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Introduction

• Cross-domain translation, such as image-to-image translation, has

shown its importance in computer vision and computer graphics.

• Unsupervised cross-domain translation is more applicable than

supervised cross-domain translation, because different domains of

independent data collections are easily accessible.
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Introduction

• Researchers have proposed unsupervised cross-domain translation

networks based on GANs 1, such as CycleGAN 2, and obtained

compelling results.

• Recently, learning ConvNet-parameterized EBM 3 (i.e., an

energy-based model with the energy function parameterized by a

convolutional neural network) for data probability distributions has

received significant attention.

1Ian Goodfellow, et al. ”Generative adversarial nets.” NIPS 2014.
2Jun-Yan Zhu, et al. ”Unpaired image-to-image translation using cycle-consistent

adversarial networks.” ICCV. 2017.
3Jianwen Xie, et al. ”A Theory of Generative ConvNet.” ICML, 2016.
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Introduction

• Cooperative network (CoopNets) 4 proposes to learn the EBM

simultaneously with a generator in a cooperative learning scheme.

• In CoopNets, the generator plays a role of a fast sampler to initialize

the MCMC sampling of the EBM, while the EBM teaches the

generator via a finite-step MCMC.

• The CoopNets has several conceptual advantages:

1. Avoid mode collapse.

2. MCMC refinement.

3. Fast-thinking and slow-thinking.

4Jianwen Xie, et al. ”Cooperative Training of Descriptor and Generator Networks.”

TPAMI, 2018.
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Introduction

The contributions of our paper are four-folds:

1. We propose a novel framework, CycleCoopNets, based on

cooperative learning to study unsupervised cross-domain translation.

2. We successfully apply our framework to a wide range of applications

of unsupervised image-to-image translation, including object

transfiguration, season transfer, and art style transfer.

3. We show that our model can achieve comparative results with

GAN-based and flow-based methods.

4. We further generalize our framework to the task of unsupervised

image sequence translation.
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Problem definition

Notation

Suppose we have two different data domains, say X and Y, and data

collections from these two different domains {xi , i = 1, ..., nx} and

{yi , i = 1, ..., ny}, where xi ∈ X and yi ∈ Y. Let pdata(x) and pdata(y)

denote the unknown data distributions for these two domains.

Problem

Without instance-level correspondence between two collections, we want

to learn translators between two domains for cross-domain translation.
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Latent variable model as a translator

Model for one-way translation, e.g., Y → X .

We specify a mapping GY→X that seeks to re-express the image y in

domain Y by the image x in domain X .

Translator

The representational model is of the following form:

y ∼ pdata(y),

x = GY→X (y ;αX ) + ε, ε ∼ N (0, σ2ID),
(1)

where GY→X (y ;αX ) is an encoder-decoder network whose param-

eters are αX , and ε is a Gaussian residual. We assume σ is given

and ID is the D-dimensional identity matrix.

y is the latent variable of x , because for each x ∈ X , its version y ∈ Y is

unobserved. (x and y have the same number of dimension.)
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Latent variable model as a translator

prior distribution : pdata(y)

conditional distribution : q(x |y) ∼ N (GY→X (y ;αX ), σ2ID)

joint density : q(x , y ;αX ) = pdata(y)q(x |y ;αX )

marginal density : q(x ;αX ) =

∫
q(x , y ;αX )dy .

The maximum likelihood estimation (MLE) requires a prior pdata(y) with

tractable density (e.g., Gaussian white noise distribution) to calculate

∂

∂αX
[
1

n

n∑
i=1

log q(xi ;αX )].

Due to the unknown prior pdata(y), we can not estimate αX via MLE

with an MCMC-based inference or a variational inference.
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Energy-based model as a teacher

To avoid the challenging problem of inferring y from x , we can train

GY→X via MCMC teaching 5 by recruiting an energy-based model

(EBM) introduced by [Xie, et al 2016] as a teacher.

teacher

The EBM specifies the distribution of x explicitly by

p(x ; θX ) =
1

Z (θX )
exp [f (x ; θx)] p0(x), (2)

where p0(x) ∝ exp(−||x ||2/2s2) is a Gaussian reference distribu-

tion. The energy function E(x ; θX ) = −f (x ; θX ) + ||x ||2/2s2,

where f is parametrized by a bottom-up deep neural network

with parameters θX . Z (θX ) =
∫

exp [f (x ; θX )] p0(x)dx is the in-

tractable normalizing constant.

