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1. Introduction and Motivation

(1) An EBM parameterized by a ConvNet can be trained by

MCMC-based maximum likelihood estimation (Xie et al. 2016)1 .

(2) However, the Langevin MCMC sampling on a highly multi-modal

energy function is generally not mixing, which leads to a short-run

Langevin flow model (Nijkamp et al. 2019)2 .

(3) Motivated by reducing the number of steps in the Langevin flow, this

paper proposes the CoopFlow model that trains a Langevin flow jointly

with a normalizing flow (Jonathan et al. 2019) 3 in a cooperative

learning scheme (Xie et al. 2018)4.
1Jianwen Xie, et al. ”A Theory of Generative ConvNet.” ICML, 2016.
2Erik Nijkamp, et al. ”Learning Non-Convergent Non-Persistent Short-Run MCMC

Toward Energy-Based Model.” NeurIPS, 2019.
3Jonathan Ho, et al. ”Flow++: Improving Flow-Based Generative Models with

Variational Dequantization and Architecture Design.” ICML, 2019
4Jianwen Xie, et al. ”Cooperative Training of Descriptor and Generator Networks.”

TPAMI, 2018
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2. Langevin Flow

Energy-based model

Let x ∈ RD be the observed signal, e.g., an image. An energy-based

model defines an unnormalized probability distribution of x :

pθ(x) =
1

Z (θ)
exp[fθ(x)],

where fθ : RD → R is the negative energy function and defined by a

bottom-up neural network whose parameters are θ. The normalizing

constant Z (θ) =
∫
exp[fθ(x)]dx is analytically intractable and difficult to

compute due to high dimensionality of x .
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2. Langevin Flow

Maximum likelihood learning

Suppose we observe training examples {xi , i = 1, ..., n} from unknown

data distribution pdata(x), the energy-based model can be trained by

maximum likelihood estimation. The learning gradient is given by

L′(θ) = Epdata [∇θfθ(x)]−Epθ [∇θfθ(x)] ≈
1

n

n∑
i=1

∇θfθ(xi )−
1

n

n∑
i=1

∇θfθ(x̃i ),

where the expectations are approximated by averaging over the observed

examples {xi} and the synthesized examples {x̃i} generated from the

current model pθ(x) via MCMC, respectively.
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2. Langevin Flow

Langevin dynamics as MCMC

Generating synthesized examples from pθ(x) can be accomplished with

Langevin dynamics, which is applied as follows

xt+1 = xt+
δ2

2
∇x fθ(xt)+δϵt ; x0 ∼ p0(x), ϵt ∼ N (0, ID), t = 1, · · · ,T ,

where t indexes the Langevin time step, δ denotes the Langevin step size,

ϵt is a Brownian motion that explores different modes, and p0(x) is a

uniform distribution that initializes the MCMC chains.
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2. Langevin Flow

Langevin Flow

Let p̃θ(x) be the distribution of xT , which is the resulting distribution of

x after T steps of Langevin update starting from x0 ∼ p0(x). Due to

fixed initial distribution p0(x) and fixed K and δ, the distribution p̃θ(x) is

p̃θ(x) = (Kθp0)(x) =

∫
p0(z)Kθ(x |z)dz ,

where Kθ denotes the transition kernel of T steps of Langevin dynamics

that samples pθ.

Generally, p̃θ(x) is not necessarily equal to pθ(x). p̃θ(x) is dependent on

T and s. According to the law of thermodynamics, DKL(p̃θ(x)||pθ(x))
decreases to zero monotonically as T →∞.
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3. Normalizing Flow

Normalizing Flow

Let z ∈ RD be the latent vector of the same dimensionality as x . A

normalizing flow is of the form

x = gα(z); z ∼ q0(z),

where q0(z) is a Gaussian distribution, and gα consists of a sequence of L

invertible transformations.

The successive transformations between x and z can be expressed as a

flow z
g1←→ h1

g2←→ h2 · · ·
gL←→ x , where we define z := h0 and x := hL

for succinctness. The log-likelihood of x can be easily computed by

log qα(x) = log q0(z) +
L∑

l=1

log

∣∣∣∣det(∂hl−1

∂hl

)∣∣∣∣ .
The flow-based model can be trained by maximizing the data

log-likelihood L(α) =
∑n

i log qα(xi ).
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4. CoopFlow: Cooperative Training of Two Flows

(1) We accept the fact that the short-run non-convergent MCMC is

inevitable and more affordable in practice.

