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Introduction

1. We propose a simple but novel deep generative model where a latent space normalizing
flow model, which serves as a prior, stands on a single top-down generator network.

2. We propose a principled maximum likelihood learning algorithm to jointly train the
normalizing flow prior and the top-down network with short-run Langevin flow as an
approximate inference.

3. We provide theoretical understanding of the proposed learning framework.

4. We provide extensive and strong experimental results on different aspects, including image
synthesis, inference, reconstruction, inpainting and recovery, to validate the effectiveness
of the proposed models and learning algorithms.

Table 1: A comparison of latent variable models with different priors and inference process. (
is good, is OK, and is bad.)

Methods easy informative fast fast less fast practical
design prior sample inference parameters training

NF + short-run MCMC
NF + long-run MCMC
NF + inference net
EBM + short-run MCMC
EBM + long-run MCMC
EBM + inference net
Gaussian + short-run MCMC
Gaussian + long-run MCMC
Gaussian + inference net

Latent Space Normalizing Flow Model
(1) Latent variable model:
Let x ∈ RD denote an observed signal, z ∈ Rd denote the latent variables of x. The joint
distribution of (x, z) is given by

pθ(x, z) = pα(z)pβ(x|z), (1)

where pα(z) is the prior model parameterized by α, and pβ(x|z), is the top-down generation
model parameterized by β. For notational convenience, let θ = (α, β).

(2) Top-down generation model pβ(x|z)
The top-down generaton model is a non-linear transformation of the latent variables z to generate
the signal x, in which the transformation is parameterized by a neural network gβ : Rd → RD,

x = gβ(z) + ε (2)

where ε ∼ N (0, σ2ID) is an observation residual. Thus,

pβ(x|z) = N (gβ(z), σ
2ID), (3)

where the standard deviation σ is a hyper-parameter and assumed to be given.

(3) Flow-based prior model pα(z)
We formulate the prior pα(z) as a flow-based model which is of the form

z0 ∼ q0(z0), z = fα(z0), (4)

where q0(z0) = N (0, Id). fα : Rd → Rd is an invertible or bijective function, which is a
composition of a sequence of invertible transformations, i.e., fα(z0) = fαL ◦ · · · ◦fα2

◦fα1
(z0),

whose inverse and logarithm of the determinants of the Jacobians can be explicitly obtained in
closed form.
According to the change-of-variable law of probabilities, q0(z0)dz0 = pα(z)dz, the density of
the flow-based prior model can be written as

pα(z) = q0(z0)
dz0
dz = q0(f

−1
α (z))

∣∣∣det(∂f−1
α (z)
∂z

)∣∣∣ = q0(f
−1
α (z))

∏L
l=1

∣∣∣det(∂zl−1

∂zl

)∣∣∣ , (5)

where f−1α (z) = f−1α1
◦ · · · ◦ f−1αL−1

◦ f−1αL (z), and the determinant of the Jacobian matrix
(∂zl−1/∂zl) can be easy to compute with well-designed transformation functions in the flow-
based models.

Learning Latant Space Normalizing Flow with Short-run Langevin Flow
(1) Maximum likelihood learning
For the training examples {xi, i = 1, ..., N}, the log-likelihood function is given by

L(θ) = 1

N

N∑
i=1

log pθ(xi), (6)

where the marginal distribution is pθ(x) =
∫
pθ(x, z)dz =

∫
pα(z)pβ(x|z)dz.

The gradient of L(θ) can be computed according to

∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x)[∇θ(log pα(z) + log pβ(x|z))],

where the posterior distribution of z is given by pθ(z|x) = pθ(x, z)/pθ(x) ∝ pα(z)pβ(x|z).
pθ(z|x) is dependent on both the prior model α and the generation model β.

(2) Learning α
The learning gradient of α for a datapoint x is

∇α log pθ(x) = Epθ(z|x)[∇α log pα(z)] = Epθ(z|x)[∇αlα(z)]. (7)

(3) Learning β
The learning gradient of β for a datapoint x is

∇β log pθ(x) = Epθ(z|x)[∇β log pβ(x|z)]. (8)

Since pβ(x|z) is in the form of a Gaussian distribution with a mean of gβ(z) and a standard
deviation of σ,∇β log pβ(x|z) = ∇β(− 1

2σ2 ||x− gβ(z)||2 + const) = 1
σ2 (x− gβ(z))∇βgβ(z).

