
′
p(θ

(t)), where L′
p(θ

(t)) is
computed according to (4).

6. Learning from mode seeking: Update α(t+1) = α(t) − ηtLq
′(α(t)),

where Lq ′(α(t)) is computed by ∂
∂α [ 1

ñ

∑ñ
i=1 ‖Ỹi − g(Zi;α)‖2].

7. Let t← t+ 1

8. Until t = T

We evaluate a 3D generator trained by
a 3D DescriptorNet by experiments on
generator synthesis, latent space inter-
polation and 3D object arithmetic.

3D object arithmetic

Synthesis by 3D generator Interpolation between latent vector of the 3D object on the two ends

Webpage
http://www.stat.ucla.edu/∼jxie/3DDescriptorNet/3DDescriptorNet.html
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