Learning Cycle-Consistent Cooperative Networks via Alternating MCMC Teaching for Unsupervised Cross-Domain Translation

Jianwen Xie^{1,*}, Zilong Zheng^{2,*}, Xiaolin Fang³, Song-Chun Zhu^{2,4,5}, Ying Nian Wu² (*equal contribution) Baidu Research, ² University of California, Los Angeles, ³ Massachusetts Institute of Technology, ⁴ Peking University, ⁵ Tsinghua University

Problem definition and modeling

(1) **Problem**

Suppose we have two different data domains, say \mathcal{X} and \mathcal{Y} , and data collections from these two different domains $\{x_i, i = 1, ..., n_x\}$ and $\{y_i, i = 1, ..., n_y\}$, where $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$. Let $p_{\text{data}}(x)$ and $p_{\text{data}}(y)$ denote the unknown data distributions for these two domains. Without instance-level correspondence between two collections, we want to learn translators between two domains for cross-domain translation.

(1) Latent variable model as a translator

We first talk about the model for one-way translation, e.g., $\mathcal{Y} \to \mathcal{X}$. We specify a mapping $G_{\mathcal{Y}\to\mathcal{X}}$ that seeks to re-express the image y in domain \mathcal{Y} by the image x in domain \mathcal{X} . The representational model is of the following form:

$$y \sim p_{data}(y),$$

$$x = G_{\mathcal{Y} \to \mathcal{X}}(y; \alpha_{\mathcal{X}}) + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2 I_D),$$

where $G_{\mathcal{Y}\to\mathcal{X}}(y;\alpha_{\mathcal{X}})$ is an encoder-decoder network whose parameters are $\alpha_{\mathcal{X}}$, and ϵ is a Gaussian residual. We assume σ is given and I_D is the D-dimensional identity matrix. We have conditional distribution : $q(x|y) \sim \mathcal{N}(G_{\mathcal{Y} \to \mathcal{X}}(y; \alpha_{\mathcal{X}}), \sigma^2 I_D)$ and marginal density : $q(x; \alpha_{\mathcal{X}}) = \int p_{\text{data}}(y) q(x|y; \alpha_{\mathcal{X}}) dy$. Learning $\alpha_{\mathcal{X}}$ via maximum likelihood is hard, because it requires the prior $p_{data}(y)$ to be a tractable density.

(2) Energy-based model as a teacher

To avoid the challenge of inferring y from x, we train $G_{\mathcal{Y} \to \mathcal{X}}$ via MCMC teaching by recruiting an energy-based model (EBM) as a teacher. The EBM specifies the distribution of x by

$$p(x;\theta_{\mathcal{X}}) = \frac{1}{Z(\theta_{\mathcal{X}})} \exp\left[f(x;\theta_{\mathcal{X}})\right] p_0(x),$$

where $p_0(x) \propto \exp(-||x||^2/2s^2)$ is the Gaussian reference distribution. The energy function $\mathcal{E}(x;\theta_{\mathcal{X}}) = -f(x;\theta_{\mathcal{X}}) + ||x||^2/s^2$, where f is parameterized by a ConvNet with parameters $\theta_{\mathcal{X}}$. $Z(\theta_{\mathcal{X}}) = \int \exp\left[f(x;\theta_{\mathcal{X}})\right] p_0(x) dx$ is the intractable normalizing constant. In practice, we can learn $\theta_{\mathcal{X}}$ by maximum likelihood estimation with the gradient that can be approximated by

$$\Delta(\theta_{\mathcal{X}}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial \theta_{\mathcal{X}}} f(x_i; \theta_{\mathcal{X}}) - \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} \frac{\partial}{\partial \theta_{\mathcal{X}}} f(\tilde{x}_i; \theta_{\mathcal{X}}),$$

where \tilde{x}_i are MCMC examples sampled from $p(x; \theta_{\mathcal{X}})$. With an EBM model defined on domain \mathcal{X} , we can sample x by MCMC, such as Langevin dynamics, which iterates

$$x_{\tau+1} = x_{\tau} - \frac{\delta^2}{2} \frac{\partial}{\partial x} \mathcal{E}(x_{\tau}; \theta_{\mathcal{X}}) + \delta U_{\tau},$$

where τ indexes the time step, δ is the step size, and $U_{\tau} \sim \mathcal{N}(0, I_D)$.

(3) MCMC teaching

(i) Let $\mathcal{M}_{\theta_{\mathcal{X}}}$ be the Markov transition kernel of *l* steps of Langevin dynamics that samples from $p(x; \theta_{\mathcal{X}})$, and $\mathcal{M}_{\theta_{\mathcal{X}}} q_{\alpha_{\mathcal{X}}}$ be the marginal distribution obtained by running the Markov transition $\mathcal{M}_{\theta_{\mathcal{X}}}$ from distribution $q(x, \alpha_{\mathcal{X}})$. That is we use the translator $q(x, \alpha_{\mathcal{X}})$ to initialize the Langevin dynamics of *p*.

which seeks to find α at time t to minimize $\operatorname{KL}(\mathcal{M}_{\theta_{\mathcal{X}}}q_{\alpha_{\mathcal{X}}^{(t)}}|q_{\alpha_{\mathcal{X}}})$. That is, $q(x; \alpha_{\mathcal{X}})$ gets close to $p(x; \theta_{\mathcal{X}})$.

(4) The proposed models

We propose the Cycle-consistent cooperative network (CycleCoopNets), to simultaneously learn and align two translator-teacher pairs, i.e.,

$$\mathcal{Y} \to \mathcal{X} : \{ p(x; \theta_{\mathcal{X}}), G_{\mathcal{Y} \to \mathcal{X}}(y; \alpha_{\mathcal{X}}) \}, \\ \mathcal{X} \to \mathcal{Y} : \{ p(y; \theta_{\mathcal{Y}}), G_{\mathcal{X} \to \mathcal{Y}}(x; \alpha_{\mathcal{Y}}) \},$$

where each pair of models is trained via MCMC teaching to form a one-way translation. We align them by enforcing mutual invertibility, i.e.,

$$x_{i} = G_{\mathcal{Y} \to \mathcal{X}}(G_{\mathcal{X} \to \mathcal{Y}}(x_{i}; \alpha_{\mathcal{Y}}); \alpha_{\mathcal{X}}),$$

$$y_{i} = G_{\mathcal{X} \to \mathcal{Y}}(G_{\mathcal{Y} \to \mathcal{X}}(y_{i}; \alpha_{\mathcal{X}}); \alpha_{\mathcal{Y}}).$$

Figure 1: (Left) Object transfiguration. (Right) Season transfer.