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1. Background, Motivation, and Contributions




Deep Latent Variable Model

Nonlinear mapping by neural network (generator network)

x = go(2)

2 Al =

Project and reshape

4

Observed data (e.g.,images): {x;,i = 1, ...,n}
Corresponding latent vectors: {z;,i = 1, ..., n}

all x; share the same ConvNet gq

We also assume z follows Gaussian distribution. (prior distribution)



Informative Prior

The Gaussian prior limits the expressivity of the latent space of data.

Can we learn a top-down generator with a non-Gaussian (informative) prior?

About the forms of the prior distributions

1) A known Gaussian prior: z~N(z|0,02I), where ¢ is a hyperparameter.
2) A learnable Gaussian prior: z~N(z|u, a2I), where u and o are learned from data

3) Other prior distribution: mixture Gaussian, .
4) Energy-based prior: z~ pg(z) = %exp(f(z 0)) (Pang et al, NeurlPS, 2020)
5) Flow-based prior (our paper)



Flow-Based Model in Data Space

T = ga(2); 2~ qo(2)

qo IS @ known Gaussian noise distribution. g, is an invertible transformations where the log determinants of
the Jacobians of the transformations can be explicitly obtained.

Under the change of variables, distribution of x can be expressed as

qa(x) = qo(2)

det(Jac(9))
4o (7) = qo(ga " ()| det(Dg; " (z)/0)]

In the flow-based model, g, is composed of a sequence of transformations g, = ga1 * 9az--- 9am » therefore,
we have

Ga(x) = qo(g " (2))I}2, | det(Ohi—1 /Ohy)|

Glow: Generative flow with invertible 1x1 convolutions. Diederik P Kingma and Prafulla Dhariwal. NIPS 2018



Flow-Based Model in Data Space

T = ga(2); 2~ qo(2)

Go(z) = qo(g; ()| det(Dg; L (x)/0x)|| Ingeneral, itis intractable !

The key idea of the flow-based model is to choose transformations g whose Jacobian is a triangle
matrix, so that the computation of determinant becomes

]det(c‘)hz_l/@hm = H|d1ag(8h%_1/6hz)|

diag() takes the diagonal of the Jacobian matrix

Maximum likelihood estimation of g min, KL(paata|lga)




Contributions

(1) We propose a simple but novel deep generative model where a latent space
normalizing flow, which serves as a prior, stands on a single top-down generator
network.

(2) We propose a natural and principled maximum likelihood learning algorithm to jointly
train the latent space normalizing flow and the top-down network with MCMC-based
inference over latent variables.

(3) We also propose to use short-run Langevin flow as an approximate inference for
efficient training.

(4) We provide theoretical understanding of the proposed learning framework.

(5) We provide extensive and strong experimental results on different aspects, including
image synthesis, inference, reconstruction, inpainting and recovery, to validate the
effectiveness of the proposed models and learning algorithms.
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2. The Proposed Framework




Latent Space Flow-Based Prior Model

X € Rp : observed signal (such as an image). z € R, : latent vector.

The joint distribution of (x,z):  pg(x, 2) = pa(2)ps(z|2)

(i) Flow-based prior model: 2o ~ qo(20), 2z = fa(20)
go(z0) = N(0,14). fa : R — R? is an invertible or bijective function

(i) Top-down generation model: g = gﬁ(z) + €

0 = (a,f)



Latent Space Flow-Based Prior Model

X € Rp : observed signal (such as an image). z € R, : latent vector.

The joint distribution of (x,z):  Po(T, 2) = pa(2)ps(x|2)

(i) Flow-based prior model: <0 ™~ qo(20), 2 = fa(20)

pa(e) = anlan) 52 = an( (20 faet (L2 E) |~ auirn T

=1

0z
det( 07 )'

(if) Top-down generation model: T = gp (z) + €

The flow-based prior model has two nice properties that are suitable for a prior:
(1) analytically tractable normalized density (good for training)
(2) easy to draw samples from by using ancestral sampling (good for testing)




Generative Learning of Flow-Based Prior Model

0=(a,0) | r=gs(z)+e zrpalz) e~ N(0.0%Ip)

