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Energy-Based Generative Models

Energy-based Model

Let x be an input image, Uθ(x) be an energy function where θ is a

set of trainable parameters, an EBM is defined as an unnormalized

probability density:

pθ(x) =
1

Z (θ)
exp[−Uθ(x)], (1)

where Z (θ) =
∫

exp[−Uθ(x)]dx is a normalizing constant.

We study the energy-based generative model whose energy function

Uθ(x) is parameterized by a non-linear function, e.g., ConvNet. 1

1Jianwen Xie*, Yang Lu*, Song-Chun Zhu, Ying Nian Wu. A Theory of Generative

ConvNet. ICML 2016.
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MLE by Analysis by Synthesis

MLE Training

Suppose we have a training dataset D = {xi , i = 1, ..., n} and we assume

each datapoint is sampled from an unknown distribution pdata. The

maximum likelihood is to minimize the NLL of the observed data by

gradient-based optimization

∂

∂θ
KL(pdata(x)||pθ(x)) = Ex∼pdata(x)

[
∂Uθ(x)

∂θ

]
− Ex̃∼pθ(x)

[
∂Uθ(x̃)

∂θ

]
(2)

where Ex̃∼pθ(x)

[
∂Uθ(x̃)
∂θ

]
is analytically intractable and has to be

approximated by MCMC sampling (e.g. Langevin Dynamics).
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A gradient-based MCMC: Langevin dynamics

Langvein Dynamics Sampler

Given current energy function Uθ(x), the initial state x̃0 ∼ N(0, ID),

the Langevin Dynamics iteratively revises x̃ by finite Langevin steps.

For time step t, step size δ, x̃t is updated by

x̃t+1 = x̃t −
δ2

2

∂Uθ(x̃t)

∂x̃t
+ δN(0, ID) (3)

Challenge

� MCMC is computationally expensive and hard to converge.

� Target distribution may have multiple modes separated by low

probability regions.

� Long-run MCMC chains are easily get trapped by local modes.
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EBM with Ancestral Langevin Sampler

Ancestral Langevin Sampling 2

For the efficient MCMC convergence, we bring in a directed latent

variable model gα(z) to serve as a fast non-iterative sampler to initialize

the MCMC sampler.

(i)z ∼ N(0, Id), x̂ = gα(z) + ε (4)

where x̂ is the initial example generated by ancestral sampling. The goal

of gα(z) is to pursue a good starting point for MCMC sampling, i.e.

mimic the the distribution of pθ(x).

(ii) x̃t+1 = x̃t −
δ2

2

∂Uθ(x̃t)

∂x̃
+ δN(0, ID), x̃0 = x̂ , (5)

2Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative

Training of Descriptor and Generator Networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) 2018
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EBM with Ancestral Langevin Sampler

With {x̃i}ñi=1 ∼ pθ(x), we can compute the gradient in Eq. (2) by

∂

∂θ
KL(pdata(x)||pθ(x)) ≈ 1

n

n∑
i=1

∂Uθ(xi )

∂θ
− 1

ñ

ñ∑
i=1

∂Uθ(x̃i )

∂θ
(6)

to update the parameters of EBM.

Now the question is how we learn the latent variable model qα(x)? What

strategy?
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How to train the latent variable model?

Maximum likelihood estimation of the latent variable model

Given the latent variable model as below

z ∼ N(0, Id), x̂ = gα(z) + ε (7)

The marginal distribution of x ∼ qα(x) is defined by

qα(x) =

∫
qα(x |z)q(z)dz (8)

where prior distribution q(z) = N(0, Id) and conditional distribution

qα(x |z) = N(gα(z), σ2ID). Both posterior distribution qα(z |x) and

marginal distribution qα(x) are analytically intractable.
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How to train the latent variable model?

