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This paper proposes a 3D shape descriptor network, which is a deep convo-
lutional energy-based model, for modeling volumetric shape patterns. The

maximum likelihood training of the model follows an “analysis by synthesis”

scheme and can be interpreted as a mode seeking and mode shifting process.
The model can synthesize 3D shape patterns by sampling from the probability
distribution via MCMC such as Langevin dynamics. The model can be used
to train a 3D generator network via MCMC teaching. The conditional version
of the 3D shape descriptor net can be used for 3D object recovery and 3D
object super-resolution. Experiments demonstrate that the proposed model can
generate realistic 3D shape patterns and can be useful for 3D shape analysis.

3D shape descriptor network (3D DescriptorNet)

Probability density
The model 1s a 3D deep convolutional energy-based model defined on the 3D
data Y, which is 1in the form of exponential tilting of a reference distribution:

1

p(Y;0) = 7(0)

exp [f(Y;0)] po(Y), (1)

where p(Y') is the reference distribution such as Gaussian white noise pg(Y')
exp (—||Y]|?/2s?) , f(Y;0) is a bottom-up 3D volumetric ConvNet whose pa-
rameters are denoted by 6. Z(0) = [ exp [f(Y;0)] po(Y)dY is the normalizing
constant that is analytically intractable.

Analysis by synthesis
Suppose we observe 3D training examples {Y;,7 = 1, ..., n} from an unknown

distribution. The maximum likelihood learning seeks to maximize the log-
likelihood function L,,(#) = £ >~ log p(Y;; §). The gradient of L, (9) is
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where the expectation Ey 1s analytically intractable and has to be approximated
by MCMC, e.g., Langevin dynamics, which iterates the following step:
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where 7 indexes the time steps, A7 is the discretized step size, and €, ~ N(0, 1)
is the Gaussian white noise. Suppose we draw 1 samples {Y;,7 = 1,....,n}
from p(Y'; 0) according to (3), L,,(6) in (2) can be approximated by
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Adversarial interpretation / Mode seeking and mode shifting

If we rewrite model (1) in the form of energy-based model p(Y;0)

exp (—&(Y;0)), then the energy function £(Y;60) = ||Y||?/(2s%) — f(Y;0).
We rewrite equation (4) in the form of
I 1 & '
/ = = g
L,(0) ~ E ;5(1” o) — - ;5(%0) . (5)
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Adversarial interpretation:
The resulting algorithm approximately solves the minimax problem below

max min V({Y;};0) (6)

e The sampling step finds {171} to decrease V', since it searches for low
energy modes in the landscape defined by £(Y'; @) via stochastic gradient
descent.

e The learning step finds 6 to increase V', which can be interpreted as mode
shifting by shifting the low energy modes from the synthesized examples
{Y;} toward the observed examples {Y;}.

Mode seeking and mode shifting:
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Red curve: true distribution; blue curve: learned distribution

Application 1: 3D object synthesis

Each row displays one experiment, where the first 3 3D objects are some
observed examples, columns 4, 5, 6, 7, 8, and 9 are 6 of the synthesized 3D
objects. The nearest neighbors retrieved from the training set are shown in
columns 10,11, 12, and 13 for the last four synthesized objects
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Application 2: 3D object recovery

We can perform recovery on occluded data by sampling from p(Y/|Y,7,0),
which is learned from fully observed training pairs {(Y},, Y. ),i = 1,...,n}.
The sampling 1s accomplished by Langevin dynamics, which is the same as the
one that samples from p(Y’; §), except that we fix the unmasked part Y,; and
only update the masked part Y, through the Langevin dynamics.
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Application 3: 3D object super-resolution

We can perform super-resolution (4 ) on a low resolution (e.g., 16 x 16 x 16)
3D objects by sampling from p(YhzglelOw, ¢), which is learned from fully
observed training pairs {(Y}, ,, Y} ),i =1,....,n}.

In each iteration, we first up-scale Yj,q,
by expanding each voxel intoad xd x d
block (where d is the scaling ratio) of
constant intensity to obtain an up-scaled

. /
version Y, . gh of Y;,,, and then run
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Application 4: 3D object classification
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We first train a single model on all cat- | Method Accuracy
egories of the training set of Model- | Gcometry Image 88.4%
: : PANORAMA-NN 91.1%
NetlO dataset in an unsupervised man- | - 90.0%
ner. Then we use the model as a feature 3D ShapeNets 83.5%
extractor. We train a multinomial lo- | DeepPano 85.5%
gistic regression classifier from labeled SPH 79.8%
VConv-DAE 80.5%
data based on the extracted feature vec- AD-GAN 91 0%
tors for classification. 3D DescriptorNet (ours) 92.4%

Conclusion

(1) We propose the 3D DescriptorNet for volumetric objects.

(2) We propose the conditional 3D DescriptorNet for 3D object recovery and
3D object super resolution.

(3) The model can be used to train a 3D generator via cooperative training.

(4) The model 1s useful for semi-supervised learning in 3D classification.
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Application 5: Teaching 3D generator net

The 3D generator model Y = g(Z; «) + €, where Z ~ N(0, I;) can be trained
simultaneously with the 3D DescriptorNet in a cooperative training scheme:

e Input: training data {Y;,7 = 1, ..., n}, and number of learning steps 7.
e QOutput: model parameters 6 and «, and synthetic data {Y;,Y;,i =

1.7

1. Lett < 0, initialize € and «.

2. Repeat

3. Initializing mode seeking: For: =1, ...,
generate Y; = g(Z;; W) + ¢;.

4. Mode seeking: For : = 1, ..., n, starting from Y;, run { steps of Langevin
dynamics to obtain Y;, each step following equation (3).

5. Mode shifting: Update 0™ = () 4+ 4, L/ (1)), where L (6")) is
computed according to (4).

n, generate Z; ~ N(0, I;), and

6. Learning from mode seeking: Update o'*!) = o) — L,/ (a"),
where L,/ (o)) is computed by 2 [ 3" ||V — g(Zi; a)||?).

7. Lett <t +1

8. Untilt =T

We evaluate a 3D generator trained by
a 3D DescriptorNet by experiments on

generator synthesis, latent space inter-
polation and 3D object arithmetic.
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Synthesis by 3D generator
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3D object arithmetic
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Interpolation between latent vector of the 3D object on the two ends
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Webpage

http://www.stat.ucla.edu/~jxie/3DDescriptorNet/3DDescriptorNet.html
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