Log-likelihood

N
£0) =3 logpa(z;)
i=1
Gradient for a training example

Vologpe(x) =E,, (212) [Velogpe(z, 2)]

— Epe(zlm)[vé’ (logpa(Z) + 1ng5(x|z))]
(1) (2)



Generative Learning of Flow-Based Prior Model

0= (a, ) v = gg(z) + € z ~ pa(2) e ~ N(0,0°Ip)

(1) Learning prior model a

Valogpe(z) = Ep,(212) [ Valogpa(z)]

(2) Learning generation model

Vglogpe(z) = Ep, 212V logpg(z|2)]



Generative Learning of Flow-Based Prior Model

0= (a, ) v = gg(z) + € z ~ pa(2) e ~ N(0,0°Ip)

(1) Learning prior model a

Valogpe(z) = Ep,210)[Valogpa(2)] = Ep, 212) [ Vala(2)]

logpa(z) = logao(fit(2)) + X, log |det(9z—, /0z)|

= logqo(zg) + Z{’Zl sum(log |diag(dz;—1/0%)|)

Given a datapoint z, computing its log-likelihood only need one pass of the inverse function fgl




Generative Learning of Flow-Based Prior Model

0 = (v, ) r=ygsz) +e  z~palz)  e~N(0,0%p)

(2) Learning generation model g

Vﬁ logpg( ) Epg(z|:1: [vﬁ logpg(:L‘] )]

Vs log pa(alz) = Vs(—5ksllz — gs(2)|[2 + const) = & (x — g5(2))Vags(2)

Because ps(x|z) isin the formof N'(gs(z),0%1p)




Generative Learning of Flow-Based Prior Model
(1) Learning prior model a Valogpg(z) = Epe(z|$) (Valogpa(2)]

(2) Learning generation model S Vilogpo(x) = Ep, (212)| Vs logps(z]2)]

Sampling from pg(z|x) can be achieved by Langevin dynamics that iterates
Z(ht1) = 26y +EV2log po (2| T) + V28€m), 2(0) ~ qo0(2), €y ~ N (0, 1a),

V. logpe(z|z) = V. logpa(2) + V. logps(z]z) = Vila(2) + 25 (x — g5(2))V.g5(2)

prior model generation model




Generative Learning of Flow-Based Prior Model

Algorithm 1 Maximum likelihood learning of latent space flow-based prior model

Input: (1) Observed signals for training {z; fV ; (2) Maximal number of learning iterations 7'; (3)
Numbers of Langevin steps for posterior /{; (4) Langevin step size £ for the posterior ; (5) Learning
rates for flow-based prior model and the generation model {7, 75}

Output: Parameters « for the generation model and /3 for the flow-based prior model

1: Randomly initialize o and /3
2: fort <+ 1to7'do

3: Sample a batch of observed examples {x; }
4: For each z;, sample the posterior z; ~ py(z|r;) using K Langevin steps in Eq.(7) with a
step size &.

5 Update flow-based prior by Adam with the gradient Vo in Eq.(5) and a learning rate v, .
6: Update generation model by Adam with the gradient V3 in Eq.(6) and a learning rate 3.
7: end for
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3. Experimental Results




Task 1: Image Synthesis and Reconstruction

(a) CIFAR10 (b) SVHN (c) Celeba

Generated samples from CIFAR10 (32x32), SVHN, (32x32) and Celeba (64x 64) datasets. Samples
are obtained from the model trained with Langevin flow as approximate inference (LFBM)



Task 1: Image Synthesis and Reconstruction

The comparison results on different datasets. The MSE and FID (smaller is better) are used
to test the quality of the reconstructed images and the synthesized images, respectively.