Alternative Back-propagation (ABP)

ABP maximizes the log-likelihood, whose gradient is

∂

∂α
KL(pdata(x)||qα(x)) = Epdata(x)qα(z|x)

[
− ∂

∂θ
log qα(z , x)

]
. (9)

Variational Auto-Encoder (VAE)

VAE approximates qα(z |x) by a tractable inference network, e.g.,

πβ(z |x) ∼ N(µβ(x),diag(vβ(x))). The objective of VAE tries to

find α and β to minimize

KL(pdata(x)πβ(z |x)||qα(z , x))

=KL(pdata(x)||qα(x)) + KL(πβ(z |x)||qα(z |x)),
(10)
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EBM with Ancestral Langevin Sampler

With {x̃i}ñi=1 ∼ pθ(x), we can compute the gradient in Eq. (2) by

∂

∂θ
KL(pdata(x)||pθ(x)) ≈ 1

n

n∑
i=1

∂Uθ(xi )

∂θ
− 1

ñ

ñ∑
i=1

∂Uθ(x̃i )

∂θ
(11)

to update the parameters of EBM.

Now the question is how we learn the latent variable model qα(x)?

Q:What strategy?

A: MCMC teaching 3: We train the qα(x) from the synthesized examples

{x̃i}.

3Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative

Training of Descriptor and Generator Networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) 2018
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Cooperative learning and MCMC teaching

In the original MCMC teaching paper 4, the qα(x) is trained by ABP from

{x̃i}. The resulting model is called Cooperative Networks (CoopNets).

4Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, Ying Nian Wu. Cooperative

Training of Descriptor and Generator Networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) 2018
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Variational MCMC teaching

In the proposed framework, we want to learn qα(x) by VAE from {x̃i}.

To retrieve the latent variable of {x̃i}, we bring in a tractable

approximate inference network πβ(z |x) and infer z ∼ πβ(z |x̃). Then the

learning of πβ(z |x) and qα(x |z) forms a VAE that treats {x̃i} as training

examples. We call this the variational MCMC teaching 5.

Variational MCMC teaching

Suppose we have {x̃i}ñi=1 ∼Mθtqαt (x) at iteration t, (Let Mθ be

the transition kernel of the finite-step MCMC that samples from

pθt (x)), the VAE objective is a minimization of variational lower

bound of the negative log likelihood:

L(α, β) =
ñ∑

i=1

[− log qα(x̃i ) + γKL(πβ(zi |x̃i )||qα(zi |x̃i ))] (12)

5Jianwen Xie, Zilong Zheng, Ping Li. Energy-Based Probability Estimationwith

Variational Ancestral Langevin Sampler. 2020. (under review) 10



Variational MCMC teaching
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Variational MCMC teaching

In general, the benefits of MCMC teaching are

(1) The latent variable model qα(x) provides an efficient MCMC for the

EBM pθ(x).

(2) The EBM pθ(x) provides infinite training data for the latent variable

model qα(x).
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EBM with variational ancestral Langevin sampler
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Nash equilibrium

Hinton proposed Contrastive Divergence 6 to train RBM (a special

EBM). CD runs k steps of MCMC initialized from the training data,

instead for Gaussian noise.

Contrastive divergence (CD)

Given an energy-based model pθ(x). Let Mθ be the transition

kernel of the finite-step MCMC that samples from pθ(x).

θ̂ = arg min
θ

[KL(pdata(x)‖pθ(x))−KL(Mθpdata(x)‖pθ(x))], (13)

If Mθpdata(x) is close to pθ, then the second divergence is small, and the

CD estimate is close to maximum likelihood which minimizes the first

divergence.
6GE Hinton. Training products of experts by minimizing contrastive divergence.

Neural computation, 2002
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Nash equilibrium

A Nash equilibrium of the model is a triplet (θ̂, α̂, β̂) that satisfies:

θ̂ = arg min
θ

[KL(pdata(x)‖pθ(x))−KL(Mθ̂qα̂(x)‖pθ(x))], (14)

α̂ = arg min
α

[KL(Mθ̂qα̂(x)‖qα(x)) + KL(πβ̂(z |x)‖qα(z |x))], (15)

β̂ = arg min
β

KL(πβ(z |x)‖qα̂(z |x)), (16)

We show that if (θ̂, α̂, β̂) is a Nash equilibrium of the model, then

pθ̂ = qα̂ = pdata.
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Understanding the learning dynamics

The proposed framework includes three trainable models, i.e.,

energy-based model pθ(x), inference model πβ(z |x), and latent variable

model qα(x |z). They, along with the empirical data distribution pdata
and the Gaussian prior distribution q(z), define three joint distributions

over the latent variables z and the data x .