5Jianwen Xie, et al. ”Cooperative Learning of Energy-Based Model and Latent

Variable Model via MCMC Teaching.” AAAI, 2018.
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Energy-based model as a teacher

Maximum Likelihood Estimation

In general, the EBM p(x ; θX ) can be learned by maximum likelihood,

which equivalently minimizes the KL-divergence KL(pdata(x)‖p(x ; θX ))

over θX . The gradient is given by

− ∂

∂θX
KL(pdata(x)‖p(x ; θX ))

=Epdata(x)

[
∂

∂θX
f (x ; θX )

]
− Ep(x ;θX )

[
∂

∂θX
f (x ; θX )

]
,

(3)

where Ep(x ;θX ) denotes the expectation with respect to p(x ; θX ), which is

analytically intractable.
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Energy-based model as a teacher

Analysis by Synthesis

In practice, the gradient in Eq.(3) can be approximated by

1

n

n∑
i=1

∂

∂θ
f (xi ; θ)− 1

n

ñ∑
i=1

∂

∂θ
f (x̃i ; θ), (4)

where x̃i are MCMC examples sampled from the current distribution

p(x ; θX ). With an EBM model defined on domain X , we can sample x

by MCMC, such as Langevin dynamics, which iterates

xτ+1 = xτ −
δ2

2

∂

∂x
E(xτ ; θX ) + δUτ , (5)

where τ indexes the time step, δ is the step size, and Uτ ∼ N(0, ID).
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Translator and teacher

MCMC teaching

(1) Let MθX be the Markov transition kernel of l steps of Langevin

dynamics that samples from p(x ; θX ), and MθX qαX be the marginal

distribution obtained by running the Markov transition MθX from

distribution q(x , αX ). That is we use the translator q(x , αX ) to initialize

the Langevin dynamics of p.

(2) The EBM p(x ; θX ) can distill its MCMC algorithm to q(x ;αX )

through MCMC teaching, which seeks to find α at time t to minimize

KL(MθX qα(t)
X
|qαX ). That is, q(x ;αX ) gets close to p(x ; θX ).
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Cycle-consistent cooperative network

Problem

Given two domains X and Y in the absence of paired training examples,

we learn translators between two domains for cross-domain translation .

The proposed solution

We propose the Cycle-consistent cooperative network

(CycleCoopNets), to simultaneously learn and align two

translator-critic pairs, i.e.,

Y → X : {p(x ; θX ),GY→X (y ;αX )},
X → Y : {p(y ; θY),GX→Y(x ;αY)},

where each pair of models is trained via MCMC teaching to form a

one-way translation. We align them by enforcing mutual invertibility, i.e.,

xi = GY→X (GX→Y(xi ;αY);αX ),

yi = GX→Y(GY→X (yi ;αX );αY).
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Unsupervised cooperative translation (Overview)

Figure 1: Illustration of CycleCoopNetss

We iterate the following three steps:

(1) Cross-domain mapping

(2) Density shifting

(3) Mapping shifting with cycle consistency
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Unsupervised cooperative translation (Step 1)

Figure 2: Step (1): cross-domain mapping

{xi ∼ pdata(x)}ñi=1 {ŷi = GX→Y(xi ;αY)}ñi=1.

{yi ∼ pdata(y)}ñi=1 {x̂i = GY→X (yi ;αX )}ñi=1
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Unsupervised cooperative translation (Step 2)

Figure 3: Step (2): density shifting

Starting from {ŷi}ñi=1, run l steps of Langevin revision to obtain {ỹi}ñi=1.

Starting from {x̂i}ñi=1, run l steps of Langevin revision to obtain {x̃i}ñi=1.

Given {x}ñi=1 and {x̃}ñi=1, update θ
(t+1)
X = θ

(t)
X + γθX ∆(θ

(t)
X ).

