Introduction and motivation

1. A persisting challenge in training energy-based models (EBMs) 1s the calculation of the
intractable normalizing constant, which typically requires Markov chain Monte Carlo
(MCMCO).

2. However, the MCMC 1s computationally expensive or even impractical.

3. To tackle the challenge, this paper learns a variational auto-encoder (VAE) as an amortized
sampler for efficient training of EBMs.

Contribution

1. We propose to learn a variational auto-encoder (VAE) to initialize the finite-step MCMC,
such as Langevin dynamics, for efficient amortized sampling of the EBM.

2. We naturally unify the maximum likelihood learning, variational inference, and MCMC
teaching in a single framework.

3. We provide an information geometric understanding of the proposed joint training algo-
rithm. It can be interpreted as a dynamic alternating projection.

4. We provide strong empirical results on unconditional image modeling and conditional
predictive learning to validate the proposed method.

Energy-based model and ‘‘analysis by synthesis”

(1) Energy-based Model
Let x be an image, Uy(x) be an energy function where @ is trainable parameters, an EBM is
defined as a probability density:

po(e) = g5 expl=Us (o))

where Z(0) = | exp|—Uy(z)]dz is an analytically intractable normalizing constant. Following
the EBM introduced by Xie et al.(2016) ¢, we can parameterize Uy (x) by a bottom-up ConvNet
with weights 6 and scalar output.

(2) Analysis by synthesis

Suppose we have a training set D = {x;,7 = 1,...,n} and we assume each datapoint is sampled
from an unknown distribution pg.:. (). We train 6 by maximum likelihood. The gradient is
computed by
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where Ez.p, () [T} 1s analytically intractable and has to be approximated by MCMC

sampling (e.g. Langevin Dynamics). This will lead to an analysis by synthesis™ algorithm that
iterates a synthesis step for image sampling and an analysis step for parameter learning.

“Jianwen Xie*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative ConvNet. ICML 2016.

A gradient-based MCMC: Langevin dynamics

(1) Langevin dynamics
Given the cusrent energy function Uy (z), the Langevin Dynamics iterates
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where ¢ indexes the time step, 0 is the step size, and the initial state xy follows a uniform
distribution.

(2) Challenges

e MCMC is computationally expensive and hard to converge.

e Target distribution may have multiple modes separated by low probability regions. Long-
run MCMC chains easily get trapped by local modes.
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Variational auto-encoder as amortized sampler

(1) Ancestral Langevin Sampling

For the efficient MCMC convergence, we bring in a directed latent variable model g, (z) to
serve as a fast non-iterative sampler to initialize the iterative Langevin sampler. We draw a
sample by first (1) sampling an initial example z via ancestral sampling, and then (i1) revising
with a finite-step Langevin update, that 1s

()E = ga(2), 2 ~ N(0, Ig),
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The goal of g,(2) is to provide a good starting point for MCMC sampling, i.e., mimic the the
distribution of pg(z).
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(2) Update EBM pg (x) with amortized sampling
With {z;}I'_, ~ pg(x) via ancestral Langevin sampling, we can compute the gradient for 6 by
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and then update 6 by Adam optimizer.

(3) Update latent variable model g, () by variational MCMC teaching

In our paper, we want to learn g, () in the context of VAE from {Z;}. To retrieve the latent
variable of {Z;}, we bring in a tractable approximate inference network 7 (z|x) and infer
z ~ mg(z|z). Then the learning of mg(z|x) and g, (x|z) forms a VAE that treats {Z;} as
training examples. We call this the variational MCMC teaching. The VAE objective 1s a
minimization of variational lower bound of the negative log likelihood:
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Information geometric understanding

The proposed framework includes three trainable models, i.e., energy-based model py(x),
inference model 73(z|x), latent variable model: ¢, (x|z). They, along with the empirical data
distribution pgata (), Gaussian prior distribution ¢(z), define three families of joint distributions
over the latent variables z and the data x.

(i) II-distribution: II(2, x) = pgata()75(2|2)

(i1) Q-distribution: Q(z,x) = q(2)qa(x|2)

(iii) P-distribution: P(z,x) = pe(x)ms(2|x)
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(a) Variational learning as alternating projection

The joint minimization in VAE can be interpreted as alternating projection between Py, and (),
where 7z and ¢, run toward each other and eventually converge at the intersection.

(b) Energy-based learning as manifold shifting

With the examples generated by the ancestral Langevin sampler, the objective function of
training the EBM is ming KL(II||P), i.e., ming KL(pgata||pe). Ps, runs toward II and seeks
to match it.

(¢) Integrating energy-based learning and variational learning as dynamic alternating
projection

Our model can be interpreted as a dynamic alternating projection between () and P, where () is
static but P 1s changeable and keeps shifting toward 11.

(d) Convergent point of the dynamic alternating projection

Triplet (0, ¢, /3) is the Nash equilibrium (optimal solution) of the learning algorithm.

Learning Energy-Based Model with Variational Auto-Encoder as Amortized Sampler
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Experiment 1: Image generation
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Figure 1: Generated samples by the models learned on MNIST Fash1on MNIST and CIFAR-10.
Table 1: Quantitative evaluation of Inception score and FID score on CIFAR-10 dataset

Model IS FID
PixelCNN (Van den Oord et al. 2016) 460 6593
PixelIQN (Ostrovski, Dabney, and Munos 2018) 5.29 49.46
EBM (Du and Mordatch 2019) 6.02 40.58
DCGAN (Radford, Metz, and Chintala 2016) 640 3711
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WGAN+GP (Gulrajani et al. 2017) 6.50 364
CoopNets (Xie et al. 2018a) 6.55 364
Ours 6.65 36.2

Experiment 2: Model analysis

We check whether the latent variable model learns a meaningful latent space in the proposed
learning scheme by demonstrating interpolation between generated examples.
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(a) Interpolation by the latent variable model

We also check the gap between the EBM and the latent variable model once they are leaned.
Visualization of ancestral Langevin dynamics when the model converges. For each row, the
leftmost 1mage 1s the synthesized output by the ancestral sampling. The rest image sequence
displays the synthesized images revised at different Langevin steps.

(b) Langevm revision by a learned model

Experiment 3: Image recovery

pix2pix cVAE-GAN BicycleGAN cCoopNets  cVAE-GAN++

Figure 2: Example results of image recovery on facades testing dataset.
Table 2: Comparison with the baselines for image inpainting

CMP Facades Paris StreetView
Method PSNR SSIM PSNR SSIM
pix2pix (Isola et al. 2017) 1934 0.74 15.17 0.75
cVAE-GAN (Zhu et al. 2017) 1943  0.68 1512 0.72
cVAE-GAN++ (Zhu et al. 2017) 19.14  0.64 16.03 0.69
BicycleGAN (Zhu et al. 2017) 19.07 0.64 16.00 0.68
cCoopNets (Xie et al. 2018a) 20.47 077 21.17 0.79
Ours 21.62 0.78 22.61 0.79