Three joint distributions

(1) Π-distribution: Π(z , x) = pdata(x)πβ(z |x)

(2) Q-distribution: Q(z , x) = q(z)qα(x |z)

(3) P-distribution: P(z , x) = pθ(x)πβ(z |x)
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Understanding the learning dynamics

VAEs learn {α, β} from training data pdata, whose objective function is

minβ minαKL(Π||Q).

The VAE learns to mimic the EBM at each iteration by learning from its

generated examples. Thus, given θt at iteration t, the VAE objective

becomes minβ minαKL(Pθt ||Q), where we put subscript θt in P to

indicate that the P distribution is associated with a fixed θt .

KL(Pθt ||Q)

=KL(pθt (x)πβ(z |x)||qα(x |z)q(z))

=KL(pθt (x)||qα(x)) + KL(πβ(z |x)||qα(z |x))

=KL(Mθtqαt (x)||qα(x)) + KL(πβ(z |x)||qα(z |x))

.

(17)
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Understanding the learning dynamics

Three joint distributions

(1) Π-distribution: Π(z , x) = pdata(x)πβ(z |x)

(2) Q-distribution: Q(z , x) = q(z)qα(x |z)

(3) P-distribution: P(z , x) = pθ(x)πβ(z |x)

The joint minimization in VAE can be interpreted as alternating

projection between Pθt and Q, where πβ and qα run toward each other

and eventually converge at the intersection.

Figure 1: Training variational auto-encoder (VAE) by alternating projection. 18



Understanding the learning dynamics

Three joint distributions

(1) Π-distribution: Π(z , x) = pdata(x)πβ(z |x)

(2) Q-distribution: Q(z , x) = q(z)qα(x |z)

(3) P-distribution: P(z , x) = pθ(x)πβ(z |x)

With the examples generated by the ancestral Langevin sampler, the

objective function of training the EBM is minθ KL(Π||P), i.e.,

minθ KL(pdata||pθ).

Figure 2: Energy-based learning via distribution shifting
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Understanding the learning dynamics

Three joint distributions

(1) Π-distribution: Π(z , x) = pdata(x)πβ(z |x)

(2) Q-distribution: Q(z , x) = q(z)qα(x |z)

(3) P-distribution: P(z , x) = pθ(x)πβ(z |x)

Figure 3: Motional alternating projection
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Understanding the learning dynamics

Three joint distributions

(1) Π-distribution: Π(z , x) = pdata(x)πβ(z |x)

(2) Q-distribution: Q(z , x) = q(z)qα(x |z)

(3) P-distribution: P(z , x) = pθ(x)πβ(z |x)

Figure 4: Convergent point of the motional alternating projection
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Experiments: Image Generation

Figure 5: Generated Samples by the model learned on MNIST,

Fashion-MNIST and Cifar-10 datasets.
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Experiments: Image Generation

Figure 6: Quantitative evaluation of Inception score and FID score on

CIFAR-10 dataset
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Experiments: Image Generation
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Experiments: Conditional Image Generation

Input pix2pix cVAE-GAN BicycleGAN cCoopNets cVAE-GAN++ Ours Ground truth

Figure 7: Example results of image completion on facades testing dataset.

Table 1: Comparison with the baselines for image inpainting

CMP Facades Paris StreetView

Method PSNR SSIM PSNR SSIM

pix2pix 19.34 0.74 15.17 0.75

cVAE-GAN 19.43 0.68 16.12 0.72

cVAE-GAN++ 19.14 0.64 16.03 0.69

BicycleGAN 19.07 0.64 16.00 0.68

cCoopNets 20.47 0.77 21.17 0.79

VALS (Ours) 21.62 0.78 22.61 0.79
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Conclusion

� We present a new framework to train EBM jointly with a VAE via

MCMC teaching.

� We provide a new strategy, variational MCMC teaching, to train

latent variable model (generator).

� We naturally unify the maximum likelihood learning (MLE),

variational inference and MCMC teaching in a single framework.

� We demonstrate empirical results on both unconditional and

conditional image models.
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