
A Tale of Two Flows: Cooperative Learning of

Langevin Flow and Normalizing Flow Toward

Energy-Based Model

Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li

Cognitive Computing Lab, Baidu Research

1. Introduction and Motivation

(1) An EBM parameterized by a ConvNet can be trained by

MCMC-based maximum likelihood estimation (Xie et al. 2016)1 .

(2) However, the Langevin MCMC sampling on a highly multi-modal

energy function is generally not mixing, which leads to a short-run

Langevin flow model (Nijkamp et al. 2019)2 .

(3) Motivated by reducing the number of steps in the Langevin flow, this

paper proposes the CoopFlow model that trains a Langevin flow jointly

with a normalizing flow (Jonathan et al. 2019) 3 in a cooperative

learning scheme (Xie et al. 2018)4.
1Jianwen Xie, et al. ”A Theory of Generative ConvNet.” ICML, 2016.
2Erik Nijkamp, et al. ”Learning Non-Convergent Non-Persistent Short-Run MCMC

Toward Energy-Based Model.” NeurIPS, 2019.
3Jonathan Ho, et al. ”Flow++: Improving Flow-Based Generative Models with

Variational Dequantization and Architecture Design.” ICML, 2019
4Jianwen Xie, et al. ”Cooperative Training of Descriptor and Generator Networks.”

TPAMI, 2018

1

2. Langevin Flow

Energy-based model

Let x ∈ RD be the observed signal, e.g., an image. An energy-based

model defines an unnormalized probability distribution of x :

pθ(x) =
1

Z (θ)
exp[fθ(x)],

where fθ : RD → R is the negative energy function and defined by a

bottom-up neural network whose parameters are θ. The normalizing

constant Z (θ) =
∫
exp[fθ(x)]dx is analytically intractable and difficult to

compute due to high dimensionality of x .

2

2. Langevin Flow

Maximum likelihood learning

Suppose we observe training examples {xi , i = 1, ..., n} from unknown

data distribution pdata(x), the energy-based model can be trained by

maximum likelihood estimation. The learning gradient is given by

L′(θ) = Epdata [∇θfθ(x)]−Epθ [∇θfθ(x)] ≈
1

n

n∑
i=1

∇θfθ(xi)−
1

n

n∑
i=1

∇θfθ(x̃i),

where the expectations are approximated by averaging over the observed

examples {xi} and the synthesized examples {x̃i} generated from the

current model pθ(x) via MCMC, respectively.

3

2. Langevin Flow

Langevin dynamics as MCMC

Generating synthesized examples from pθ(x) can be accomplished with

Langevin dynamics, which is applied as follows

xt+1 = xt+
δ2

2
∇x fθ(xt)+δϵt ; x0 ∼ p0(x), ϵt ∼ N (0, ID), t = 1, · · · ,T ,

where t indexes the Langevin time step, δ denotes the Langevin step size,

ϵt is a Brownian motion that explores different modes, and p0(x) is a

uniform distribution that initializes the MCMC chains.

4

2. Langevin Flow

Langevin Flow

Let p̃θ(x) be the distribution of xT , which is the resulting distribution of

x after T steps of Langevin update starting from x0 ∼ p0(x). Due to

fixed initial distribution p0(x) and fixed K and δ, the distribution p̃θ(x) is

p̃θ(x) = (Kθp0)(x) =

∫
p0(z)Kθ(x |z)dz ,

where Kθ denotes the transition kernel of T steps of Langevin dynamics

that samples pθ.

Generally, p̃θ(x) is not necessarily equal to pθ(x). p̃θ(x) is dependent on

T and s. According to the law of thermodynamics, DKL(p̃θ(x)||pθ(x))
decreases to zero monotonically as T →∞.

5

3. Normalizing Flow

Normalizing Flow

Let z ∈ RD be the latent vector of the same dimensionality as x . A

normalizing flow is of the form

x = gα(z); z ∼ q0(z),

where q0(z) is a Gaussian distribution, and gα consists of a sequence of L

invertible transformations.

The successive transformations between x and z can be expressed as a

flow z
g1←→ h1

g2←→ h2 · · ·
gL←→ x , where we define z := h0 and x := hL

for succinctness. The log-likelihood of x can be easily computed by

log qα(x) = log q0(z) +
L∑

l=1

log

∣∣∣∣det(∂hl−1

∂hl

)∣∣∣∣ .
The flow-based model can be trained by maximizing the data

log-likelihood L(α) =
∑n

i log qα(xi).

