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Problem definition and modeling
(1) Problem
Suppose we have two different data domains, say X and Y , and data collections from these
two different domains {xi, i = 1, ..., nx} and {yi, i = 1, ..., ny}, where xi ∈ X and yi ∈ Y .
Let pdata(x) and pdata(y) denote the unknown data distributions for these two domains. Without
instance-level correspondence between two collections, we want to learn translators between
two domains for cross-domain translation.

(1) Latent variable model as a translator
We first talk about the model for one-way translation, e.g., Y → X . We specify a mapping
GY→X that seeks to re-express the image y in domain Y by the image x in domain X . The
representational model is of the following form:

y ∼ pdata(y),

x = GY→X (y;αX ) + ε, ε ∼ N (0, σ2ID),

where GY→X (y;αX ) is an encoder-decoder network whose parameters are αX , and ε is
a Gaussian residual. We assume σ is given and ID is the D-dimensional identity matrix.
We have conditional distribution : q(x|y) ∼ N (GY→X (y;αX ), σ2ID) and marginal density :
q(x;αX ) =

∫
pdata(y)q(x|y;αX )dy. Learning αX via maximum likelihood is hard, because it

requires the prior pdata(y) to be a tractable density.

(2) Energy-based model as a teacher
To avoid the challenge of inferring y from x, we train GY→X via MCMC teaching by recruiting
an energy-based model (EBM) as a teacher. The EBM specifies the distribution of x by

p(x; θX ) =
1

Z(θX )
exp [f(x; θX )] p0(x),

where p0(x) ∝ exp(−||x||2/2s2) is the Gaussian reference distribution. The energy function
E(x; θX ) = −f(x; θX ) + ||x||2/s2, where f is parameterized by a ConvNet with parameters
θX . Z(θX ) =

∫
exp [f(x; θX )] p0(x)dx is the intractable normalizing constant. In practice, we

can learn θX by maximum likelihood estimation with the gradient that can be approximated by

∆(θX ) =
1

n

n∑
i=1

∂

∂θX
f(xi; θX )− 1

ñ

ñ∑
i=1

∂

∂θX
f(x̃i; θX ),

where x̃i are MCMC examples sampled from p(x; θX ). With an EBM model defined on domain
X , we can sample x by MCMC, such as Langevin dynamics, which iterates

xτ+1 = xτ −
δ2

2

∂

∂x
E(xτ ; θX ) + δUτ ,

where τ indexes the time step, δ is the step size, and Uτ ∼ N (0, ID).

(3) MCMC teaching
(i) LetMθX be the Markov transition kernel of l steps of Langevin dynamics that samples
from p(x; θX ), and MθX qαX be the marginal distribution obtained by running the Markov
transitionMθX from distribution q(x, αX ). That is we use the translator q(x, αX ) to initialize
the Langevin dynamics of p.
(ii) The EBM p(x; θX ) can distill its MCMC algorithm to q(x;αX ) through MCMC teaching,
which seeks to find α at time t to minimize KL(MθX qα(t)

X
|qαX ). That is, q(x;αX ) gets close

to p(x; θX ).

(4) The proposed models
We propose the Cycle-consistent cooperative network (CycleCoopNets), to simultaneously
learn and align two translator-teacher pairs, i.e.,

Y → X : {p(x; θX ), GY→X (y;αX )},
X → Y : {p(y; θY), GX→Y(x;αY)},

where each pair of models is trained via MCMC teaching to form a one-way translation. We
align them by enforcing mutual invertibility, i.e.,

xi = GY→X (GX→Y(xi;αY);αX ),

yi = GX→Y(GY→X (yi;αX );αY).

Learning

Step (1): cross-domain mapping
{xi ∼ pdata(x)}ñi=1 {ŷi = GX→Y(xi;αY)}ñi=1.
{yi ∼ pdata(y)}ñi=1 {x̂i = GY→X (yi;αX )}ñi=1

Step (2): density shifting
Starting from {ŷi}ñi=1, run l steps of Langevin revision to obtain {ỹi}ñi=1.
Starting from {x̂i}ñi=1, run l steps of Langevin revision to obtain {x̃i}ñi=1.
Given {x}ñi=1 and {x̃}ñi=1, update θ(t+1)

X = θ
(t)
X + γθX ∆(θ

(t)
X ).

Given {y}ñi=1 and {ỹ}ñi=1, update θ(t+1)
Y = θ

(t)
Y + γθY ∆(θ

(t)
Y ).

Step (3): mapping shifting with cycle consistency
Lteach(αX ) = 1

ñ

∑ñ
i=1 ‖x̃i −GY→X (yi, αX )‖2.

Lteach(αY) = 1
ñ

∑ñ
i=1 ‖ỹi −GX→Y(xi, αY)‖2.

Lcyc(αX , αY) =
1
ñ

∑ñ
i=1 ‖xi −GY→X (GX→Y(xi;αY);αX )‖1 + 1

ñ

∑ñ
i=1 ‖yi −GX→Y(GY→X (yi;αX );αY)‖1.

Experiment 1: Object transfiguration and season transfer
Input CycleGAN UNIT G (ours) p (ours)

Apple ⇒ Orange

Orange ⇒ Apple

Input CycleGAN UNIT DRIT Ours

summer ⇒ winter

winter ⇒ summer

Figure 1: (Left) Object transfiguration. (Right) Season transfer.

Experiment 2: Translation between photo image and semantic label image
Input ours CycleGAN Ground truth

Aerial⇒Map
Input ours CycleGAN Ground truth

Map⇒Aerial

Input ours CycleGAN Ground truth

Facade⇒Label
Input ours CycleGAN Ground truth

Label⇒Facade

Figure 2: Translation between photo image and semantic label image

Table 1: Quantitative evaluation of unsupervised image-to-image translation by PSNR.
Dataset Model ↑ L⇒R ↑ R⇒L

Aerial⇔Map

CycleGAN 21.59 12.67
AlignFlow(mle) 19.47 13.60
AlignFlow(adv) 20.16 15.17

Ours 22.29 14.50

Facade⇔Label

CycleGAN 6.68 7.61
AlignFlow(mle) 6.47 8.26
AlignFlow(adv) 7.74 11.74

Ours 9.34 11.93

Experiment 3: Style transfer

Figure 3: Collection style transfer from photo realistic images to artistic styles

Experiment 4: Image sequence translation
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(a) Barack Obama to Donald Trump
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(b) violet flower to yellow flower
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(c) purple flower to red flower

Figure 4: (a) We translate Barack Obama’s facial motion to Donald Trump. (b) We translate
from the blooming of a violet flower to a yellow flower. (c) We translate the blooming of a
purple flower to a red flower.


