
Spatial-temporal generative ConvNet

 Notation
Let 𝐈(𝑥, 𝑡) be an image sequence of a video, where 𝑥 ∈ 𝐷 indexes the

coordinates of pixels, and 𝑡 ∈ 𝑇 indexs the frames in the video. Let 𝐹𝑘
(𝑙)

be the

𝑘 -th spatial-temporal filter at layer 𝑙 ∈ {1,2,… , 𝐿} in the spatial-temporal

ConvNet. Let [𝐹𝑘
(𝑙)
∗ 𝐈](𝑥, 𝑡) be the filter response at pixel 𝑥 and time 𝑡.

 Model
It is an energy-based model defined on the image sequence 𝐈 with the form of

𝑝 𝐈;𝑤 =
1

𝑍 𝑤
exp 𝑓 𝐈; 𝑤 𝑞 𝐈 ,

where the scoring function 𝑓 𝐈;𝑤 is
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𝑘=1

𝐾

෍

𝑥∈𝐷𝐿

෍

𝑡∈ 𝑇𝐿

𝐹𝑘
𝐿
∗ 𝐈 (𝑥, 𝑡) ,

where 𝑤 consists of all the weight and bias terms that define the filters

𝐹𝑘
𝐿
, 𝑘 = 1,… , 𝐾 = 𝑁𝐿 at layer 𝐿, and 𝑞 is the Gaussian white noise model, i.e.,

𝑞 𝐈 =
1

(2𝜋𝜎2) 𝐷×𝑇 /2
exp −

1

2𝜎2
𝐈 2 ,

where 𝐷 × 𝑇 counts the number of pixels in the domain 𝐷 × 𝑇. Without loss of

generality, we shall assume 𝜎2 = 1.

 Sampling and learning algorithm

(1) Sampling by Langevin dynamics

One can sample from 𝑝 𝐈;𝑤 by

𝐈𝜏+1 = 𝐈𝜏 −
𝜖2

2
𝐈𝜏 −

𝜕

𝜕𝐈
𝑓(𝐈𝜏; 𝑤) + ϵ𝑍𝜏,

where 𝜏 indexes the time steps, ϵ is the step size, and 𝑍𝜏~𝑁(0,1).
𝜕

𝜕𝐈
𝑓 𝐈𝜏; 𝑤 = 𝑩𝑤,𝛿 𝐈𝜏;𝑤 is an auto-encoding reconstruction process, where binary

activation pattern 𝛿 𝐈𝜏; 𝑤 is computed by a bottom-up convolutional process,

where 𝑤 plays a role of filters; 𝑩𝑤,𝛿 is computed by a top-down deconvolutional

process, where 𝑤 plays a role of bases. The dynamics is driven by the

reconstruction error 𝐈𝜏 − 𝑩𝑤,𝛿 𝐈𝜏;𝑤 .

(2) Learning by Maximum Likelihood

The learning of 𝑤 from training image sequences {𝐈𝑚, 𝑚 = 1,… ,𝑀} can be

accomplished by the MLE. Let 𝐿(𝑤) = σ𝑚=1
𝑀 log 𝑝(𝐈𝑚; 𝑤) /𝑀,
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The expectation can be approximated by Monte Carlo samples {ሚ𝐈𝑚, 𝑚 =
1,… , ෩𝑀} generated by Langevin dynamics
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Update 𝑤(𝑡+1) ← 𝑤(𝑡) + 𝜂𝑡
𝜕𝐿(𝑤)

𝜕𝑤
, with step size 𝜂𝑡.

 Recovery algorithm

The model can learn from videos with occluded pixels. It simultaneously

accomplishes: (1) recover the occluded pixels of the training video

sequences, (2) synthesize new video sequences from the learned model,

(3) learn the model by updating the model parameters using the recovered

sequences and the synthesized sequences.

Input: 

(1) Training image sequences with occluded pixels; (2) Binary masks

indicating the locations of the occluded pixels in the training image

sequences; (3) Number of learning iterations 𝑇.