LFBM
Models VAE 2sVAE RAE SRI  SRI(L=5) ABP LEBM VAE MCMC
SVHN MSE | 0.019 0.019 0014 0.018 0.011 0.008 | 0.005 0.005

FID 46.78 4281  40.02 44.86 35.23 4971 2944 | 2496  23.64
MSE | 0.057 0.056  0.027 - - 0.018 0.020 | 0.020  0.016
FID | 106.37 7290  74.16 - - 90.30 7015 | 69.70  66.41
MSE | 0.021 0.021  0.018 0.020 0.015 - 0.013 | 0.014  0.011
FID 65.75 4440 4095 61.03 47.95 51.50 3787 | 33.64  33.64

Cifar10

CelebA




Task 2: Supervised Image Inpainting

Model trained with LFBM-MCMC Model trained with LFBM-VAE

Supervised image inpainting results on the CelebA dataset. Images in the first column are the original images. Images
in the second column are the masked images to be inpainted. Images in column 3 to column 12 (yellow panel) are
inpainting results using the learned LFBM-MCMC model. Images in column 13 to column 22 (green panel) are inpainting
results using the trained LFBM-VAE. For each panel, different columns correspond to different initializations of the
inference process.



Task 3: Anomaly Detection

» Likelihood-based anomaly detection is another task that can help evaluate the proposed model.

+ With a well-learned model from the normal data, we can detect the anomalous data by firstly
sampling the latent code of the given testing image from the posterior distribution by the
Langevin dynamics, and then computing the logarithm of the joint probability.

* The joint probability p(z, x) should be high for the normal images and low for the anomalous
ones.




Task 3: Anomaly Detection

We treat each class in the MNIST dataset as an anomalous class and leave the others as normal.

We train the model only with the normal data.

Then the model is tested with both the normal and anomalous data. To evaluate the performance,
we use logpy(x,z) as our decision function to compute the area under the precision-recall curve

(AUPRC).
Heldout Digit 1 4 5 7 9
VAE (Kingma and Welling 2014) 0.063 0.337 0.325 0.148 0.104
MEG (Kumar et al. 2019) 0.281 +0.035 0401 +0.061 0402+0.062 0290+ 0.040 0.342 +0.034
BiGAN-o (Zenati et al. 2018b) | 0.287 +0.023 0443 +0.029 0514 +0.029 0347+ 0.017 0.307 + 0.028
EBM-VAE (Han et al. 2020) 0297 £0.033 0.723 +£0.042 0.676 =0.041 0490+ 0.041 0.383 £0.025
LEBM (Pang et al. 2020) 0.336 + 0.008 0.630+0.017 0.619+0.013 0463+ 0.009 0413 +0.010
ABP (Han et al. 2017) 0.095 +£0.028 0.138 +0.037 0.147 +£0.026 0.138+0.021 0.102 + 0.033
LFBM (ours) 0.349 £ 0.002 0.812 + 0.007 0.823 = 0.009 0.682 £ 0.004 0.514 £ 0.008




Task 4: Unsupervised Image Recovery

Ours EBM Gaussian Masks Truth

A comparison of unsupervised image recovery results by different methods on training images with
different levels of occlusions. In each panel, the first row shows some original images that are used in
the training process, the second row shows the corresponding occluded images with a certain
occlusion level, and the third, fourth and fifth rows show the recovered images by models using
Gaussian prior, EBM prior and normalizing flow prior, respectively.



Task 4: Unsupervised Image Recovery

Ours EBM Gaussian

(a) salt-pepper 30% (b) salt-pepper 50% (c) salt-pepper 70% (d) mask size 20 x 20 (e) mask size 30 x 30 (f) mask size 40 x 40

Image synthesis by models learned from incomplete images. Each panel represents a different level
of occlusion.



Task 4: Unsupervised Image Recovery

Salt and pepper mask Salt and pepper mask
Occ % 30% 50% 70% Occ % 30% 50% 70%
flow (ours) 0.0244  0.0317  0.0464 flow (ours) 46.2 59.14 86.77
EBM 0.0256  0.0319  0.0465 EBM 52.78 61.91 88.27
Gaussian ~ 0.0259  0.0326  0.0472 Gaussian ~ 153.01  156.71 172.77
Single region mask Single region mask
mask size 20 x 20 30 x 30 40 x 40 mask size 20 x 20 30 x 30 40 x 40
flow (ours)  0.0420  0.0587  0.0864 flow (ours)  42.39 47.52 72.47
EBM 0.0429  0.0684  0.0957 EBM 49.16 51.59 77.39
Gaussian  0.0404  0.0572  0.0918 Gaussian ~ 150.95 14641 184.53

FIDs of methods with different priors

MSEs of methods with different priors in
in unsupervised image recover

unsupervised image recovery
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