(2) We treat a non-convergent short-run Langevin flow as a generator

(3) We propose to jointly train the Langevin flow with a normalizing flow

as a rapid initializer for more efficient generation.

(4) The resulting generator is called CoopFlow, which consists of a

Langevin flow and a normalizing flow.
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4. CoopFlow: Cooperative Training of Two Flows

The distribution of the CoopFlow

The density of the CoopFlow π(θ,α)(x) can be implicitly expressed by

π(θ,α)(x) = (Kθqα)(x) =

∫
qα(x

′)Kθ(x |x ′)dx ′,

where θ is the parameters of the EBM, and α is the parameters of the

normalizing flow. Kθ(x |x ′) is the transition kernel of T steps of Langevin

dynamics that samples pθ
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4. CoopFlow: Cooperative Training of Two Flows

The CoopFlow Algorithm

At each iteration, we perform

(Step 1) For i = 1, ...,m, we first generate zi ∼ N (0, ID), and then

transform zi by a normalizing flow to obtain x̂i = gα(zi ).

(Step 2) Starting from each x̂i , we run a Langevin flow (i.e., a finite

number of Langevin steps toward an EBM pθ(x)) to obtain x̃i .

(Step 3) We update α of the normalizing flow by treating x̃i as training

data.

(Step 4) We update θ of the Langevin flow according to the learning

gradient of the EBM, which is computed with the synthesized examples

x̃i and the observed examples.
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4. Understanding the Learned Two Flows

Moment Matching Estimator

Consider a simple EBM with fθ(x) = ⟨θ, h(x)⟩, where h(x) is the feature

statistics. The CoopFlow π∗ is a moment matching estimator, i.e.,

Epdata [h(x)] = Eπ∗ [h(x)].

Figure 1: Illustration of

convergence of the CoopFlow.

Ω = {p : Ep[h(x)] = Epdata [h(x)]},
Θ = {pθ(x) = exp(⟨θ, h(x)⟩)/Z (θ),∀θ},
A = {qα,∀α},
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5. Experiments

Exp 1: Image Generation

(a) CIFAR-10 (b) SVHN (c) Celeba

Figure 2: Generated examples (32 × 32 pixels) by CoopFlow models trained

from CIFAR-10, SVHN and Celeba datasets respectively. Samples are obtained

from the setting of CoopFlow(pre).
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5. Experiments

Exp 1: Image Generation
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5. Experiments

Exp 2: Image Reconstruction

The CoopFlow model is a latent variable generative model:

z ∼ p0(z); x̂ = gα(z); x = Fθ(x̂ , e),

where z is the latent variables, e are all injected noises in the Langevin

flow, and Fθ is the mapping realized by a T -step Langevin flow.

We can reconstruct any x by inferring the corresponding latent variables

z using gradient descent on L(z) = ||x − Fθ(gα(z), e)||2, with z being

initialized by p0.
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5. Experiments

Exp 2: Image Reconstruction

Figure 3: Reconstruction of images.

Figure 4: Image inpainting. Each row represents one different initialization.

The last two columns display the masked and original images respectively.
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5. Experiments

Exp 3: Interpolation in the Latent Space

The CoopFlow is capable of doing interpolation in the latent space z .

Given an image x , we first find its corresponding x̂∗ using the

reconstruction method. We then infer z by the inversion of the

normalizing flow z∗ = g−1
α (x̂∗).

Figure 5: Image interpolation results on Celeba dataset (32× 32). The

leftmost and rightmost columns represent the images we observed. The

columns in the middle represent the interploation results between the inferred

latent vectors of the observed images.
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6. Conclusion

(1) We study amortized sampling for training a short-run non-mixing

Langevin sampler toward an EBM.

(2) We propose a novel framework, the CoopFlow, which cooperatively

trains a short-run Langevin flow as a valid generator and a normalizing

flow as an amortized sampler for image representation.

(3) We provide both theoretical and empirical justifications for the

proposed CoopFlow algorithm.
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