Output

(1) Estimated parameters 𝑤; (2) Synthesized image sequences {ሚ𝐈𝑚, 𝑚 =

1,… , ෩𝑀}; (3) Recovered image sequences {𝐈𝑚
′ , 𝑚 = 1,… ,𝑀}.

[1] Let 𝑡 ← 0, initialize 𝑤(0).

[2] Initialize ሚ𝐈𝑚, for 𝑚 = 1,… , ෩𝑀.

[3] Initialize 𝐈𝑚
′ , for 𝑚 = 1,… ,𝑀.

Repeat

[4] For each 𝑚, starting from the current 𝐈𝑚
′ , run 𝑘 steps of Langevin

dynamics to recover the occluded region of 𝐈𝑚
′ .

[5] For each 𝑚 , starting from the current ሚ𝐈𝑚 , run 𝑙 steps of Langevin

dynamics to update ሚ𝐈𝑚.

[6] Compute 𝐻obs = σ𝑚=1
𝑀 𝜕

𝜕𝑤
𝑓(𝐈𝑚

′ ; 𝑤 𝑡 )/𝑀

[7] Compute 𝐻𝑠𝑦𝑛 = σ𝑚=1
෩𝑀 𝜕

𝜕𝑤
𝑓(ሚ𝐈𝑚; 𝑤

𝑡 )/ ෩𝑀.

[8] Update 𝑤(𝑡+1)← 𝑤(𝑡) + 𝜂𝑡(𝐻
obs − 𝐻𝑠𝑦𝑛)

[9] Let 𝑡 ← 𝑡 + 1

Until 𝑡 = 𝑇

Experiments
 Exp 1: Generating dynamic textures with both spatial and 

temporal stationarity

The first row displays the frames of the observed sequence, and the second and

third row displays the corresponding frames of two synthesized sequences.
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Abstract
Video sequences contain rich dynamic patterns, such

as dynamic texture patterns that exhibit stationarity in

the temporal domain, and action patterns that are

non-stationary in either spatial or temporal domain.

We show that a spatial-temporal generative ConvNet

can be used to model and synthesize dynamic

patterns. The model defines a probability distribution

on the video sequence, and the log probability is

defined by a spatial-temporal ConvNet that consists

of multiple layers of spatial-temporal filters to capture

spatial-temporal patterns of different scales. The

model can be learned from the training video

sequences by an “analysis by synthesis” learning

algorithm that iterates the following two steps. Step 1

synthesizes video sequences from the currently

learned model. Step 2 then updates the model

parameters based on the difference between the

synthesized video sequences and the observed

training sequences. We show that the learning

algorithm can synthesize realistic dynamic patterns.

 Exp 2: Generating dynamic textures with only temporal stationarity

 Exp 3: Generating action patterns without spatial or temporal stationarity

 Exp 4: Learning from incomplete data

The first row shows a segment of the occluded sequence with black masks. The second row shows the

corresponding segment of the recovered sequence.

 Exp 5: Background inpainting

If a moving object in the video is occluded in each frame, it turns out that the recovery algorithm will

become an algorithm for background inpainting of videos, where the goal is to remove the undesired

moving object from the video.

Conclusion
We propose a spatial-temporal generative ConvNet
model for synthesizing dynamic patterns, such as
dynamic textures and action patterns. Our
experiments show that the model can synthesize
realistic dynamic patterns. Moreover, it is possible to
learn the model from video sequences with occluded
pixels or missing frames.

Reproducibility
http://www.stat.ucla.edu/~jxie/STGConvNet/STG

ConvNet.html
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Type ours MRF-L1 MRF-L2

(a) 5.3048 10.1071 12.8272

(b) 6.3484 12.2856 13.1836

(c) 6.7285 15.0085 13.7746

(1) river (2) ocean (1) removing a moving boat in the lake (2) removing a walking person in front of fountain

original masked inpainted original masked inpainted

(1) flashing lights

(2) burning fire heating a pot (3) fire

observed sequences synthesized sequences

Table 1: recovery errors in occlusion experiments
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