(4) Inference
Sampling from pθ(z|x) can be achieved by Langevin dynamics that iterates

z(k+1) = z(k) + ξ∇z log pθ(z(k)|x) +
√

2ξε(k); z(0) ∼ q0(z), ε(k) ∼ N (0, Id), (9)

where∇z log pθ(z|x) = ∇z log pα(z)+∇z log pβ(x|z) = ∇zlα(z)+ 1
σ2 (x−gβ(z))∇zgβ(z),

and ξ is the Langevin step size.

Experiment 1: Image generation
Synthesis: The model can generate examples by first sampling latent vectors from the learned
flow-based prior distribution and then transforming the vectors to image space.

Reconstruction: The models can reconstruct images by first inferring the latent vectors from
the images, and then mapping the inferred latent vectors back to data space. The inference of
latent variables can be achieved by the MCMC.

Figure 1: Generated samples from CIFAR10, SVHN, and CelebA datasets.

Table 2: Quantitative results of image reconstruction and generation.

Models VAE 2sVAE RAE SRI SRI (L=5) ABP LEBM
LFBM

VAE MCMC

SVHN
MSE 0.019 0.019 0.014 0.018 0.011 - 0.008 0.005 0.005
FID 46.78 42.81 40.02 44.86 35.23 49.71 29.44 24.96 23.64

Cifar10
MSE 0.057 0.056 0.027 - - 0.018 0.020 0.020 0.016
FID 106.37 72.90 74.16 - - 90.30 70.15 69.70 66.41

CelebA
MSE 0.021 0.021 0.018 0.020 0.015 - 0.013 0.014 0.011
FID 65.75 44.40 40.95 61.03 47.95 51.50 37.87 33.64 33.64

Experiment 2: Supervised Image Inpainting
We can train an LFBM from fully-observed training images, and then use the learned model to
complete the missing pixels of testing images.

Figure 2: Supervised image inpainting results on the CelebA dataset.

Experiment 3: Anomaly Detection
We can perform anomaly detection on a testing image x by firstly inferring its latent vari-
ables z and then computing the logarithm of the joint probability log pθ(x, z) = log pα(z) +
log pβ(x|z) = lα(z)− 1

2σ2 ||x− gβ(z)||2 − log σ
√
2π as a decision score. The score should be

high for a normal example and low for an anomalous one.

Table 3: AUPRC scores for unsupervised anomaly detection on MNIST dataset
Heldout Digit 1 4 5 7 9

VAE 0.063 0.337 0.325 0.148 0.104
MEG 0.281 ± 0.035 0.401 ± 0.061 0.402 ± 0.062 0.290 ± 0.040 0.342 ± 0.034

BiGAN-σ 0.287 ± 0.023 0.443 ± 0.029 0.514 ± 0.029 0.347 ± 0.017 0.307 ± 0.028
EBM-VAE 0.297 ± 0.033 0.723 ± 0.042 0.676 ± 0.041 0.490 ± 0.041 0.383 ± 0.025

LEBM 0.336 ± 0.008 0.630 ± 0.017 0.619 ± 0.013 0.463 ± 0.009 0.413 ± 0.010
ABP 0.095 ± 0.028 0.138 ± 0.037 0.147 ± 0.026 0.138 ± 0.021 0.102 ± 0.033

LFBM (ours) 0.349 ± 0.002 0.812 ± 0.007 0.823 ± 0.009 0.682 ± 0.004 0.514 ± 0.008

Experiment 4: Unsupervised Image Recovery
The LFBM can be learned from incomplete training data, e.g., images with occluded pixels. The
learning algorithm updates the model parameters by maximizing the likelihood of the visible
pixels in training images.

Figure 3: A comparison of unsupervised image recovery results by different methods on
training images with different levels of occlusions.

Figure 4: Image synthesis by models learned from incomplete images.

Table 4: MSEs with different priors
Salt and pepper mask

Occ % 30% 50% 70%
flow (ours) 0.0244 0.0317 0.0464

EBM 0.0256 0.0319 0.0465
Gaussian 0.0259 0.0326 0.0472

Single region mask
mask size 20× 20 30× 30 40× 40
flow (ours) 0.0420 0.0587 0.0864

EBM 0.0429 0.0684 0.0957
Gaussian 0.0404 0.0572 0.0918

Table 5: FIDs with different priors
Salt and pepper mask

Occ % 30% 50% 70%
flow (ours) 46.2 59.14 86.77

EBM 52.78 61.91 88.27
Gaussian 153.01 156.71 172.77

Single region mask
mask size 20× 20 30× 30 40× 40
flow (ours) 42.39 47.52 72.47

EBM 49.16 51.59 77.39
Gaussian 150.95 146.41 184.53


