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Abstract
Understanding dynamic patterns requires a disentangled representational model that separates
the factorial components. A commonly used model for dynamic patterns is the state space
model, where the state evolves over time according to a transition model and the state generates
the observed image frames according to an emission model. To model the motions explicitly, it
is natural for the model to be based on the motions or the displacement fields of the pixels. Thus
in the emission model, we let the hidden state generate the displacement field, which warps the
trackable component in the previous image frame to generate the next frame while adding a
simultaneously emitted residual image to account for the change that cannot be explained by
the deformation. The warping of the previous image is about the trackable part of the change
of image frame, while the residual image is about the intrackable part of the image. We use a
maximum likelihood to learn the model parameters that iterates between inferring latent noise
vectors that drive the transition model and updating the parameters given the inferred latent
vectors. Meanwhile we adopt a regularization term to penalize the norms of the residual images
to encourage the model to explain the change of image frames by trackable motion. Unlike
existing methods on dynamic patterns, we learn our model in unsupervised setting without
ground truth displacement fields or optical flows. In addition, our model defines a notion of
intrackability by the separation of warped component and residual component in each image
frame. We show that our method can synthesize realistic dynamic pattern, and disentangling
appearance, trackable and intrackable motions. The learned models can be useful for motion
transfer, and it is natural to adopt it to define and measure intrackability of a dynamic pattern.

Motion-based generator model

Let I = (It, t = 0, 1, ..., T ) be the observed video sequence of dynamic pattern, where It is a
frame at time t. The motion-based model for the dynamic patterns consists of:

st = (sMt , s
R
t ) = f1(st−1, ht), (1)

Mt = (δ(x, y),∀(x, y) ∈ D) = f2(sMt ), (2)
Rt = f3(sRt ), (3)
It = f4(It−1,Mt), (4)
It = It +Rt + εt, (5)

where f = (fi, i = 0, 1, 2, 3) are neural networks parameterized by θ = (θi, i = 0, 1, 2, 3).
(i) Equation (1) is the transition model, where st is the state vector, ht is a hidden Gaussian
white noise vector. f1 defines the transition from st−1 to st. The state vector st consists of two
sub-vectors. One is sMt for motion. The other is sRt for residual.
(ii) In Equation (2), sMt generates the motion Mt of the trackable part It−1 of the image frame
It−1, where Mt is the field of pixel displacement, which consists of the displacement δ(x, y)
of pixel (x, y). f2 defines the mapping from sMt to Mt.
(iii) In Equation (4), Mt is used to warp the trackable part It−1 of the image frame It−1 by a
warping function f4, which is given by bilinear interpolation. No unknown parameter in f4.
(iv) In Equation (3), sRt generates residual image Rt. f3 defines the mapping from sRt to Rt.
(v) In Equation (5), the image frame It is the sum of the warped image It and the residual
image Rt, plus a Gaussian white noise error εt.
(vi) In Equation (6), the initial trackable frame I0 is generated by an generator f0 from an
appearance hidden variable c that follows Gaussian distribution. To initialize I0, we use:

I0 = f0(c), R0 = f3(sR0 ), I0 = I0 +R0 + ε0. (6)

Learning by alternative back-propagation through time

Let p(h) be the Gaussian white noise prior. Let pθ(I|h) ∼ N(fθ(h), σ2I) be the con-
ditional distribution of the video sequence I given h. The marginal distribution of I is
pθ(I) =

∫
p(h)pθ(I|h)dh with the latent variable h integrated out.

We estimate the model parameter θ by the maximum likelihood method that maximizes the
observed-data log-likelihood log pθ(I). The gradient of the log-likelihood log pθ(I) is:

∂

∂θ
log pθ(I) =

1

pθ(I)

∂

∂θ
pθ(I) = Epθ(h|I)

[
∂

∂θ
log pθ(h, I)

]
, (7)

where pθ(h|I) = pθ(h, I)/pθ(I) is the posterior distribution of the latent h given the observed
X . The above expectation can be approximated by Monte Carlo average.

The learning algorithm iterates the following two steps:
(1) Inference step: given the current θ, sample h from pθ(h

(τ)|I) by the Langevin dynamics

h(τ+1) = h(τ) +
δ2

2

∂

∂h
log pθ(h

(τ)|I) + δN(0, I), (8)

(2) Learning step: given h, update θ by stochastic gradient descent

∆θ ∝ ∂

∂θ
log pθ(h, I), (9)

Since ∂
∂h log pθ(h|I) = ∂

∂h log pθ(h, I), both steps involves derivatives of

log pθ(h, I) = −1

2

[
‖h‖2 +

1

σ2
‖I− fθ(h)‖2

]
+ const,

where the constant term does not depend on h or θ. Both can be computed by back-propagation
through time. To encourage the model to explain the video sequence I by the trackable motion,
we add to the log-likelihood log pθ(I) a penalty term−λ1‖Rt‖2. To encourage the smoothness
of the inferred displacement field Mt, we add another penalty term −λ2‖∆Mt‖2. We estimate
θ by gradient ascent on log pθ(I)− λ1

∑
t ‖Rt‖2 − λ2

∑
t ‖∆Mt‖2.

Experiment 1: Dynamic pattern synthesis
We learn the model for dynamic textures, which are sequences of images of moving scenes
that exhibit stationarity in time. We learn a separate model from each example.

Experiment 2: Unsupervised disentanglement of appearance and motion
We learn the model from only one single video and unsupervisedly disentangle the motion and
appearance of the video, and then transfer the motion to the other appearances.

Experiment 3: Disentanglement of trackable and intrackable motions
In the context of our model, we can define intractability as the ratio between the average of
`2 norm of the intrackable residual image Rt and the average of the `2 norm of the observed
image It. This ratio depends on the penalty parameter λ1 of the `2 norm of Rt used in the
learning stage. This penalty parameter corresponds to the subjective preference. The larger the
preference λ1 is, the larger extent to which we interpret a video by trackable contents, the less
the residuals, and the less intrackability score.

Appendix
Left: An illustration of the framework of the proposed model-based generator model.
Right: Visualization of displacement field.