6

4. CoopFlow: Cooperative Training of Two Flows

(1) We accept the fact that the short-run non-convergent MCMC is

inevitable and more affordable in practice.

(2) We treat a non-convergent short-run Langevin flow as a generator

(3) We propose to jointly train the Langevin flow with a normalizing flow

as a rapid initializer for more efficient generation.

(4) The resulting generator is called CoopFlow, which consists of a

Langevin flow and a normalizing flow.

7

4. CoopFlow: Cooperative Training of Two Flows

The distribution of the CoopFlow

The density of the CoopFlow π(θ,α)(x) can be implicitly expressed by

π(θ,α)(x) = (Kθqα)(x) =

∫
qα(x

′)Kθ(x |x ′)dx ′,

where θ is the parameters of the EBM, and α is the parameters of the

normalizing flow. Kθ(x |x ′) is the transition kernel of T steps of Langevin

dynamics that samples pθ

8

4. CoopFlow: Cooperative Training of Two Flows

The CoopFlow Algorithm

At each iteration, we perform

(Step 1) For i = 1, ...,m, we first generate zi ∼ N (0, ID), and then

transform zi by a normalizing flow to obtain x̂i = gα(zi).

(Step 2) Starting from each x̂i , we run a Langevin flow (i.e., a finite

number of Langevin steps toward an EBM pθ(x)) to obtain x̃i .

(Step 3) We update α of the normalizing flow by treating x̃i as training

data.

(Step 4) We update θ of the Langevin flow according to the learning

gradient of the EBM, which is computed with the synthesized examples

x̃i and the observed examples.

9

4. Understanding the Learned Two Flows

Moment Matching Estimator

Consider a simple EBM with fθ(x) = ⟨θ, h(x)⟩, where h(x) is the feature

statistics. The CoopFlow π∗ is a moment matching estimator, i.e.,

Epdata [h(x)] = Eπ∗ [h(x)].

Figure 1: Illustration of

convergence of the CoopFlow.

Ω = {p : Ep[h(x)] = Epdata [h(x)]},
Θ = {pθ(x) = exp(⟨θ, h(x)⟩)/Z (θ),∀θ},
A = {qα,∀α},

10

5. Experiments

Exp 1: Image Generation

(a) CIFAR-10 (b) SVHN (c) Celeba

Figure 2: Generated examples (32 × 32 pixels) by CoopFlow models trained

from CIFAR-10, SVHN and Celeba datasets respectively. Samples are obtained

from the setting of CoopFlow(pre).

11

5. Experiments

Exp 1: Image Generation

12

5. Experiments

Exp 2: Image Reconstruction

The CoopFlow model is a latent variable generative model:

z ∼ p0(z); x̂ = gα(z); x = Fθ(x̂ , e),

where z is the latent variables, e are all injected noises in the Langevin

flow, and Fθ is the mapping realized by a T -step Langevin flow.

We can reconstruct any x by inferring the corresponding latent variables

z using gradient descent on L(z) = ||x − Fθ(gα(z), e)||2, with z being

initialized by p0.

13

5. Experiments

Exp 2: Image Reconstruction

Figure 3: Reconstruction of images.

Figure 4: Image inpainting. Each row represents one different initialization.

The last two columns display the masked and original images respectively.
14

5. Experiments

Exp 3: Interpolation in the Latent Space

The CoopFlow is capable of doing interpolation in the latent space z .

Given an image x , we first find its corresponding x̂∗ using the

reconstruction method. We then infer z by the inversion of the

normalizing flow z∗ = g−1
α (x̂∗).

Figure 5: Image interpolation results on Celeba dataset (32× 32). The

leftmost and rightmost columns represent the images we observed. The

columns in the middle represent the interploation results between the inferred

latent vectors of the observed images.

15

6. Conclusion

(1) We study amortized sampling for training a short-run non-mixing

Langevin sampler toward an EBM.

(2) We propose a novel framework, the CoopFlow, which cooperatively

trains a short-run Langevin flow as a valid generator and a normalizing

flow as an amortized sampler for image representation.

(3) We provide both theoretical and empirical justifications for the

proposed CoopFlow algorithm.

16