Given {y}ñi=1 and {ỹ}ñi=1, update θ
(t+1)
Y = θ

(t)
Y + γθY ∆(θ

(t)
Y ).
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Unsupervised cooperative translation (Step 3)

Figure 4: Step (3): Mapping shifting with cycle consistency

Lteach(αX ) = 1
ñ

∑ñ
i=1 ‖x̃i − GY→X (yi , αX )‖2.

Lteach(αY) = 1
ñ

∑ñ
i=1 ‖ỹi − GX→Y(xi , αY)‖2.

Lcycle(αX , αY ) =
1
ñ

∑n
i=1 ‖xi − GY→X (GX→Y (xi ;αY );αX )‖1 + 1

ñ

∑n
i=1 ‖yi − GX→Y (GY→X (yi ;αX );αY )‖1.
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Experiment 1: Object transfiguration

Input CycleGAN UNIT G (ours) p (ours)

Apple ⇒ Orange

Orange ⇒ Apple

Figure 5: Object transfiguration. The top

panel displays the translation from apples to

oranges, and the bottom panel displays the

translation from oranges to apples.

Table 1: Quantitative evaluation on

apple⇔orange dataset with respect to Fréchet

Inception Distance (FID) and Domain-invariant

Perceptual Distance (DIPD). The top two rows

show baseline results of CycleGAN and UNIT.

The middle two rows show the results of G and

p, where s step is the number of MCMC

teaching steps. The last three rows show

performances of models with different numbers

of MCMC teaching steps.

methods
apple ⇒ orange orange ⇒ apple

FID ↓ DIPD ↓ FID↓ DIPD ↓
CycleGAN (Zhu et al. 2017) 160.78 1.75 143.87 1.73

UNIT (Liu et al. 2017) 170.66 1.58 122.04 1.62

G (s step = 15) 158.66 1.28 119.27 1.34

p(s step = 15) 154.58 1.23 118.82 1.25

p(s step = 1) 192.60 1.43 143.00 1.42

p(s step = 5) 166.41 1.43 170.38 1.40

p(s step = 10) 189.60 1.32 141.60 1.32
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Experiment 2: Season transfer

Input CycleGAN UNIT DRIT Ours

summer ⇒ winter

winter ⇒ summer

Figure 6: Season transfer. Example results of

unpaired image-to-image translation on summer

and winter Yosemite photos.

We train the CycleCoopNetss model

on 854 winter photos and 1,273

summer photos of Yosemite for season

transfer. Figure 6 shows some

qualitative results and compares against

three baseline methods CycleGAN,

UNIT and DRIT (Lee et al. 2020).
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Experiment 3: Translation between photo image and semantic

label image

Input ours CycleGAN Ground truth

Aerial⇒Map
Input ours CycleGAN Ground truth

Map⇒Aerial

(a) Aerial ⇔ Map

Input ours CycleGAN Ground truth

Facade⇒Label
Input ours CycleGAN Ground truth

Label⇒Facade

(b) Facade ⇔ Label

Figure 7: Translation between photo image and semantic label image.
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Experiment 3: Translation between photo image and semantic

label image

We show a comparison of performances of our method and some

baselines, which includes CycleGAN and AlignFlow 6.

Table 2: Quantitative evaluation of

unsupervised image-to-image translation by

PSNR.

Dataset Model ↑ L⇒R ↑ R⇒L

Aerial⇔Map

CycleGAN 21.59 12.67

AlignFlow(mle) 19.47 13.60

AlignFlow(adv) 20.16 15.17

Ours 22.29 14.50

Facade⇔Label

CycleGAN 6.68 7.61

AlignFlow(mle) 6.47 8.26

AlignFlow(adv) 7.74 11.74

Ours 9.34 11.93

These two datasets provide one-to-one

paired images. In this experiment, we

train our model on the datasets in an

unsupervised manner, where the

correspondence information between

two image domains is omitted. We only

use this correspondence information at

testing stage for evaluation.

