Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation
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Problem definition and modeling

(1) Problem

Suppose we have two different data domains, say X and )/, and data collections from these
two different domains {x;,? = 1,...,n,} and {y;,7 = 1, ...,
Let paaa(x) and pya () denote the unknown data distributions for these two domains. Without
instance-level correspondence between two collections, we want to learn translators between
two domains for cross-domain translation.

(1) Latent variable model as a translator

We first talk about the model for one-way translation, e.g., JV — &X. We specily a mapping
(Gy_, x that seeks to re-express the image y in domain ) by the image x in domain X'. The
representational model 1s of the following form:

Y ~ Ddata(Y),
z=Gy_x(y;ax) +ee~N(0,0°Ip),

where G'y_, x(y; ay) is an encoder-decoder network whose parameters are «y, and € is

a Gaussian residual. We assume o 1s given and [p 1s the D-dimensional identity matrix.

We have conditional distribution : ¢(z|y) ~ N (Gy_x(y; ax),c?Ip) and marginal density :
q(x;ax) = [ Pdata(y)q(z|y; ax)dy. Learning oy via maximum likelihood is hard, because it
requires the prior pgq:q(y) to be a tractable density.

(2) Energy-based model as a teacher
To avoid the challenge of inferring y from x, we train Gy, _, y via MCMC teaching by recruiting
an energy-based model (EBM) as a teacher. The EBM specifies the distribution of x by

p(z;0x) = exp [f (x;0x)] po(x),

Z(0x)

where po(z) o< exp(—||z||?/2s?) is the Gaussian reference distribution. The energy function
E(x;0x) = —f(z;0x) + ||x||?/s?, where f is parameterized by a ConvNet with parameters
Ox. Z(0x) = [ exp[f(z;0x)] po(x)dx is the intractable normalizing constant. In practice, we
can learn 6 by maximum likelihood estimation with the gradient that can be approximated by

Zagxfxzae?( __ZaexfquX)

where ; are MCMC examples sampled from p(x; 6x ). With an EBM model defined on domain
X, we can sample x by MCMC, such as Langevin dynamics, which iterates

- U e py) U
Lr41 = L7 2 O LriyUx )

where 7 indexes the time step, 0 is the step size, and U, ~ N (0, Ip).

(3) MCMC teaching

(1) Let My, be the Markov transition kernel of [ steps of Langevin dynamics that samples
from p(x;0x), and My, q., be the marginal distribution obtained by running the Markov
transition My, from distribution ¢(x, a.x ). That is we use the translator ¢(x, oy ) to initialize
the Langevin dynamics of p.

(i) The EBM p(x; 60+ ) can distill its MCMC algorithm to ¢(x; ax) through MCMC teaching,
which seeks to find « at time ¢ to minimize KL( Mg, 4, |ga~ ). Thatis, q(x; ay) gets close

to p(x;0x).
(4) The proposed models

We propose the Cycle-consistent cooperative network (CycleCoopNet s), to simultaneously
learn and align two translator-teacher pairs, 1.e.,

Y= X :{p(z;0x), Gy_x(y; ax)},
X =Y {py;0y), Gxoy(x;ay)},

where each pair of models 1s trained via MCMC teaching to form a one-way translation. We
align them by enforcing mutual invertibility, 1.e.,

v, = Gy x(Gx_y(r;;ay);ax),
= Gxoy(Gyox (Wi ax);ay).

n,}, where x; € X and y; € ).
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Step (1): cross-domain mapping )
{2i ~ Pdata(®) tioy {0 = Gaoy (i ay) i,

{Yi ~ Paata(¥) oy {2 = Gy x(yis ox) iy

p(x) 4

(1)

Step (2): density shifting
Starting from {g; }" =15 run [ steps of Langevin revision to obtain {y; } I
Starting from {Z;}?_,, run [ steps of Langevin revision to obtain {Z;}"_,.

Given {x}"_, and {Z}?_,, update 6’5; ) = «9&? + WQXA(HS?).
Given {y}?*_, and {7}"_,, update Hng) = Hgf) + ”yeyA(Hgf)).

p(x) A r(») 4

(2)

Step (3): mapping shifting with cycle consistency
Lteach(O‘X) — % Z? 1 Hijz - Gy_vc(y?;, CVX)HQ-

Licach(ay) = 1 Zz 1 |Ji — Gxoy(xg, ay)
Lcyc (~C¥X, Ozy) .
=y llz = Gyosx (Groy(ziay);ax)lh + 2 20 [y — Gaoy(Gy—x (yis ax); ay) .

I°.

p(x) 4 p(y) 4
(3)
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Experiment 1: Object transfiguration and season transfer
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Figure 1: (Left) Object transfiguration. (Right) Season transfer.

Experiment 2: Translation between photo image and semantic label image
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Figure 2: Translation between photo image and semantic label image

Table 1: Quantitative evaluation of unsupervised image-to-image translation by PSNR.

Dataset Model TL=R {TR=L
CycleGAN 2159 1267
. AlignFlow(mle) 19.47 13.60
AerialoMap 1\ jionFlow(adv) | 2016  15.17
Ours 22.29 14.50
CycleGAN 6.68 7.61
AlignFlow(mle) 6.47 8.26
FacadesLabel |\ Flow(adv) | 774 1174
Ours 934  11.93

Experiment 3: Style transfer
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Figure 3: Collection style transfer from photo realistic images to artistic styles

Experiment 4: Image sequence translation
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(b) violet ﬂower to yellow ﬂower

(c) purple flower to red flower
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Figure 4: (a) We translate Barack Obama’s facial motion to Donald Trump. (b) We translate
from the blooming of a violet flower to a yellow flower. (¢) We translate the blooming of a
purple flower to a red flower.