6Grover, Aditya, et al. ”AlignFlow: Cycle Consistent Learning from Multiple Domains

via Normalizing Flows.” AAAI. 2020.
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Experiment 4: Style transfer

Original Monet Van Gogh Cezanne Ukiyo-e

Figure 8: Collection style transfer from photo realistic images to artistic styles.
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Experiment 4: Style transfer

Input Gatys et al.(Image I) Gatys et al.(Image II) CycleGAN Ours
M

on
et

V
an

G
og

h
C

ez
an

ne
U

ki
yo

-e

Figure 9: We compare our framework with style transfer method using neural network (Gatys,

Ecker, and Bethge 2016) on photo stylization. Each row represents one example, where the first

column shows the input image, the second and the third columns show results from (Gatys, Ecker,

and Bethge 2016) using two different representative artworks as style images, the fourth column

displays the result of CycleGAN, and the last one is the result by our method.
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Experiment 5: Image sequence translation

We can further generalize the CycleCoopNets framework to learning a

translation between two domains of sequences where paired examples are

unavailable.

For example, given an image sequence of Donald Trump’s speech, we can

translate it to an image sequence of Barack Obama, where the content of

Donald Trump is transferred to Barack Obama but the speech is in

Donald Trump’s style.

Such an appearance translation and motion style preservation framework

may have a wide range of applications in video manipulation.
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Experiment 5: Image sequence translation

Suppose we observe two unpaired but ordered image sequences

X = (x1, x2, ..., xt , ...) and Y = (y1, y2, ..., yt , ...).

Each long sequence can be turned into a collection of short sequences

with an equal length, i.e., {xt:t+k}TX
t=1 and {yt:t+k}TY

t=1, where

xt:t+k = (xt , ..., xt+k) and yt:t+k = (yt , ..., yt+k).

We make two modifications to adapt the CycleCoopNets to this new

task:
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Experiment 5: Image sequence translation

(1) We learn a temporal prediction model in each domain to predict

future image frame given the past image frames in a sequence.

Let RX and RY denote temporal prediction models for domain X and Y
respectively. We learn RX and RY by minimizing

Ltp(RX ) =
1

TX

TX∑
t=1

‖xt+k − RX (xt:t+k−1)‖1,

Ltp(RY) =
1

TY

TY∑
t=1

‖yt+k − RY(yt:t+k−1)‖1,

(6)

where xt:t+k = (xt , ..., xt+k) and yt:t+k = (yt , ..., yt+k).
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Experiment 5: Image sequence translation

(2) With the temporal prediction models, we modify the loss for G to

take into account spatial-temporal information as below

Lst(GX→Y ,RY ,GY→X )

=
1

TX

TX∑
t=1

‖xt+k − GY→X (RY(GX→Y(xt:t+k−1)))‖1,

Lst(GY→X ,RX ,GX→Y)

=
1

TY

TY∑
t=1

‖yt+k − GX→Y(RX (GY→X (yt:t+k−1)))‖1,

The final objective of G and R is given by

min
G ,R

L(G ,R) = Lteach(GY→X ) + Lteach(GX→Y)

+ λ1Ltp(RX ) + λ1Ltp(RY) + λ2Lst(GX→Y ,RY ,GY→X )

+ λ2Lst(GY→X ,RX ,GX→Y),
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Experiment 5: Image sequence translation

In
pu

t
O

ut
pu

t

(a) Barack Obama to Donald Trump

In
pu

t
O

ut
pu

t

(b) violet flower to yellow flower

In
pu

t
O

ut
pu

t

(c) purple flower to red flower

Figure 10: Image sequence translation. (a) We translate Barack Obama’s facial motion to

Donald Trump. (b) We translate from the blooming of a violet flower to a yellow flower. (c) We

translate the blooming of a purple flower to a red flower.
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Conclusion

• This paper studies unsupervised cross-domain translation problem

based on a cooperative learning scheme.

• Our framework consist of two cooperative networks, each of which

jointly trains an latent variable model as a translator and an

energy-based model as a critic to account for one domain

distribution.

• Two cooperative networks that model data distributions of two

different domains are simultaneously learned and aligned by the

proposed alternating MCMC teaching algorithm.

• Experiments show that the proposed framework can be useful for

different unsupervised cross-domain translation tasks.
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